28 #include "petscviewer.h" 29 #include "petscerror.h" 78 .
add_value(
MortarP1,
"P1",
"Mortar space: P1 on intersections, using non-conforming pressures.")
86 "Homogeneous Neumann boundary condition. Zero flux")
88 "Dirichlet boundary condition. " 89 "Specify the pressure head through the ''bc_pressure'' field " 90 "or the piezometric head through the ''bc_piezo_head'' field.")
91 .
add_value(total_flux,
"total_flux",
"Flux boundary condition (combines Neumann and Robin type). " 92 "Water inflow equal to (($q^N + \\sigma (h^R - h)$)). " 93 "Specify the water inflow by the 'bc_flux' field, the transition coefficient by 'bc_robin_sigma' " 94 "and the reference pressure head or pieozmetric head through ''bc_pressure'' or ''bc_piezo_head'' respectively.")
96 "Seepage face boundary condition. Pressure and inflow bounded from above. Boundary with potential seepage flow " 97 "is described by the pair of inequalities: " 98 "(($h \\le h_d^D$)) and (($ q \\le q_d^N$)), where the equality holds in at least one of them. " 99 "Caution. Setting (($q_d^N$)) strictly negative " 100 "may lead to an ill posed problem since a positive outflow is enforced. " 101 "Parameters (($h_d^D$)) and (($q_d^N$)) are given by fields ``bc_pressure`` (or ``bc_piezo_head``) and ``bc_flux`` respectively." 104 "River boundary condition. For the water level above the bedrock, (($H > H^S$)), the Robin boundary condition is used with the inflow given by: " 105 "(( $q^N + \\sigma(H^D - H)$)). For the water level under the bedrock, constant infiltration is used " 106 "(( $q^N + \\sigma(H^D - H^S)$)). Parameters: ``bc_pressure``, ``bc_switch_pressure``, " 107 " ``bc_sigma, ``bc_flux``." 118 "Boundary piezometric head for BC types: dirichlet, robin, and river." )
120 "Boundary switch piezometric head for BC types: seepage, river." )
122 "Initial condition for the pressure given as the piezometric head." )
124 return field_descriptor;
131 "Linear solver for MH problem.")
133 "Residual tolerance.")
135 "Minimum number of iterations (linear solves) to use. This is usefull if the convergence criteria " 136 "does not characterize your goal well enough so it converges prematurely possibly without the single linear solve." 137 "If greater then 'max_it' the value is set to 'max_it'.")
139 "Maximum number of iterations (linear solves) of the non-linear solver.")
141 "If a stagnation of the nonlinear solver is detected the solver stops. " 142 "A divergence is reported by default forcing the end of the simulation. Setting this flag to 'true', the solver" 143 "ends with convergence success on stagnation, but report warning about it.")
146 return it::Record(
"Flow_Darcy_MH",
"Mixed-Hybrid solver for STEADY saturated Darcy flow.")
149 "Vector of the gravity force. Dimensionless.")
151 "Input data for Darcy flow model.")
153 "Non-linear solver for MH problem.")
155 "Parameters of output stream.")
158 "Parameters of output from MH module.")
160 "Parameters of output form MH module.")
162 "Settings for computing mass balance.")
164 "Time governor setting for the unsteady Darcy flow model.")
166 "Number of Schur complements to perform when solving MH system.")
168 "Method for coupling Darcy flow between dimensions." )
174 Input::register_class< DarcyMH, Mesh &, const Input::Record >(
"Flow_Darcy_MH") +
183 ADD_FIELD(anisotropy,
"Anisotropy of the conductivity tensor.",
"1.0" );
186 ADD_FIELD(cross_section,
"Complement dimension parameter (cross section for 1D, thickness for 2D).",
"1.0" );
187 cross_section.units(
UnitSI().m(3).md() );
189 ADD_FIELD(conductivity,
"Isotropic conductivity scalar.",
"1.0" );
190 conductivity.units(
UnitSI().m().s(-1) ).set_limits(0.0);
192 ADD_FIELD(sigma,
"Transition coefficient between dimensions.",
"1.0");
195 ADD_FIELD(water_source_density,
"Water source density.",
"0.0");
196 water_source_density.units(
UnitSI().s(-1) );
198 ADD_FIELD(bc_type,
"Boundary condition type, possible values:",
"\"none\"" );
200 bc_type.input_selection( get_bc_type_selection() );
203 ADD_FIELD(bc_pressure,
"Prescribed pressure value on the boundary. Used for all values of 'bc_type' save the bc_type='none'." 204 "See documentation of 'bc_type' for exact meaning of 'bc_pressure' in individual boundary condition types.",
"0.0");
205 bc_pressure.disable_where(bc_type, {
none} );
206 bc_pressure.units(
UnitSI().m() );
208 ADD_FIELD(bc_flux,
"Incoming water boundary flux. Used for bc_types : 'none', 'total_flux', 'seepage', 'river'.",
"0.0");
209 bc_flux.disable_where(bc_type, {
none, dirichlet} );
210 bc_flux.units(
UnitSI().m(4).s(-1).md() );
212 ADD_FIELD(bc_robin_sigma,
"Conductivity coefficient in the 'total_flux' or the 'river' boundary condition type.",
"0.0");
213 bc_robin_sigma.disable_where(bc_type, {
none, dirichlet, seepage} );
214 bc_robin_sigma.units(
UnitSI().m(3).s(-1).md() );
217 "Critical switch pressure for 'seepage' and 'river' boundary conditions.",
"0.0");
218 bc_switch_pressure.disable_where(bc_type, {
none, dirichlet, total_flux} );
219 bc_switch_pressure.units(
UnitSI().m() );
222 ADD_FIELD(init_pressure,
"Initial condition as pressure",
"0.0" );
223 init_pressure.units(
UnitSI().m() );
225 ADD_FIELD(storativity,
"Storativity.",
"0.0" );
226 storativity.units(
UnitSI().m(-1) );
268 data_ = make_shared<EqData>();
271 data_->is_linear=
true;
302 gravity_array.copy_to(gvec);
304 data_->gravity_ = arma::vec(gvec);
305 data_->gravity_vec_ =
data_->gravity_.subvec(0,2);
307 data_->bc_pressure.add_factory(
309 (
data_->gravity_,
"bc_piezo_head") );
310 data_->bc_switch_pressure.add_factory(
312 (
data_->gravity_,
"bc_switch_piezo_head") );
313 data_->init_pressure.add_factory(
315 (
data_->gravity_,
"init_piezo_head") );
323 MessageOut() <<
"Missing the key 'time', obligatory for the transient problems." << endl;
345 .val<Input::AbstractRecord>(
"linear_solver");
364 data_->water_balance_idx =
balance_->add_quantity(
"water_volume");
394 if (zero_time_term_from_right) {
425 bool jump_time =
data_->storativity.is_jump_time();
426 if (! zero_time_term_from_left) {
436 WarningOut() <<
"Output of solution discontinuous in time not supported yet.\n";
445 if (! zero_time_term_from_left && ! jump_time)
output_data();
451 if (zero_time_term_from_right) {
456 }
else if (! zero_time_term_from_left && jump_time) {
457 WarningOut() <<
"Discontinuous time term not supported yet.\n";
468 return (
data_->storativity.input_list_size() == 0);
482 MessageOut().fmt(
"[nonlin solver] norm of initial residual: {}\n", residual_norm);
485 int is_linear_common;
490 this->
max_n_it_ = nl_solver_rec.
val<
unsigned int>(
"max_it");
491 this->
min_n_it_ = nl_solver_rec.
val<
unsigned int>(
"min_it");
492 if (this->min_n_it_ > this->max_n_it_) this->min_n_it_ = this->
max_n_it_;
494 if (! is_linear_common) {
502 while (nonlinear_iteration_ < this->min_n_it_ ||
503 (residual_norm > this->tolerance_ && nonlinear_iteration_ < this->max_n_it_ )) {
505 convergence_history.push_back(residual_norm);
508 if (convergence_history.size() >= 5 &&
509 convergence_history[ convergence_history.size() - 1]/convergence_history[ convergence_history.size() - 2] > 0.9 &&
510 convergence_history[ convergence_history.size() - 1]/convergence_history[ convergence_history.size() - 5] > 0.8) {
516 THROW(ExcSolverDiverge() << EI_Reason(
"Stagnation."));
520 if (! is_linear_common)
526 if (is_linear_common)
break;
545 MessageOut().fmt(
"[nonlinear solver] it: {} lin. it:{} (reason: {}) residual: {}\n",
573 auto multidim_assembler = AssemblyBase::create< AssemblyMH >(
data_);
576 unsigned int dim = ele_ac.
dim();
577 multidim_assembler[dim-1]->fix_velocity(ele_ac);
635 vec_size = this->
size;
636 OLD_ASSERT(vec != NULL,
"Requested solution is not allocated!\n");
642 OLD_ASSERT(vec != NULL,
"Requested solution is not allocated!\n");
654 START_TIMER(
"DarcyFlowMH_Steady::assembly_steady_mh_matrix");
665 data_->local_boundary_index=0;
668 unsigned int dim = ele_ac.
dim();
669 assembler[dim-1]->assemble(ele_ac);
680 START_TIMER(
"DarcyFlowMH_Steady::allocate_mh_matrix");
691 double zeros[100000];
692 for(
int i=0; i<100000; i++) zeros[i] = 0.0;
697 unsigned int nsides = ele_ac.
n_sides();
700 unsigned int loc_size = 1 + 2*nsides;
703 for (; i < nsides; i++) {
704 local_dofs[i] = ele_ac.side_row(i);
705 local_dofs[i+nsides] = ele_ac.edge_row(i);
707 local_dofs[i+nsides] = ele_ac.ele_row();
708 int * edge_rows = local_dofs + nsides;
712 ls->
mat_set_values(loc_size, local_dofs, loc_size, local_dofs, zeros);
716 tmp_rows.reserve(200);
719 unsigned int n_neighs = ele_ac.full_iter()->n_neighs_vb;
720 for (
unsigned int i = 0; i < n_neighs; i++) {
725 tmp_rows.push_back(neigh_edge_row);
738 for(
auto &isec : isec_list ) {
742 for(
unsigned int i_side=0; i_side < slave_ele.
n_sides(); i_side++) {
789 double cs =
data_->cross_section.value(ele_ac.centre(), ele_ac.element_accessor());
792 double source = ele_ac.measure() * cs *
793 data_->water_source_density.value(ele_ac.centre(), ele_ac.element_accessor());
796 balance_->add_source_vec_values(
data_->water_balance_idx, ele_ac.region().bulk_idx(), {(int) ele_ac.ele_row()}, {source});
816 #ifdef FLOW123D_HAVE_BDDCML 817 WarningOut() <<
"For BDDC no Schur complements are used.";
832 xprintf(
Err,
"Flow123d was not build with BDDCML support.\n");
833 #endif // FLOW123D_HAVE_BDDCML 838 WarningOut() <<
"Invalid number of Schur Complements. Using 2.";
851 ls->LinSys::set_from_input(in_rec);
870 ISCreateStride(PETSC_COMM_WORLD,
mh_dh.
el_ds->
lsize(), ls->get_distribution()->begin(), 1, &is);
873 ls1->set_negative_definite();
876 schur2 =
new LinSys_PETSC( ls1->make_complement_distribution() );
878 ls1->set_complement( schur2 );
881 ls->set_complement( schur1 );
883 ls->set_solution( NULL );
897 xprintf(
Err,
"Unknown solver type. Internal error.\n");
911 START_TIMER(
"DarcyFlowMH_Steady::assembly_linear_system");
913 data_->is_linear=
true;
930 auto multidim_assembler = AssemblyBase::create< AssemblyMH >(
data_);
967 std::string output_file;
979 PetscViewerASCIIOpen(PETSC_COMM_WORLD, output_file.c_str(), &viewer);
980 PetscViewerSetFormat(viewer, PETSC_VIEWER_ASCII_MATLAB);
990 double d_max = std::numeric_limits<double>::max();
991 double h1 = d_max, h2 = d_max, h3 = d_max;
992 double he2 = d_max, he3 = d_max;
995 case 1: h1 = std::min(h1,ele->measure());
break;
996 case 2: h2 = std::min(h2,ele->measure());
break;
997 case 3: h3 = std::min(h3,ele->measure());
break;
1002 case 2: he2 = std::min(he2, ele->side(j)->measure());
break;
1003 case 3: he3 = std::min(he3, ele->side(j)->measure());
break;
1007 if(h1 == d_max) h1 = 0;
1008 if(h2 == d_max) h2 = 0;
1009 if(h3 == d_max) h3 = 0;
1010 if(he2 == d_max) he2 = 0;
1011 if(he3 == d_max) he3 = 0;
1014 file = fopen(output_file.c_str(),
"a");
1018 fprintf(file,
"h1 = %e;\nh2 = %e;\nh3 = %e;\n", h1, h2, h3);
1019 fprintf(file,
"he2 = %e;\nhe3 = %e;\n", he2, he3);
1025 START_TIMER(
"DarcyFlowMH_Steady::set_mesh_data_for_bddc");
1046 for (
unsigned int i_loc = 0; i_loc <
mh_dh.
el_ds->
lsize(); i_loc++ ) {
1050 elDimMax = std::max( elDimMax, ele_ac.dim() );
1051 elDimMin = std::min( elDimMin, ele_ac.dim() );
1053 isegn.push_back( ele_ac.ele_global_idx() );
1058 int side_row = ele_ac.side_row(si);
1059 arma::vec3 coord = ele_ac.side(si)->centre();
1061 localDofMap.insert( std::make_pair( side_row, coord ) );
1062 inet.push_back( side_row );
1067 int el_row = ele_ac.ele_row();
1069 localDofMap.insert( std::make_pair( el_row, coord ) );
1070 inet.push_back( el_row );
1075 int edge_row = ele_ac.edge_row(si);
1076 arma::vec3 coord = ele_ac.side(si)->centre();
1078 localDofMap.insert( std::make_pair( edge_row, coord ) );
1079 inet.push_back( edge_row );
1084 for (
unsigned int i_neigh = 0; i_neigh < ele_ac.full_iter()->n_neighs_vb; i_neigh++) {
1085 int edge_row =
mh_dh.
row_4_edge[ ele_ac.full_iter()->neigh_vb[i_neigh]->edge_idx() ];
1086 arma::vec3 coord = ele_ac.full_iter()->neigh_vb[i_neigh]->edge()->side(0)->centre();
1088 localDofMap.insert( std::make_pair( edge_row, coord ) );
1089 inet.push_back( edge_row );
1093 nnet.push_back( nne );
1098 double conduct =
data_->conductivity.value( centre , ele_ac.element_accessor() );
1099 auto aniso =
data_->anisotropy.value( centre, ele_ac.element_accessor() );
1103 for (
int i = 0; i < 3; i++) {
1104 coef = coef + aniso.at(i,i);
1107 coef = conduct*coef / 3;
1110 "Zero coefficient of hydrodynamic resistance %f . \n ", coef );
1111 element_permeability.push_back( 1. / coef );
1115 int numNodeSub = localDofMap.size();
1126 for ( ; itB != localDofMap.end(); ++itB ) {
1127 isngn[ind] = itB -> first;
1130 for (
int j = 0; j < 3; j++ ) {
1131 xyz[ j*numNodeSub + ind ] = coord[j];
1136 localDofMap.clear();
1144 Global2LocalMap_ global2LocalNodeMap;
1145 for (
unsigned ind = 0; ind < isngn.size(); ++ind ) {
1146 global2LocalNodeMap.insert( std::make_pair( static_cast<unsigned>( isngn[ind] ), ind ) );
1151 for (
unsigned int iEle = 0; iEle < isegn.size(); iEle++ ) {
1152 int nne = nnet[ iEle ];
1153 for (
int ien = 0; ien < nne; ien++ ) {
1155 int indGlob = inet[indInet];
1157 Global2LocalMap_::iterator pos = global2LocalNodeMap.find( indGlob );
1158 OLD_ASSERT( pos != global2LocalNodeMap.end(),
1159 "Cannot remap node index %d to local indices. \n ", indGlob );
1160 int indLoc =
static_cast<int> ( pos -> second );
1163 inet[ indInet++ ] = indLoc;
1167 int numNodes =
size;
1168 int numDofsInt =
size;
1170 int meshDim = elDimMax;
1172 bddc_ls -> load_mesh( spaceDim, numNodes, numDofsInt, inet, nnet, nndf, isegn, isngn, isngn, xyz, element_permeability, meshDim );
1213 VecCreateSeqWithArray(PETSC_COMM_SELF,1,
size,
solution,
1218 loc_idx =
new int [
size];
1228 for(
unsigned int i_edg=0; i_edg <
mesh_->
n_edges(); i_edg++) {
1231 OLD_ASSERT( i==
size,
"Size of array does not match number of fills.\n");
1233 ISCreateGeneral(PETSC_COMM_SELF,
size, loc_idx, PETSC_COPY_VALUES, &(is_loc));
1237 ISDestroy(&(is_loc));
1289 for (
unsigned int i_loc_el = 0; i_loc_el <
mh_dh.
el_ds->
lsize(); i_loc_el++) {
1292 local_sol[ele_ac.ele_local_row()] =
data_->init_pressure.value(ele_ac.centre(),ele_ac.element_accessor());
1306 PetscScalar *local_diagonal;
1314 for (
unsigned int i_loc_el = 0; i_loc_el <
mh_dh.
el_ds->
lsize(); i_loc_el++) {
1318 double diagonal_coeff =
data_->cross_section.value(ele_ac.centre(), ele_ac.element_accessor())
1319 *
data_->storativity.value(ele_ac.centre(), ele_ac.element_accessor())
1321 local_diagonal[ele_ac.ele_local_row()]= - diagonal_coeff /
time_->
dt();
1325 ele_ac.region().bulk_idx(), { int(ele_ac.ele_row()) }, {diagonal_coeff});
1340 if (scale_factor != 1.0) {
unsigned int size() const
get global size
void get_solution_vector(double *&vec, unsigned int &vec_size) override
void make_serial_scatter()
static const Input::Type::Record & get_input_type()
Main balance input record type.
Output class for darcy_flow_mh model.
virtual void initialize_specific()
void get_parallel_solution_vector(Vec &vector) override
SchurComplement SchurComplement
void assembly_mh_matrix(MultidimAssembly &assembler)
void set_symmetric(bool flag=true)
Classes with algorithms for computation of intersections of meshes.
Solver based on the original PETSc solver using MPIAIJ matrix and succesive Schur complement construc...
virtual ~DarcyMH() override
MixedMeshIntersections & mixed_intersections()
static const Input::Type::Record & get_input_type()
The specification of output stream.
Common base for intersection object.
#define FOR_ELEMENTS(_mesh_, __i)
void set_from_input(const Input::Record in_rec) override
unsigned int edge_idx() const
virtual void assembly_source_term()
Source term is implemented differently in LMH version.
friend class DarcyFlowMHOutput
#define MessageOut()
Macro defining 'message' record of log.
virtual void start_add_assembly()
virtual void output_data() override
Write computed fields.
virtual PetscErrorCode mat_zero_entries()
Wrappers for linear systems based on MPIAIJ and MATIS format.
bool is_end() const
Returns true if the actual time is greater than or equal to the end time.
void next_time()
Proceed to the next time according to current estimated time step.
static const int registrar
Registrar of class to factory.
static const Input::Type::Selection & get_mh_mortar_selection()
Selection for enum MortarMethod.
void initialize() override
RegionSet get_region_set(const string &set_name) const
static const Input::Type::Record & type_field_descriptor()
virtual void start_allocation()
#define FOR_ELEMENT_SIDES(i, j)
void chkerr(unsigned int ierr)
Replacement of new/delete operator in the spirit of xmalloc.
virtual void finish_assembly()=0
virtual double get_solution_precision()=0
std::vector< std::vector< ILpair > > element_intersections_
const RegionDB & region_db() const
#define ASSERT(expr)
Allow use shorter versions of macro names if these names is not used with external library...
const TimeStep & step(int index=-1) const
static const std::string field_descriptor_record_description(const string &record_name)
#define ADD_FIELD(name,...)
Basic time management functionality for unsteady (and steady) solvers (class Equation).
unsigned int bulk_ele_idx() const
Returns index of bulk element.
bool solution_changed_for_scatter
void solve_nonlinear()
Solve method common to zero_time_step and update solution.
static const Input::Type::Record & get_input_type()
std::shared_ptr< EqData > data_
Basic time management class.
virtual void set_tolerances(double r_tol, double a_tol, unsigned int max_it)=0
void view(const char *name="") const
std::shared_ptr< LocalToGlobalMap > global_row_4_sub_row
Necessary only for BDDC solver.
unsigned int nonlinear_iteration_
void set_mesh_data_for_bddc(LinSys_BDDC *bddc_ls)
Assembly explicit Schur complement for the given linear system. Provides method for resolution of the...
void update_solution() override
unsigned int size() const
Returns size of the container. This is independent of the allocated space.
void set_from_input(const Input::Record in_rec) override
unsigned int n_elements() const
virtual void postprocess()
double * get_solution_array()
std::shared_ptr< Balance > balance_
FLOW123D_FORCE_LINK_IN_CHILD(darcy_flow_mh)
const Vec & get_solution()
FMT_FUNC int fprintf(std::ostream &os, CStringRef format, ArgList args)
unsigned int n_sides() const
bool is_changed_dt() const
#define START_TIMER(tag)
Starts a timer with specified tag.
static const Input::Type::Instance & get_input_type()
unsigned int side_dof(const SideIter side) const
static Input::Type::Abstract & get_input_type()
ElementVector bc_elements
SideIter side(const unsigned int loc_index)
bool use_steady_assembly_
static const Input::Type::Record & get_input_type_specific()
void allocate_mh_matrix()
static const Input::Type::Selection & get_bc_type_selection()
Return a Selection corresponding to enum BC_Type.
void set_solution(double *sol_array)
virtual void assembly_linear_system()
virtual const Vec * get_rhs()
virtual PetscErrorCode rhs_zero_entries()
Dedicated class for storing path to input and output files.
DarcyMH(Mesh &mesh, const Input::Record in_rec)
CREATE AND FILL GLOBAL MH MATRIX OF THE WATER MODEL.
Support classes for parallel programing.
#define MPI_Allreduce(sendbuf, recvbuf, count, datatype, op, comm)
int set_upper_constraint(double upper, std::string message)
Sets upper constraint for the next time step estimating.
void create_linear_system(Input::AbstractRecord rec)
Initialize global_row_4_sub_row.
MortarMethod
Type of experimental Mortar-like method for non-compatible 1d-2d interaction.
Input::Record input_record_
std::shared_ptr< Distribution > rows_ds
LocalElementAccessorBase< 3 > accessor(uint local_ele_idx)
Abstract linear system class.
static const Input::Type::Record & get_input_type()
#define WarningOut()
Macro defining 'warning' record of log.
#define END_TIMER(tag)
Ends a timer with specified tag.
#define OLD_ASSERT_EQUAL(a, b)
EqData()
Creation of all fields.
void set_matrix_changed()
static const Input::Type::Record & get_input_type()
void print_matlab_matrix(string matlab_file)
Print darcy flow matrix in matlab format into a file.
mixed-hybrid model of linear Darcy flow, possibly unsteady.
unsigned int index() const
void zero_time_step() override
void set_positive_definite(bool flag=true)
virtual void read_initial_condition()
void prepare_parallel_bddc()
static Input::Type::Abstract & get_input_type()
virtual void mat_set_values(int nrow, int *rows, int ncol, int *cols, double *vals)=0
DarcyFlowMHOutput * output_object
unsigned int n_edges() const
virtual void prepare_new_time_step()
postprocess velocity field (add sources)
Class for representation SI units of Fields.
virtual const Mat * get_matrix()
virtual double solution_precision() const
virtual void setup_time_term()
static UnitSI & dimensionless()
Returns dimensionless unit.
#define DebugOut()
Macro defining 'debug' record of log.
virtual double compute_residual()=0
#define THROW(whole_exception_expr)
Wrapper for throw. Saves the throwing point.
void rhs_set_value(int row, double val)
static const Input::Type::Record & get_input_type()
Solver based on Multilevel BDDC - using corresponding class of OpenFTL package.
virtual bool zero_time_term(bool time_global=false)
ElementVector element
Vector of elements of the mesh.
void output()
Calculate values for output.
unsigned int lsize(int proc) const
get local size