Flow123d  release_1.8.2-1603-g0109a2b
schur.cc
Go to the documentation of this file.
1 /*!
2  *
3  * Copyright (C) 2015 Technical University of Liberec. All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify it under
6  * the terms of the GNU General Public License version 3 as published by the
7  * Free Software Foundation. (http://www.gnu.org/licenses/gpl-3.0.en.html)
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
11  * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
12  *
13  *
14  * @file schur.cc
15  * @ingroup la
16  * @brief Assembly explicit Schur complement for the given linear system.
17  * Provides method for resolution of the full original vector of unknowns.
18  *
19  * Aim: Explicit schur should be faster then implicit, i.e.
20  *
21  * @todo
22  * - vyresit navaznost na lin sys - solve a export seq vektoru, redukce ... ?
23  * - inv_a - predava se pri konstrukci, ale neumoznuje jeji reuse - aktualizaci assemblace
24  * resp. nutno si na ni drzet ukazatel venku ... reseni ?
25  * - ? remove old_4_new - just for LSView
26  * - automatic preallocation
27  * - eliminated block given by IS
28  * - in place Schur
29  * - ? nemodifikovat puvodni system, leda skrze jeho metody
30  */
31 
32 #include <petscvec.h>
33 #include <algorithm>
34 #include <limits>
35 #include <petscmat.h>
36 #include <armadillo>
37 #include <petscis.h>
38 
39 #include "system/sys_profiler.hh"
40 #include "la/distribution.hh"
42 #include "system/system.hh"
43 #include "la/linsys.hh"
44 #include "la/linsys_BDDC.hh"
45 #include "la/schur.hh"
46 
47 /**
48  * Create Schur complement system.
49  * @param[in] orig : original system
50  * @param[in] inv_a : inversion of the A block
51  * @param[in] ia : index set of the A block,
52  * default continuous given by inv_a:
53  * proc 1 2 3
54  *
55  * Orig: ****** ****** ****
56  * IA : *** ** ***
57  *
58  *
59  */
60 
62 : LinSys_PETSC(ds), IsA(ia), state(created)
63 {
64  // check index set
65  OLD_ASSERT(IsA != NULL, "Index set IsA is not defined.\n" );
66 
67  // initialize variables
68  Compl = NULL;
69  IA = NULL;
70  B = NULL;
71  Bt = NULL;
72  xA = NULL;
73  IAB = NULL;
74  IsB = NULL;
75  RHS1 = NULL;
76  RHS2 = NULL;
77  Sol1 = NULL;
78  Sol2 = NULL;
79 
80  // create A block index set
81  ISGetLocalSize(IsA, &loc_size_A);
82 
83  // create B block index set
85  ISCreateStride(PETSC_COMM_WORLD,loc_size_B,rows_ds_->begin()+loc_size_A,1,&IsB);
86 }
87 
88 
90 : LinSys_PETSC(other),
91  loc_size_A(other.loc_size_A), loc_size_B(other.loc_size_B), state(other.state),
92  Compl(other.Compl), ds_(other.ds_)
93 {
94  MatCopy(other.IA, IA, DIFFERENT_NONZERO_PATTERN);
95  MatCopy(other.IAB, IAB, DIFFERENT_NONZERO_PATTERN);
96  ISCopy(other.IsA, IsA);
97  ISCopy(other.IsB, IsB);
98  VecCopy(other.RHS1, RHS1);
99  VecCopy(other.RHS2, RHS2);
100  VecCopy(other.Sol1, Sol1);
101  VecCopy(other.Sol2, Sol2);
102 
103  B = NULL;
104  Bt = NULL;
105  xA = NULL;
106 }
107 
108 
109 /**
110  * COMPUTE A SCHUR COMPLEMENT OF A PETSC MATRIX
111  *
112  * given symmetric original matrix Orig has form
113  * A B x_1 RHS_1
114  * B' C * x_2 = RHS_2
115  * where the first block is given by index set IsA, and the second block by IsB
116  * user has to provide inverse IA of the A-block
117  * we suppose that original matrix have non-zero pattern for the schur complement
118  *
119  * we return: Shur - schur complement, ShurRHS - RHS of the complemented system:
120  * (B' * IA * B - C) * x_2 = (B' * IA * RHS_1 - RHS_2)
121  * IAB - a matrix to compute eliminated part of the solution:
122  * x_1 = IA * RHS_1 - IAB * x_2
123  *
124  * Actually as B' is stored separetly, the routine can be used also for nonsymetric original
125  * system
126  *
127  */
128 
130 {
131  PetscErrorCode ierr = 0;
132  MatReuse mat_reuse; // reuse structures after first computation of schur
133  PetscScalar *rhs_array, *sol_array;
134 
135  mat_reuse=MAT_REUSE_MATRIX;
136  if (state==created) {
137  mat_reuse=MAT_INITIAL_MATRIX; // indicate first construction
138 
139  // create complement system
140  // TODO: introduce LS as true object, clarify its internal states
141  // create RHS sub vecs RHS1, RHS2
142  VecGetArray(rhs_, &rhs_array);
143  VecCreateMPIWithArray(PETSC_COMM_WORLD,1,loc_size_A,PETSC_DETERMINE,rhs_array,&(RHS1));
144 
145  // create Solution sub vecs Sol1, Compl->solution
146  VecGetArray(solution_, &sol_array);
147  VecCreateMPIWithArray(PETSC_COMM_WORLD,1,loc_size_A,PETSC_DETERMINE,sol_array,&(Sol1));
148 
149  VecCreateMPIWithArray(PETSC_COMM_WORLD,1,loc_size_B,PETSC_DETERMINE,rhs_array+loc_size_A,&(RHS2));
150  VecCreateMPIWithArray(PETSC_COMM_WORLD,1,loc_size_B,PETSC_DETERMINE,sol_array+loc_size_A,&(Sol2));
151 
152  VecRestoreArray(rhs_, &rhs_array);
153  VecRestoreArray(solution_, &sol_array);
154 
155  VecGetArray( Sol2, &sol_array );
156  Compl->set_solution( sol_array );
157 
158  VecRestoreArray( Sol2, &sol_array );
159 
160  }
161 
162  // compose Schur complement
163  // Petsc need some fill estimate for results of multiplication in form nnz(A*B)/(nnz(A)+nnz(B))
164  // for the first Schur compl: IA*B is bounded by ( d*(d+1) )/( d*d+2*d ) <= 5/6 for d<=4
165  // B'*IA*B bounded by ( (d+1)*(d+1) )/ ( d*(d+1) + d ) ~ 1
166  // for the second Schur : IA*B have fill ratio ~ 1.
167  // B'*IA*B ... ( N/2 *(2*N-1) )/( 2 + 2*N ) <= 1.4
168  // nevertheless Petsc does not allows fill ratio below 1. so we use 1.1 for the first
169  // and 1.5 for the second multiplication
170 
171  if (matrix_changed_) {
173 
174  // compute IAB=IA*B, loc_size_B removed
175  ierr+=MatGetSubMatrix(matrix_, IsA, IsB, mat_reuse, &B);
176  ierr+=MatMatMult(IA, B, mat_reuse, 1.0 ,&(IAB)); // 6/7 - fill estimate
177  // compute xA=Bt* IAB = Bt * IA * B, locSizeA removed
178  ierr+=MatGetSubMatrix(matrix_, IsB, IsA, mat_reuse, &(Bt));
179  ierr+=MatMatMult(Bt, IAB, mat_reuse, 1.9 ,&(xA)); // 1.1 - fill estimate (PETSC report values over 1.8)
180 
181  // get C block, loc_size_B removed
182  ierr+=MatGetSubMatrix( matrix_, IsB, IsB, mat_reuse, const_cast<Mat *>( Compl->get_matrix() ) );
183  // compute complement = (-1)cA+xA = Bt*IA*B - C
184  if ( is_negative_definite() ) {
185  ierr+=MatAXPY(*( Compl->get_matrix() ), -1, xA, SUBSET_NONZERO_PATTERN);
186  } else {
187  ierr+=MatScale(*( Compl->get_matrix() ),-1.0);
188  ierr+=MatAXPY(*( Compl->get_matrix() ), 1, xA, SUBSET_NONZERO_PATTERN);
189  }
191 
192  OLD_ASSERT( ierr == 0, "PETSC Error during calculation of Schur complement.\n");
193 
194  }
195 
196  form_rhs();
197 
198  matrix_changed_ = false;
199 
200  state=formed;
201 }
202 
204 {
205  START_TIMER("form rhs");
206  if (rhs_changed_ || matrix_changed_) {
207  MatMultTranspose(IAB, RHS1, *( Compl->get_rhs() ));
208  VecAXPY(*( Compl->get_rhs() ), -1, RHS2);
209  if ( is_negative_definite() ) {
210  VecScale(*( Compl->get_rhs() ), -1.0);
211  }
213  rhs_changed_ = false;
214  }
215 
216  state=formed;
217 }
218 
219 
220 /**
221  * COMPUTE ELIMINATED PART OF THE ORIG. SYS. & RESTORE RHS and SOLUTION VECTORS
222  * x_1 = IA * RHS_1 - IAB * x_2
223  */
224 
226 {
227  MatMult(IAB,Compl->get_solution(),Sol1);
228 
229  VecScale(Sol1,-1);
230 
231  MatMultAdd(IA,RHS1,Sol1,Sol1);
232 
233 }
234 
236 {
237  OLD_ASSERT(ls != nullptr, "NULL complement ls.\n");
238  Compl = ls;
239  if (!in_rec_.is_empty()) {
241  }
242 }
243 
244 
246 {
247  ds_ = new Distribution(loc_size_B, PETSC_COMM_WORLD);
248  return ds_;
249 }
250 
252 {
253  START_TIMER("create inversion matrix");
254  PetscInt ncols, pos_start, pos_start_IA;
255 
256  MatReuse mat_reuse=MAT_REUSE_MATRIX;
257  if (state==created) mat_reuse=MAT_INITIAL_MATRIX; // indicate first construction
258 
259  MatGetSubMatrix(matrix_, IsA, IsA, mat_reuse, &IA);
260  MatGetOwnershipRange(matrix_,&pos_start,PETSC_NULL);
261  MatGetOwnershipRange(IA,&pos_start_IA,PETSC_NULL);
262 
263  std::vector<PetscInt> submat_rows;
264  const PetscInt *cols;
265  const PetscScalar *vals;
266 
267  std::vector<unsigned int> processed_rows(loc_size_A,0);
268 
269  unsigned int mat_block=1; //actual processed block of matrix
270  for(unsigned int loc_row=0; loc_row < processed_rows.size(); loc_row++) {
271  if (processed_rows[loc_row] != 0) continue;
272 
273  PetscInt min=std::numeric_limits<int>::max(), max=-1, size_submat;
274  PetscInt b_vals = 0; // count of values stored in B-block of Orig system
275  submat_rows.clear();
276  MatGetRow(matrix_, loc_row + pos_start, &ncols, &cols, PETSC_NULL);
277  for (PetscInt i=0; i<ncols; i++) {
278  if (cols[i] < pos_start || cols[i] >= pos_start+loc_size_A) {
279  b_vals++;
280  } else {
281  if (cols[i] < min) {
282  min=cols[i];
283  }
284  if (cols[i] > max) {
285  max=cols[i];
286  }
287  }
288  }
289  size_submat = max - min + 1;
290  OLD_ASSERT(ncols-b_vals == size_submat, "Submatrix cannot contains empty values.\n");
291 
292  MatRestoreRow(matrix_, loc_row + pos_start, &ncols, &cols, PETSC_NULL);
293  arma::mat submat2(size_submat, size_submat);
294  submat2.zeros();
295  for (PetscInt i=0; i<size_submat; i++) {
296  processed_rows[ loc_row + i ] = mat_block;
297  submat_rows.push_back( i + loc_row + pos_start_IA );
298  MatGetRow(matrix_, i + loc_row + pos_start, &ncols, &cols, &vals);
299  for (PetscInt j=0; j<ncols; j++) {
300  if (cols[j] >= pos_start && cols[j] < pos_start+loc_size_A) {
301  submat2( i, cols[j] - loc_row - pos_start ) = vals[j];
302  }
303  }
304  MatRestoreRow(matrix_, i + loc_row + pos_start, &ncols, &cols, &vals);
305  }
306  // get inversion matrix
307  arma::mat invmat = submat2.i();
308  // stored to inversion IA matrix
309  const PetscInt* rows = &submat_rows[0];
310  MatSetValues(IA, submat_rows.size(), rows, submat_rows.size(), rows, invmat.memptr(), INSERT_VALUES);
311 
312  mat_block++;
313  }
314 
315  MatAssemblyBegin(IA, MAT_FINAL_ASSEMBLY);
316  MatAssemblyEnd(IA, MAT_FINAL_ASSEMBLY);
317 }
318 
319 
321 {
322  if (Compl != NULL) {
323  return Compl->get_solution_precision();
324  }
325  return std::numeric_limits<double>::infinity();
326 }
327 
328 
330  START_TIMER("SchurComplement::solve");
331  {
332  START_TIMER("form schur complement");
333  this->form_schur();
334  }
335 
336  //START_TIMER("complement solve");
337  int converged_reason = Compl->solve();
338  //END_TIMER("complement solve");
339 
340  {
341  START_TIMER("schur back resolve");
342  this->resolve();
343  }
344  return converged_reason;
345 }
346 
347 
348 /**
349  * SCHUR COMPLEMENT destructor
350  */
352 
353  if ( B != NULL ) MatDestroy(&B);
354  if ( Bt != NULL ) MatDestroy(&Bt);
355  if ( xA != NULL ) MatDestroy(&xA);
356  if ( IA != NULL ) MatDestroy(&IA);
357  if ( IAB != NULL ) MatDestroy(&IAB);
358  if ( IsA != NULL ) ISDestroy(&IsA);
359  if ( IsB != NULL ) ISDestroy(&IsB);
360  if ( RHS1 != NULL ) VecDestroy(&RHS1);
361  if ( RHS2 != NULL ) VecDestroy(&RHS2);
362  if ( Sol1 != NULL ) VecDestroy(&Sol1);
363  if ( Sol2 != NULL ) VecDestroy(&Sol2);
364  if ( IA != NULL ) MatDestroy(&IA);
365 
366  if (Compl != NULL) delete Compl;
367 
368 }
const Vec * get_rhs()
Definition: linsys_PETSC.hh:62
bool is_negative_definite()
Definition: linsys.hh:512
void set_complement(LinSys_PETSC *ls)
Set complement LinSys object.
Definition: schur.cc:235
void resolve()
Definition: schur.cc:225
bool matrix_changed_
true if the matrix was changed since the last solve
Definition: linsys.hh:594
Wrappers for linear systems based on MPIAIJ and MATIS format.
const Mat * get_matrix()
Definition: linsys_PETSC.hh:57
Definition: schur.hh:55
void set_rhs_changed()
Definition: linsys.hh:192
Vec rhs_
PETSc vector constructed with vx array.
LinSys_PETSC * Compl
Definition: schur.hh:131
void set_from_input(const Input::Record in_rec)
int loc_size_B
Definition: schur.hh:123
Input::Record in_rec_
Definition: linsys.hh:607
bool rhs_changed_
true if the right hand side was changed since the last solve
Definition: linsys.hh:595
Distribution * ds_
Definition: schur.hh:133
~SchurComplement()
Definition: schur.cc:351
void form_rhs()
Definition: schur.cc:203
Assembly explicit Schur complement for the given linear system. Provides method for resolution of the...
SchurState state
Definition: schur.hh:128
#define OLD_ASSERT(...)
Definition: global_defs.h:128
const Vec & get_solution()
Definition: linsys.hh:256
unsigned int begin(int proc) const
get starting local index
#define START_TIMER(tag)
Starts a timer with specified tag.
const Distribution * rows_ds_
final distribution of rows of MH matrix
Definition: linsys.hh:587
void form_schur()
Definition: schur.cc:129
int loc_size_A
Definition: schur.hh:123
bool is_empty() const
Definition: accessors.hh:351
int solve() override
Definition: schur.cc:329
void set_solution(double *sol_array)
Definition: linsys.hh:264
SchurComplement(IS ia, Distribution *ds)
Definition: schur.cc:61
void create_inversion_matrix()
create IA matrix
Definition: schur.cc:251
Support classes for parallel programing.
double get_solution_precision() override
get precision of solving
Definition: schur.cc:320
Distribution * make_complement_distribution()
get distribution of complement object if complement is defined
Definition: schur.cc:245
Definition: schur.hh:56
double get_solution_precision()
void set_matrix_changed()
Definition: linsys.hh:186
Mat matrix_
Petsc matrix of the problem.
Vec solution_
PETSc vector constructed with vb array.
Definition: linsys.hh:597
Solver based on Multilevel BDDC - using corresponding class of OpenFTL package.
unsigned int lsize(int proc) const
get local size