28 #include "petscviewer.h" 29 #include "petscerror.h" 77 const
it::Selection &
DarcyMH::get_mh_mortar_selection() {
79 .
add_value(NoMortar,
"None",
"No Mortar method is applied.")
80 .
add_value(MortarP0,
"P0",
"Mortar space: P0 on elements of lower dimension.")
81 .
add_value(MortarP1,
"P1",
"Mortar space: P1 on intersections, using non-conforming pressures.")
89 "Homogeneous Neumann boundary condition\n(zero normal flux over the boundary).")
91 "Dirichlet boundary condition. " 92 "Specify the pressure head through the ``bc_pressure`` field " 93 "or the piezometric head through the ``bc_piezo_head`` field.")
94 .
add_value(
total_flux,
"total_flux",
"Flux boundary condition (combines Neumann and Robin type). " 95 "Water inflow equal to (($ \\delta_d(q_d^N + \\sigma_d (h_d^R - h_d) )$)). " 96 "Specify the water inflow by the ``bc_flux`` field, the transition coefficient by ``bc_robin_sigma`` " 97 "and the reference pressure head or piezometric head through ``bc_pressure`` or ``bc_piezo_head`` respectively.")
99 "Seepage face boundary condition. Pressure and inflow bounded from above. Boundary with potential seepage flow " 100 "is described by the pair of inequalities: " 101 "(($h_d \\le h_d^D$)) and (($ -\\boldsymbol q_d\\cdot\\boldsymbol n \\le \\delta q_d^N$)), where the equality holds in at least one of them. " 102 "Caution: setting (($q_d^N$)) strictly negative " 103 "may lead to an ill posed problem since a positive outflow is enforced. " 104 "Parameters (($h_d^D$)) and (($q_d^N$)) are given by the fields ``bc_switch_pressure`` (or ``bc_switch_piezo_head``) and ``bc_flux`` respectively." 107 "River boundary condition. For the water level above the bedrock, (($H_d > H_d^S$)), the Robin boundary condition is used with the inflow given by: " 108 "(( $ \\delta_d(q_d^N + \\sigma_d(H_d^D - H_d) )$)). For the water level under the bedrock, constant infiltration is used: " 109 "(( $ \\delta_d(q_d^N + \\sigma_d(H_d^D - H_d^S) )$)). Parameters: ``bc_pressure``, ``bc_switch_pressure``, " 110 " ``bc_sigma``, ``bc_flux``." 121 "Boundary piezometric head for BC types: dirichlet, robin, and river." )
123 "Boundary switch piezometric head for BC types: seepage, river." )
125 "Initial condition for the pressure given as the piezometric head." )
127 return field_descriptor;
134 "Linear solver for MH problem.")
136 "Residual tolerance.")
138 "Minimum number of iterations (linear solutions) to use.\nThis is usefull if the convergence criteria " 139 "does not characterize your goal well enough so it converges prematurely, possibly even without a single linear solution." 140 "If greater then 'max_it' the value is set to 'max_it'.")
142 "Maximum number of iterations (linear solutions) of the non-linear solver.")
144 "If a stagnation of the nonlinear solver is detected the solver stops. " 145 "A divergence is reported by default, forcing the end of the simulation. By setting this flag to 'true', the solver " 146 "ends with convergence success on stagnation, but it reports warning about it.")
151 return it::Record(
"Flow_Darcy_MH",
"Mixed-Hybrid solver for saturated Darcy flow.")
155 "Vector of the gravity force. Dimensionless.")
157 "Input data for Darcy flow model.")
159 "Non-linear solver for MH problem.")
161 "Output stream settings.\n Specify file format, precision etc.")
164 IT::Default(
"{ \"fields\": [ \"pressure_p0\", \"velocity_p0\" ] }"),
165 "Specification of output fields and output times.")
167 "Output settings specific to Darcy flow model.\n" 168 "Includes raw output and some experimental functionality.")
170 "Settings for computing mass balance.")
172 "Number of Schur complements to perform when solving MH system.")
174 "Method for coupling Darcy flow between dimensions on incompatible meshes. [Experimental]" )
180 Input::register_class< DarcyMH, Mesh &, const Input::Record >(
"Flow_Darcy_MH") +
192 .
description(
"Pressure solution - P0 interpolation.");
197 .
description(
"Pressure solution - Crouzeix-Raviart interpolation.");
202 .
description(
"Piezo head solution - P0 interpolation.");
207 .
description(
"Velocity solution - P0 interpolation.");
210 .
description(
"Anisotropy of the conductivity tensor.")
215 .
description(
"Complement dimension parameter (cross section for 1D, thickness for 2D).")
226 .
description(
"Transition coefficient between dimensions.")
244 .description(
"Prescribed pressure value on the boundary. Used for all values of ``bc_type`` except ``none`` and ``seepage``. " 245 "See documentation of ``bc_type`` for exact meaning of ``bc_pressure`` in individual boundary condition types.")
246 .input_default(
"0.0")
252 .description(
"Incoming water boundary flux. Used for bc_types : ``total_flux``, ``seepage``, ``river``.")
253 .input_default(
"0.0")
254 .units(
UnitSI().m().s(-1) );
258 .name(
"bc_robin_sigma")
259 .description(
"Conductivity coefficient in the ``total_flux`` or the ``river`` boundary condition type.")
260 .input_default(
"0.0")
265 .name(
"bc_switch_pressure")
266 .description(
"Critical switch pressure for ``seepage`` and ``river`` boundary conditions.")
267 .input_default(
"0.0")
273 .
description(
"Initial condition for pressure in time dependent problems.")
278 .
description(
"Storativity (in time dependent problems).")
283 .
description(
"Storativity added from upstream equation.")
289 .
description(
"Water source density added from upstream equation.")
336 MessageOut() <<
"Duplicate key 'time', time in flow equation is already initialized from parent class!";
343 data_ = make_shared<EqData>();
346 data_->is_linear=
true;
376 gravity_array.copy_to(gvec);
379 data_->gravity_vec_ =
data_->gravity_.subvec(0,2);
381 data_->bc_pressure.add_factory(
383 (
data_->gravity_,
"bc_piezo_head") );
384 data_->bc_switch_pressure.add_factory(
386 (
data_->gravity_,
"bc_switch_piezo_head") );
387 data_->init_pressure.add_factory(
389 (
data_->gravity_,
"init_piezo_head") );
397 MessageOut() <<
"Missing the key 'time', obligatory for the transient problems." << endl;
410 std::shared_ptr< FiniteElement<1> > fe1_rt = std::make_shared<FE_RT0_disc<1>>();
411 std::shared_ptr< FiniteElement<2> > fe2_rt = std::make_shared<FE_RT0_disc<2>>();
412 std::shared_ptr< FiniteElement<3> > fe3_rt = std::make_shared<FE_RT0_disc<3>>();
413 std::shared_ptr< FiniteElement<0> > fe0_disc = std::make_shared<FE_P_disc<0>>(0);
414 std::shared_ptr< FiniteElement<1> > fe1_disc = std::make_shared<FE_P_disc<1>>(0);
415 std::shared_ptr< FiniteElement<2> > fe2_disc = std::make_shared<FE_P_disc<2>>(0);
416 std::shared_ptr< FiniteElement<3> > fe3_disc = std::make_shared<FE_P_disc<3>>(0);
417 std::shared_ptr< FiniteElement<0> > fe0_cr = std::make_shared<FE_CR<0>>();
418 std::shared_ptr< FiniteElement<1> > fe1_cr = std::make_shared<FE_CR<1>>();
419 std::shared_ptr< FiniteElement<2> > fe2_cr = std::make_shared<FE_CR<2>>();
420 std::shared_ptr< FiniteElement<3> > fe3_cr = std::make_shared<FE_CR<3>>();
422 FESystem<0> fe0_sys( {fe0_disc, fe0_disc, fe0_cr} );
428 std::shared_ptr<DiscreteSpace>
ds = std::make_shared<EqualOrderDiscreteSpace>(
mesh_, fe_sys);
429 data_->dh_ = std::make_shared<DOFHandlerMultiDim>(*mesh_);
430 data_->dh_->distribute_dofs(ds);
434 this->
data_->multidim_assembler = AssemblyBase::create< AssemblyMH >(
data_);
438 uint rt_component = 0;
439 ele_flux_ptr = create_field_fe<3, FieldValue<3>::VectorFixed>(
data_->dh_, rt_component);
440 auto ele_velocity_ptr = std::make_shared< FieldDivide<3, FieldValue<3>::VectorFixed> >(
ele_flux_ptr,
data_->cross_section);
442 data_->full_solution = ele_flux_ptr->get_data_vec();
444 uint p_ele_component = 0;
445 auto ele_pressure_ptr = create_field_fe<3, FieldValue<3>::Scalar>(
data_->dh_, p_ele_component, &
data_->full_solution);
448 uint p_edge_component = 1;
449 auto edge_pressure_ptr = create_field_fe<3, FieldValue<3>::Scalar>(
data_->dh_, p_edge_component, &
data_->full_solution);
452 arma::vec4 gravity = (-1) *
data_->gravity_;
458 uint p_edge_component = 2;
459 data_->dh_cr_ = std::make_shared<SubDOFHandlerMultiDim>(
data_->dh_,p_edge_component);
464 std::shared_ptr<DiscreteSpace> ds_cr_disc = std::make_shared<EqualOrderDiscreteSpace>(
mesh_, fe_cr_disc);
465 data_->dh_cr_disc_ = std::make_shared<DOFHandlerMultiDim>(*mesh_);
466 data_->dh_cr_disc_->distribute_dofs(ds_cr_disc);
476 .val<Input::AbstractRecord>(
"linear_solver");
486 VecCreateMPI(PETSC_COMM_WORLD,
data_->dh_->distr()->lsize(),PETSC_DETERMINE,&(
steady_diagonal));
495 data_->water_balance_idx =
balance_->add_quantity(
"water_volume");
525 if (zero_time_term_from_right) {
564 bool jump_time =
data_->storativity.is_jump_time();
565 if (! zero_time_term_from_left) {
575 WarningOut() <<
"Output of solution discontinuous in time not supported yet.\n";
584 if (! zero_time_term_from_left && ! jump_time && output)
output_data();
590 if (zero_time_term_from_right) {
595 }
else if (! zero_time_term_from_left && jump_time) {
596 WarningOut() <<
"Discontinuous time term not supported yet.\n";
608 return (
data_->storativity.input_list_size() == 0);
621 MessageOut().fmt(
"[nonlinear solver] norm of initial residual: {}\n", residual_norm);
624 int is_linear_common;
629 this->
max_n_it_ = nl_solver_rec.
val<
unsigned int>(
"max_it");
630 this->
min_n_it_ = nl_solver_rec.
val<
unsigned int>(
"min_it");
631 if (this->min_n_it_ > this->max_n_it_) this->min_n_it_ = this->
max_n_it_;
633 if (! is_linear_common) {
641 while (nonlinear_iteration_ < this->min_n_it_ ||
642 (residual_norm > this->tolerance_ && nonlinear_iteration_ < this->max_n_it_ )) {
644 convergence_history.push_back(residual_norm);
647 if (convergence_history.size() >= 5 &&
648 convergence_history[ convergence_history.size() - 1]/convergence_history[ convergence_history.size() - 2] > 0.9 &&
649 convergence_history[ convergence_history.size() - 1]/convergence_history[ convergence_history.size() - 5] > 0.8) {
655 THROW(ExcSolverDiverge() << EI_Reason(
"Stagnation."));
659 if (! is_linear_common)
665 if (is_linear_common){
668 MessageOut().fmt(
"[nonlinear solver] lin. it: {}, reason: {}, residual: {}\n",
669 si.n_iterations, si.converged_reason, residual_norm);
682 MessageOut().fmt(
"[nonlinear solver] it: {} lin. it: {}, reason: {}, residual: {}\n",
685 chkerr(VecDestroy(&save_solution));
709 if(
data_->mortar_method_ != MortarMethod::NoMortar){
710 auto multidim_assembler = AssemblyBase::create< AssemblyMH >(
data_);
712 unsigned int dim = dh_cell.dim();
713 multidim_assembler[dim-1]->fix_velocity(dh_cell);
780 unsigned int dim = dh_cell.dim();
781 assembler[dim-1]->assemble(dh_cell);
799 double zeros[100000];
800 for(
int i=0; i<100000; i++) zeros[i] = 0.0;
803 tmp_rows.reserve(200);
806 dofs.reserve(
data_->dh_->max_elem_dofs());
807 dofs_ngh.reserve(
data_->dh_->max_elem_dofs());
812 const uint ndofs = dh_cell.n_dofs();
814 dh_cell.get_dof_indices(dofs);
823 for (
DHCellSide neighb_side : dh_cell.neighb_sides() ) {
831 const uint ndofs_ngh = dh_neighb_cell.
n_dofs();
832 dofs_ngh.resize(ndofs_ngh);
838 const unsigned int t = dh_neighb_cell.
n_dofs() - (dh_neighb_cell.
dim()+1) + neighb_side.side().side_idx();
839 tmp_rows.push_back(dofs_ngh[t]);
853 for(
auto &isec : isec_list ) {
857 const uint ndofs_slave = dh_cell_slave.
n_dofs();
858 dofs_ngh.resize(ndofs_slave);
862 for(
unsigned int i_side=0; i_side < dh_cell_slave.
elm()->
n_sides(); i_side++) {
864 tmp_rows.push_back( dofs_ngh[(ndofs_slave+1)/2+i_side] );
874 edge_rows = dofs.
data() + nsides +1;
913 const uint ndofs = dh_cell.n_dofs();
914 global_dofs.resize(ndofs);
915 dh_cell.get_dof_indices(global_dofs);
917 double cs =
data_->cross_section.value(ele.
centre(), ele);
920 double source = ele.
measure() * cs *
921 (
data_->water_source_density.value(ele.
centre(), ele)
927 {dh_cell.get_loc_dof_indices()[ndofs/2]}, {0}, {source});
947 #ifdef FLOW123D_HAVE_BDDCML 948 WarningOut() <<
"For BDDC no Schur complements are used.";
961 xprintf(
Err,
"Flow123d was not build with BDDCML support.\n");
962 #endif // FLOW123D_HAVE_BDDCML 967 WarningOut() <<
"Invalid number of Schur Complements. Using 2.";
980 ls->LinSys::set_from_input(in_rec);
989 ISCreateGeneral(PETSC_COMM_SELF, side_dofs_vec.size(), &(side_dofs_vec[0]), PETSC_COPY_VALUES, &is);
1004 const PetscInt *b_indices;
1005 ISGetIndices(ls->
IsB, &b_indices);
1007 for(
uint i_b=0, i_bb=0; i_b < b_size && i_bb < elem_dofs_vec.size(); i_b++) {
1008 if (b_indices[i_b] == elem_dofs_vec[i_bb])
1009 elem_dofs_vec[i_bb++] = i_b + ds->
begin();
1011 ISRestoreIndices(ls->
IsB, &b_indices);
1014 ISCreateGeneral(PETSC_COMM_SELF, elem_dofs_vec.size(), &(elem_dofs_vec[0]), PETSC_COPY_VALUES, &is);
1042 xprintf(
Err,
"Unknown solver type. Internal error.\n");
1054 START_TIMER(
"DarcyFlowMH_Steady::assembly_linear_system");
1056 data_->is_linear=
true;
1110 std::string output_file;
1122 PetscViewerASCIIOpen(PETSC_COMM_WORLD, output_file.c_str(), &viewer);
1123 PetscViewerSetFormat(viewer, PETSC_VIEWER_ASCII_MATLAB);
1135 double d_max = std::numeric_limits<double>::max();
1136 double h1 = d_max, h2 = d_max, h3 = d_max;
1137 double he2 = d_max, he3 = d_max;
1140 case 1: h1 = std::min(h1,ele.measure());
break;
1141 case 2: h2 = std::min(h2,ele.measure());
break;
1142 case 3: h3 = std::min(h3,ele.measure());
break;
1145 for (
unsigned int j=0; j<ele->n_sides(); j++) {
1147 case 2: he2 = std::min(he2, ele.side(j)->measure());
break;
1148 case 3: he3 = std::min(he3, ele.side(j)->measure());
break;
1152 if(h1 == d_max) h1 = 0;
1153 if(h2 == d_max) h2 = 0;
1154 if(h3 == d_max) h3 = 0;
1155 if(he2 == d_max) he2 = 0;
1156 if(he3 == d_max) he3 = 0;
1159 file = fopen(output_file.c_str(),
"a");
1160 fprintf(file,
"nA = %d;\n",
data_->dh_cr_disc_->distr()->size());
1161 fprintf(file,
"nB = %d;\n",
data_->dh_->mesh()->get_el_ds()->size());
1162 fprintf(file,
"nBF = %d;\n",
data_->dh_cr_->distr()->size());
1163 fprintf(file,
"h1 = %e;\nh2 = %e;\nh3 = %e;\n", h1, h2, h3);
1164 fprintf(file,
"he2 = %e;\nhe3 = %e;\n", he2, he3);
1182 START_TIMER(
"DarcyFlowMH_Steady::set_mesh_data_for_bddc");
1210 dh_cell.get_dof_indices(cell_dofs_global);
1212 inet.insert(inet.end(), cell_dofs_global.begin(), cell_dofs_global.end());
1213 uint n_inet = cell_dofs_global.size();
1216 uint dim = dh_cell.elm().dim();
1217 elDimMax = std::max( elDimMax, dim );
1218 elDimMin = std::min( elDimMin, dim );
1222 isegn.push_back( dh_cell.elm_idx());
1225 for (
unsigned int si=0; si<dh_cell.elm()->n_sides(); si++) {
1226 arma::vec3 coord = dh_cell.elm().side(si)->centre();
1229 localDofMap.insert( std::make_pair( cell_dofs_global[si], coord ) );
1231 localDofMap.insert( std::make_pair( cell_dofs_global[si+dim+2], coord ) );
1234 arma::vec3 elm_centre = dh_cell.elm().centre();
1235 localDofMap.insert( std::make_pair( cell_dofs_global[dim+1], elm_centre ) );
1239 for(
DHCellSide side : dh_cell.neighb_sides()) {
1240 uint neigh_dim = side.cell().elm().dim();
1241 side.cell().get_dof_indices(cell_dofs_global);
1242 int edge_row = cell_dofs_global[neigh_dim+2+side.side_idx()];
1243 localDofMap.insert( std::make_pair( edge_row, side.centre() ) );
1244 inet.push_back( edge_row );
1247 nnet.push_back(n_inet);
1252 double conduct =
data_->conductivity.value( elm_centre , dh_cell.elm() );
1253 auto aniso =
data_->anisotropy.value( elm_centre , dh_cell.elm() );
1257 for (
int i = 0; i < 3; i++) {
1258 coef = coef + aniso.at(i,i);
1261 coef = conduct*coef / 3;
1264 "Zero coefficient of hydrodynamic resistance %f . \n ", coef );
1265 element_permeability.push_back( 1. / coef );
1275 auto distr =
data_->dh_->distr();
1284 int numNodeSub = localDofMap.size();
1295 for ( ; itB != localDofMap.end(); ++itB ) {
1296 isngn[ind] = itB -> first;
1299 for (
int j = 0; j < 3; j++ ) {
1300 xyz[ j*numNodeSub + ind ] = coord[j];
1305 localDofMap.clear();
1313 Global2LocalMap_ global2LocalNodeMap;
1314 for (
unsigned ind = 0; ind < isngn.size(); ++ind ) {
1315 global2LocalNodeMap.insert( std::make_pair( static_cast<unsigned>( isngn[ind] ), ind ) );
1320 for (
unsigned int iEle = 0; iEle < isegn.size(); iEle++ ) {
1321 int nne = nnet[ iEle ];
1322 for (
int ien = 0; ien < nne; ien++ ) {
1324 int indGlob = inet[indInet];
1326 Global2LocalMap_::iterator pos = global2LocalNodeMap.find( indGlob );
1327 OLD_ASSERT( pos != global2LocalNodeMap.end(),
1328 "Cannot remap node index %d to local indices. \n ", indGlob );
1329 int indLoc =
static_cast<int> ( pos -> second );
1332 inet[ indInet++ ] = indLoc;
1336 int numNodes =
size;
1337 int numDofsInt =
size;
1339 int meshDim = elDimMax;
1351 bddc_ls -> load_mesh( LinSys_BDDC::BDDCMatrixType::SPD_VIA_SYMMETRICGENERAL, spaceDim, numNodes, numDofsInt, inet, nnet, nndf, isegn, isngn, isngn, xyz, element_permeability, meshDim );
1373 if(
time_ !=
nullptr)
1426 const IntIdx p_ele_dof = dh_cell.get_loc_dof_indices()[dh_cell.n_dofs()/2];
1427 local_sol[p_ele_dof] =
data_->init_pressure.value(ele.
centre(),ele);
1438 PetscScalar *local_diagonal;
1446 dofs.reserve(
data_->dh_->max_elem_dofs());
1450 dofs.resize(dh_cell.n_dofs());
1451 dh_cell.get_dof_indices(dofs);
1454 const uint p_ele_dof = dh_cell.n_dofs() / 2;
1456 double diagonal_coeff =
data_->cross_section.value(ele.
centre(), ele)
1458 +
data_->extra_storativity.value(ele.
centre(), ele))
1460 local_diagonal[dh_cell.get_loc_dof_indices()[p_ele_dof]]= - diagonal_coeff /
time_->
dt();
1462 balance_->add_mass_values(
data_->water_balance_idx, dh_cell,
1463 {dh_cell.get_loc_dof_indices()[p_ele_dof]},
1464 {diagonal_coeff}, 0.0);
1478 if (scale_factor != 1.0) {
1504 void dofs_range(
unsigned int n_dofs,
unsigned int &min,
unsigned int &max,
unsigned int component) {
1508 }
else if (component==1) {
1520 unsigned int i, n_dofs, min, max;
1524 n_dofs = dh_cell.get_dof_indices(dof_indices);
1526 for (i=min; i<max; ++i) dof_vec.push_back(dof_indices[i]);
std::shared_ptr< FieldFE< 3, FieldValue< 3 >::VectorFixed > > get_velocity_field() override
Field< 3, FieldValue< 3 >::VectorFixed > field_ele_velocity
Field< 3, FieldValue< 3 >::Scalar > extra_source
Externally added storativity.
std::vector< int > get_component_indices_vec(unsigned int component) const
Get vector of all DOF indices of given component (0..side, 1..element, 2..edge)
static const Input::Type::Record & get_input_type()
Main balance input record type.
Output class for darcy_flow_mh model.
Field< 3, FieldValue< 3 >::Scalar > init_pressure
RegionSet get_region_set(const std::string &set_name) const
virtual void initialize_specific()
void set_complement(LinSys_PETSC *ls)
Set complement LinSys object.
SchurComplement SchurComplement
void assembly_mh_matrix(MultidimAssembly &assembler)
void set_symmetric(bool flag=true)
Classes with algorithms for computation of intersections of meshes.
FieldCommon & input_selection(Input::Type::Selection element_selection)
Solver based on the original PETSc solver using MPIAIJ matrix and succesive Schur complement construc...
virtual ~DarcyMH() override
MixedMeshIntersections & mixed_intersections()
static const Input::Type::Record & get_input_type()
The specification of output stream.
Common base for intersection object.
unsigned int get_dof_indices(std::vector< LongIdx > &indices) const
Fill vector of the global indices of dofs associated to the cell.
void set_from_input(const Input::Record in_rec) override
virtual void assembly_source_term()
Source term is implemented differently in LMH version.
friend class DarcyFlowMHOutput
#define MessageOut()
Macro defining 'message' record of log.
std::shared_ptr< FieldFE< 3, FieldValue< 3 >::VectorFixed > > ele_flux_ptr
Field of flux in barycenter of every element.
virtual void start_add_assembly()
virtual void output_data() override
Write computed fields.
virtual PetscErrorCode mat_zero_entries()
Wrappers for linear systems based on MPIAIJ and MATIS format.
bool is_end() const
Returns true if the actual time is greater than or equal to the end time.
void next_time()
Proceed to the next time according to current estimated time step.
static const int registrar
Registrar of class to factory.
Field< 3, FieldValue< 3 >::Scalar > extra_storativity
Field< 3, FieldValue< 3 >::Scalar > sigma
unsigned int dim() const
Return dimension of element appropriate to cell.
static const Input::Type::Selection & get_mh_mortar_selection()
Selection for enum MortarMethod.
void initialize() override
void set_negative_definite(bool flag=true)
static const Input::Type::Record & type_field_descriptor()
virtual void start_allocation()
Cell accessor allow iterate over DOF handler cells.
void chkerr(unsigned int ierr)
Replacement of new/delete operator in the spirit of xmalloc.
virtual void finish_assembly()=0
virtual double get_solution_precision()=0
std::vector< std::vector< ILpair > > element_intersections_
static const Input::Type::Instance & get_input_type(FieldSet &eq_data, const std::string &equation_name)
const RegionDB & region_db() const
#define ASSERT(expr)
Allow use shorter versions of macro names if these names is not used with external library...
const TimeStep & step(int index=-1) const
static const std::string field_descriptor_record_description(const string &record_name)
Basic time management functionality for unsteady (and steady) solvers (class Equation).
unsigned int bulk_ele_idx() const
Returns index of bulk element.
unsigned int n_dofs() const
Return number of dofs on given cell.
FieldCommon & units(const UnitSI &units)
Set basic units of the field.
void solve_nonlinear()
Solve method common to zero_time_step and update solution.
static const Input::Type::Record & get_input_type()
std::shared_ptr< EqData > data_
Basic time management class.
std::shared_ptr< DiscreteSpace > ds
virtual void set_tolerances(double r_tol, double a_tol, unsigned int max_it)=0
Field< 3, FieldValue< 3 >::Scalar > field_ele_pressure
Externally added water source.
void view(const char *name="") const
static Input::Type::Record & record_template()
Template Record with common keys for derived equations.
unsigned int nonlinear_iteration_
void set_mesh_data_for_bddc(LinSys_BDDC *bddc_ls)
Assembly explicit Schur complement for the given linear system. Provides method for resolution of the...
BCField< 3, FieldValue< 3 >::Scalar > bc_flux
arma::vec::fixed< spacedim > centre() const
Computes the barycenter.
void update_solution() override
void solve_time_step(bool output=true)
Solve the problem without moving to next time and without output.
void set_from_input(const Input::Record in_rec) override
const ElementAccessor< 3 > elm() const
Return ElementAccessor to element of loc_ele_idx_.
BCField< 3, FieldValue< 3 >::Scalar > bc_pressure
virtual void postprocess()
postprocess velocity field (add sources)
static constexpr Mask equation_result
Match result fields. These are never given by input or copy of input.
Field< 3, FieldValue< 3 >::Scalar > water_source_density
static const Input::Type::Instance & get_input_type_specific()
double * get_solution_array()
BCField< 3, FieldValue< 3 >::Scalar > bc_switch_pressure
Field< 3, FieldValue< 3 >::Scalar > storativity
static constexpr Mask input_copy
Compound finite element on dim dimensional simplex.
std::shared_ptr< Balance > balance_
FieldCommon & input_default(const string &input_default)
const Vec & get_solution()
FMT_FUNC int fprintf(std::ostream &os, CStringRef format, ArgList args)
Definitions of basic Lagrangean finite elements with polynomial shape functions.
unsigned int begin(int proc) const
get starting local index
unsigned int n_sides() const
bool is_changed_dt() const
#define START_TIMER(tag)
Starts a timer with specified tag.
void set_from_input(const Input::Record in_rec) override
static Input::Type::Abstract & get_input_type()
virtual Range< ElementAccessor< 3 > > elements_range() const
Returns range of bulk elements.
bool use_steady_assembly_
double measure() const
Computes the measure of the element.
unsigned int n_sides() const
void allocate_mh_matrix()
static const Input::Type::Selection & get_bc_type_selection()
Return a Selection corresponding to enum BC_Type.
virtual void assembly_linear_system()
virtual const Vec * get_rhs()
virtual PetscErrorCode rhs_zero_entries()
void set_solution(Vec sol_vec)
Dedicated class for storing path to input and output files.
Support classes for parallel programing.
#define MPI_Allreduce(sendbuf, recvbuf, count, datatype, op, comm)
int set_upper_constraint(double upper, std::string message)
Sets upper constraint for the next time step estimating.
int LongIdx
Define type that represents indices of large arrays (elements, nodes, dofs etc.)
Field< 3, FieldValue< 3 >::Scalar > field_ele_piezo_head
FieldCommon & description(const string &description)
void create_linear_system(Input::AbstractRecord rec)
virtual unsigned int n_elements(bool boundary=false) const
Returns count of boundary or bulk elements.
Distribution * make_complement_distribution()
get distribution of complement object if complement is defined
Input::Record input_record_
auto disable_where(const Field< spacedim, typename FieldValue< spacedim >::Enum > &control_field, const vector< FieldEnum > &value_list) -> Field &
Field< 3, FieldValue< 3 >::TensorFixed > anisotropy
DarcyMH(Mesh &mesh, const Input::Record in_rec, TimeGovernor *tm=nullptr)
CREATE AND FILL GLOBAL MH MATRIX OF THE WATER MODEL.
unsigned int bulk_idx() const
Returns index of the region in the bulk set.
#define WarningOut()
Macro defining 'warning' record of log.
FieldCommon & name(const string &name)
virtual SolveInfo solve()=0
#define END_TIMER(tag)
Ends a timer with specified tag.
#define OLD_ASSERT_EQUAL(a, b)
EqData()
Creation of all fields.
void set_matrix_changed()
static const Input::Type::Record & get_input_type()
void print_matlab_matrix(string matlab_file)
Print darcy flow matrix in matlab format into a file.
mixed-hybrid model of linear Darcy flow, possibly unsteady.
unsigned int index() const
Field< 3, FieldValue< 3 >::Scalar > field_edge_pressure
void zero_time_step() override
void dofs_range(unsigned int n_dofs, unsigned int &min, unsigned int &max, unsigned int component)
Helper method fills range (min and max) of given component.
void set_positive_definite(bool flag=true)
virtual void read_initial_condition()
FieldCommon & set_limits(double min, double max=std::numeric_limits< double >::max())
Field< 3, FieldValue< 3 >::Scalar > cross_section
static Input::Type::Abstract & get_input_type()
virtual void mat_set_values(int nrow, int *rows, int ncol, int *cols, double *vals)=0
BCField< 3, FieldValue< 3 >::Enum > bc_type
DarcyFlowMHOutput * output_object
Field< 3, FieldValue< 3 >::Scalar > conductivity
FieldCommon & flags(FieldFlag::Flags::Mask mask)
unsigned int n_edges() const
void prepare_new_time_step()
Class for representation SI units of Fields.
virtual const Mat * get_matrix()
MortarMethod
Type of experimental Mortar-like method for non-compatible 1d-2d interaction.
virtual double solution_precision() const
BCField< 3, FieldValue< 3 >::Scalar > bc_robin_sigma
unsigned int n_neighs_vb() const
Return number of neighbours.
virtual void setup_time_term()
static UnitSI & dimensionless()
Returns dimensionless unit.
#define DebugOut()
Macro defining 'debug' record of log.
unsigned int idx() const
Return local idx of element in boundary / bulk part of element vector.
virtual double compute_residual()=0
#define THROW(whole_exception_expr)
Wrapper for throw. Saves the throwing point.
Implementation of range helper class.
Side accessor allows to iterate over sides of DOF handler cell.
MortarMethod mortar_method_
#define FLOW123D_FORCE_LINK_IN_CHILD(x)
void rhs_set_value(int row, double val)
Input::Type::Record make_field_descriptor_type(const std::string &equation_name) const
static const Input::Type::Record & get_input_type()
Solver based on Multilevel BDDC - using corresponding class of OpenFTL package.
virtual bool zero_time_term(bool time_global=false)
void output()
Calculate values for output.
#define ASSERT_LT_DBG(a, b)
Definition of comparative assert macro (Less Than) only for debug mode.
Mixed-hybrid model of linear Darcy flow, possibly unsteady.