Flow123d  JS_before_hm-937-g93502c2
darcy_flow_lmh.cc
Go to the documentation of this file.
1 /*!
2  *
3  * Copyright (C) 2015 Technical University of Liberec. All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify it under
6  * the terms of the GNU General Public License version 3 as published by the
7  * Free Software Foundation. (http://www.gnu.org/licenses/gpl-3.0.en.html)
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
11  * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
12  *
13  *
14  * @file darcy_flow_lmh.cc
15  * @ingroup flow
16  * @brief Setup and solve linear system of mixed-hybrid discretization of the linear
17  * porous media flow with possible preferential flow in fractures and chanels.
18  */
19 
20 //#include <limits>
21 #include <vector>
22 //#include <iostream>
23 //#include <iterator>
24 //#include <algorithm>
25 #include <armadillo>
26 
27 #include "petscmat.h"
28 #include "petscviewer.h"
29 #include "petscerror.h"
30 #include "mpi.h"
31 
32 #include "system/system.hh"
33 #include "system/sys_profiler.hh"
34 #include "system/index_types.hh"
35 #include "input/factory.hh"
36 
37 #include "mesh/mesh.h"
38 #include "mesh/partitioning.hh"
39 #include "mesh/accessors.hh"
40 #include "mesh/range_wrapper.hh"
41 #include "la/distribution.hh"
42 #include "la/linsys.hh"
43 #include "la/linsys_PETSC.hh"
44 // #include "la/linsys_BDDC.hh"
45 #include "la/schur.hh"
46 //#include "la/sparse_graph.hh"
48 #include "la/vector_mpi.hh"
49 
50 #include "flow/assembly_lmh.hh"
51 #include "flow/darcy_flow_lmh.hh"
53 
54 #include "tools/time_governor.hh"
56 #include "fields/field.hh"
57 #include "fields/field_values.hh"
59 #include "fields/field_fe.hh"
60 #include "fields/field_divide.hh"
61 
62 #include "coupling/balance.hh"
63 
66 
67 #include "fem/fe_p.hh"
68 
69 
70 FLOW123D_FORCE_LINK_IN_CHILD(darcy_flow_lmh)
71 
72 
73 
74 
75 namespace it = Input::Type;
76 
77 const it::Selection & DarcyLMH::get_mh_mortar_selection() {
78  return it::Selection("MH_MortarMethod")
79  .add_value(NoMortar, "None", "No Mortar method is applied.")
80  .add_value(MortarP0, "P0", "Mortar space: P0 on elements of lower dimension.")
81  .add_value(MortarP1, "P1", "Mortar space: P1 on intersections, using non-conforming pressures.")
82  .close();
83 }
84 
86 
87  const it::Record &field_descriptor =
88  it::Record("Flow_Darcy_LMH_Data",FieldCommon::field_descriptor_record_description("Flow_Darcy_LMH_Data") )
89  .copy_keys( DarcyLMH::EqData().make_field_descriptor_type("Flow_Darcy_LMH_Data_aux") )
90  .declare_key("bc_piezo_head", FieldAlgorithmBase< 3, FieldValue<3>::Scalar >::get_input_type_instance(),
91  "Boundary piezometric head for BC types: dirichlet, robin, and river." )
92  .declare_key("bc_switch_piezo_head", FieldAlgorithmBase< 3, FieldValue<3>::Scalar >::get_input_type_instance(),
93  "Boundary switch piezometric head for BC types: seepage, river." )
94  .declare_key("init_piezo_head", FieldAlgorithmBase< 3, FieldValue<3>::Scalar >::get_input_type_instance(),
95  "Initial condition for the pressure given as the piezometric head." )
96  .close();
97  return field_descriptor;
98 }
99 
101 
102  it::Record ns_rec = Input::Type::Record("NonlinearSolver", "Non-linear solver settings.")
103  .declare_key("linear_solver", LinSys::get_input_type(), it::Default("{}"),
104  "Linear solver for MH problem.")
105  .declare_key("tolerance", it::Double(0.0), it::Default("1E-6"),
106  "Residual tolerance.")
107  .declare_key("min_it", it::Integer(0), it::Default("1"),
108  "Minimum number of iterations (linear solutions) to use.\nThis is usefull if the convergence criteria "
109  "does not characterize your goal well enough so it converges prematurely, possibly even without a single linear solution."
110  "If greater then 'max_it' the value is set to 'max_it'.")
111  .declare_key("max_it", it::Integer(0), it::Default("100"),
112  "Maximum number of iterations (linear solutions) of the non-linear solver.")
113  .declare_key("converge_on_stagnation", it::Bool(), it::Default("false"),
114  "If a stagnation of the nonlinear solver is detected the solver stops. "
115  "A divergence is reported by default, forcing the end of the simulation. By setting this flag to 'true', the solver "
116  "ends with convergence success on stagnation, but it reports warning about it.")
117  .close();
118 
119  DarcyLMH::EqData eq_data;
120 
121  return it::Record("Flow_Darcy_LMH", "Lumped Mixed-Hybrid solver for saturated Darcy flow.")
124  .declare_key("gravity", it::Array(it::Double(), 3,3), it::Default("[ 0, 0, -1]"),
125  "Vector of the gravity force. Dimensionless.")
127  "Input data for Darcy flow model.")
128  .declare_key("nonlinear_solver", ns_rec, it::Default("{}"),
129  "Non-linear solver for MH problem.")
130  .declare_key("output_stream", OutputTime::get_input_type(), it::Default("{}"),
131  "Output stream settings.\n Specify file format, precision etc.")
132 
133  .declare_key("output", DarcyFlowMHOutput::get_input_type(eq_data, "Flow_Darcy_LMH"),
134  IT::Default("{ \"fields\": [ \"pressure_p0\", \"velocity_p0\" ] }"),
135  "Specification of output fields and output times.")
137  "Output settings specific to Darcy flow model.\n"
138  "Includes raw output and some experimental functionality.")
139  .declare_key("balance", Balance::get_input_type(), it::Default("{}"),
140  "Settings for computing mass balance.")
141  .declare_key("mortar_method", get_mh_mortar_selection(), it::Default("\"None\""),
142  "Method for coupling Darcy flow between dimensions on incompatible meshes. [Experimental]" )
143  .close();
144 }
145 
146 
147 const int DarcyLMH::registrar =
148  Input::register_class< DarcyLMH, Mesh &, const Input::Record >("Flow_Darcy_LMH") +
150 
151 
152 
154 : DarcyMH::EqData::EqData()
155 {
156 }
157 
158 
159 
160 
161 
162 
163 //=============================================================================
164 // CREATE AND FILL GLOBAL MH MATRIX OF THE WATER MODEL
165 // - do it in parallel:
166 // - initial distribution of elements, edges
167 //
168 /*! @brief CREATE AND FILL GLOBAL MH MATRIX OF THE WATER MODEL
169  *
170  * Parameters {Solver,NSchurs} number of performed Schur
171  * complements (0,1,2) for water flow MH-system
172  *
173  */
174 //=============================================================================
175 DarcyLMH::DarcyLMH(Mesh &mesh_in, const Input::Record in_rec, TimeGovernor *tm)
176 : DarcyFlowInterface(mesh_in, in_rec),
177  output_object(nullptr),
178  data_changed_(false)
179 {
180 
181  START_TIMER("Darcy constructor");
182  {
183  auto time_record = input_record_.val<Input::Record>("time");
184  if (tm == nullptr)
185  {
186  time_ = new TimeGovernor(time_record);
187  }
188  else
189  {
190  TimeGovernor tm_from_rec(time_record);
191  if (!tm_from_rec.is_default()) // is_default() == false when time record is present in input file
192  {
193  MessageOut() << "Duplicate key 'time', time in flow equation is already initialized from parent class!";
194  ASSERT(false);
195  }
196  time_ = tm;
197  }
198  }
199 
200  data_ = make_shared<EqData>();
202 
203  data_->is_linear=true;
204 
205  size = mesh_->n_elements() + mesh_->n_sides() + mesh_->n_edges();
206  data_->mortar_method_= in_rec.val<MortarMethod>("mortar_method");
207  if (data_->mortar_method_ != NoMortar) {
209  }
210 
211 
212 
213  //side_ds->view( std::cout );
214  //el_ds->view( std::cout );
215  //edge_ds->view( std::cout );
216  //rows_ds->view( std::cout );
217 
218 }
219 
220 
221 
223 //connecting data fields with mesh
224 {
225 
226  START_TIMER("data init");
227  data_->mesh = mesh_;
228  data_->set_mesh(*mesh_);
229 
230  auto gravity_array = input_record_.val<Input::Array>("gravity");
231  std::vector<double> gvec;
232  gravity_array.copy_to(gvec);
233  gvec.push_back(0.0); // zero pressure shift
234  data_->gravity_ = arma::vec(gvec);
235  data_->gravity_vec_ = data_->gravity_.subvec(0,2);
236 
237  data_->bc_pressure.add_factory(
238  std::make_shared<FieldAddPotential<3, FieldValue<3>::Scalar>::FieldFactory>
239  (data_->gravity_, "bc_piezo_head") );
240  data_->bc_switch_pressure.add_factory(
241  std::make_shared<FieldAddPotential<3, FieldValue<3>::Scalar>::FieldFactory>
242  (data_->gravity_, "bc_switch_piezo_head") );
243  data_->init_pressure.add_factory(
244  std::make_shared<FieldAddPotential<3, FieldValue<3>::Scalar>::FieldFactory>
245  (data_->gravity_, "init_piezo_head") );
246 
247 
248  data_->set_input_list( this->input_record_.val<Input::Array>("input_fields"), *time_ );
249  // Check that the time step was set for the transient simulation.
250  if (! zero_time_term(true) && time_->is_default() ) {
251  //THROW(ExcAssertMsg());
252  //THROW(ExcMissingTimeGovernor() << input_record_.ei_address());
253  MessageOut() << "Missing the key 'time', obligatory for the transient problems." << endl;
254  ASSERT(false);
255  }
256 
257  data_->mark_input_times(*time_);
258 }
259 
261 
262  { // init DOF handler for pressure fields
263 // std::shared_ptr< FiniteElement<0> > fe0_rt = std::make_shared<FE_RT0_disc<0>>();
264  std::shared_ptr< FiniteElement<1> > fe1_rt = std::make_shared<FE_RT0_disc<1>>();
265  std::shared_ptr< FiniteElement<2> > fe2_rt = std::make_shared<FE_RT0_disc<2>>();
266  std::shared_ptr< FiniteElement<3> > fe3_rt = std::make_shared<FE_RT0_disc<3>>();
267  std::shared_ptr< FiniteElement<0> > fe0_disc = std::make_shared<FE_P_disc<0>>(0);
268  std::shared_ptr< FiniteElement<1> > fe1_disc = std::make_shared<FE_P_disc<1>>(0);
269  std::shared_ptr< FiniteElement<2> > fe2_disc = std::make_shared<FE_P_disc<2>>(0);
270  std::shared_ptr< FiniteElement<3> > fe3_disc = std::make_shared<FE_P_disc<3>>(0);
271  std::shared_ptr< FiniteElement<0> > fe0_cr = std::make_shared<FE_CR<0>>();
272  std::shared_ptr< FiniteElement<1> > fe1_cr = std::make_shared<FE_CR<1>>();
273  std::shared_ptr< FiniteElement<2> > fe2_cr = std::make_shared<FE_CR<2>>();
274  std::shared_ptr< FiniteElement<3> > fe3_cr = std::make_shared<FE_CR<3>>();
275 // static FiniteElement<0> fe0_sys = FE_P_disc<0>(0); //TODO fix and use solution with FESystem<0>( {fe0_rt, fe0_disc, fe0_cr} )
276  FESystem<0> fe0_sys( {fe0_disc, fe0_disc, fe0_cr} );
277  FESystem<1> fe1_sys( {fe1_rt, fe1_disc, fe1_cr} );
278  FESystem<2> fe2_sys( {fe2_rt, fe2_disc, fe2_cr} );
279  FESystem<3> fe3_sys( {fe3_rt, fe3_disc, fe3_cr} );
280  MixedPtr<FESystem> fe_sys( std::make_shared<FESystem<0>>(fe0_sys), std::make_shared<FESystem<1>>(fe1_sys),
281  std::make_shared<FESystem<2>>(fe2_sys), std::make_shared<FESystem<3>>(fe3_sys) );
282  std::shared_ptr<DiscreteSpace> ds = std::make_shared<EqualOrderDiscreteSpace>( mesh_, fe_sys);
283  data_->dh_ = std::make_shared<DOFHandlerMultiDim>(*mesh_);
284  data_->dh_->distribute_dofs(ds);
285  }
286 
287  init_eq_data();
289 
290  { // construct pressure, velocity and piezo head fields
291  uint rt_component = 0;
292  auto ele_flux_ptr = create_field_fe<3, FieldValue<3>::VectorFixed>(data_->dh_, rt_component);
293  data_->full_solution = ele_flux_ptr->get_data_vec();
294  data_->flux.set_field(mesh_->region_db().get_region_set("ALL"), ele_flux_ptr);
295 
296  auto ele_velocity_ptr = std::make_shared< FieldDivide<3, FieldValue<3>::VectorFixed> >(ele_flux_ptr, data_->cross_section);
297  data_->field_ele_velocity.set_field(mesh_->region_db().get_region_set("ALL"), ele_velocity_ptr);
298 
299  uint p_ele_component = 0;
300  auto ele_pressure_ptr = create_field_fe<3, FieldValue<3>::Scalar>(data_->dh_, p_ele_component, &data_->full_solution);
301  data_->field_ele_pressure.set_field(mesh_->region_db().get_region_set("ALL"), ele_pressure_ptr);
302 
303  uint p_edge_component = 1;
304  auto edge_pressure_ptr = create_field_fe<3, FieldValue<3>::Scalar>(data_->dh_, p_edge_component, &data_->full_solution);
305  data_->field_edge_pressure.set_field(mesh_->region_db().get_region_set("ALL"), edge_pressure_ptr);
306 
307  arma::vec4 gravity = (-1) * data_->gravity_;
308  auto ele_piezo_head_ptr = std::make_shared< FieldAddPotential<3, FieldValue<3>::Scalar> >(gravity, ele_pressure_ptr);
309  data_->field_ele_piezo_head.set_field(mesh_->region_db().get_region_set("ALL"), ele_piezo_head_ptr);
310  }
311 
312  { // init DOF handlers represents element pressure DOFs
313  uint p_element_component = 1;
314  data_->dh_p_ = std::make_shared<SubDOFHandlerMultiDim>(data_->dh_,p_element_component);
315  }
316 
317  { // init DOF handlers represents edge DOFs
318  uint p_edge_component = 2;
319  data_->dh_cr_ = std::make_shared<SubDOFHandlerMultiDim>(data_->dh_,p_edge_component);
320  }
321 
322  { // init DOF handlers represents side DOFs
323  MixedPtr<FE_CR_disc> fe_cr_disc;
324  std::shared_ptr<DiscreteSpace> ds_cr_disc = std::make_shared<EqualOrderDiscreteSpace>( mesh_, fe_cr_disc);
325  data_->dh_cr_disc_ = std::make_shared<DOFHandlerMultiDim>(*mesh_);
326  data_->dh_cr_disc_->distribute_dofs(ds_cr_disc);
327  }
328 
329  // create solution vector for 2. Schur complement linear system
330 // p_edge_solution = new VectorMPI(data_->dh_cr_->distr()->lsize());
331 // full_solution = new VectorMPI(data_->dh_->distr()->lsize());
332  // this creates mpi vector from DoFHandler, including ghost values
333  data_->p_edge_solution = data_->dh_cr_->create_vector();
334  data_->p_edge_solution_previous = data_->dh_cr_->create_vector();
335  data_->p_edge_solution_previous_time = data_->dh_cr_->create_vector();
336 
337  // Initialize bc_switch_dirichlet to size of global boundary.
338  data_->bc_switch_dirichlet.resize(mesh_->n_elements()+mesh_->n_elements(true), 1);
339 
340 
343  .val<Input::Record>("nonlinear_solver")
344  .val<Input::AbstractRecord>("linear_solver");
345 
347 
348  // auxiliary set_time call since allocation assembly evaluates fields as well
351 
352 
353  // initialization of balance object
354  balance_ = std::make_shared<Balance>("water", mesh_);
355  balance_->init_from_input(input_record_.val<Input::Record>("balance"), time());
356  data_->water_balance_idx = balance_->add_quantity("water_volume");
357  balance_->allocate(data_->dh_, 1);
358  balance_->units(UnitSI().m(3));
359 
360  data_->balance = balance_;
361 }
362 
364 {
365  data_->multidim_assembler = AssemblyBase::create< AssemblyLMH >(data_);
366 }
367 
368 // void DarcyLMH::read_initial_condition()
369 // {
370 // DebugOut().fmt("Read initial condition\n");
371 
372 // std::vector<LongIdx> l_indices(data_->dh_cr_->max_elem_dofs());
373 
374 // for ( DHCellAccessor dh_cell : data_->dh_cr_->own_range() ) {
375 
376 // dh_cell.get_loc_dof_indices(l_indices);
377 // ElementAccessor<3> ele = dh_cell.elm();
378 
379 // // set initial condition
380 // double init_value = data_->init_pressure.value(ele.centre(),ele);
381 
382 // for (unsigned int i=0; i<ele->n_sides(); i++) {
383 // uint n_sides_of_edge = ele.side(i)->edge()->n_sides;
384 // data_->p_edge_solution[l_indices[i]] += init_value/n_sides_of_edge;
385 // }
386 // }
387 
388 // data_->p_edge_solution.ghost_to_local_begin();
389 // data_->p_edge_solution.ghost_to_local_end();
390 // data_->p_edge_solution_previous_time.copy_from(data_->p_edge_solution);
391 
392 // initial_condition_postprocess();
393 // }
394 
396 {
397  DebugOut().fmt("Read initial condition\n");
398 
399  for ( DHCellAccessor dh_cell : data_->dh_->own_range() ) {
400 
401  LocDofVec p_indices = dh_cell.cell_with_other_dh(data_->dh_p_.get()).get_loc_dof_indices();
402  ASSERT_DBG(p_indices.n_elem == 1);
403  LocDofVec l_indices = dh_cell.cell_with_other_dh(data_->dh_cr_.get()).get_loc_dof_indices();
404  ElementAccessor<3> ele = dh_cell.elm();
405 
406  // set initial condition
407  double init_value = data_->init_pressure.value(ele.centre(),ele);
408  unsigned int p_idx = data_->dh_p_->parent_indices()[p_indices[0]];
409  data_->full_solution[p_idx] = init_value;
410 
411  for (unsigned int i=0; i<ele->n_sides(); i++) {
412  uint n_sides_of_edge = ele.side(i)->edge().n_sides();
413  unsigned int l_idx = data_->dh_cr_->parent_indices()[l_indices[i]];
414  data_->full_solution[l_idx] += init_value/n_sides_of_edge;
415 
416  data_->p_edge_solution[l_indices[i]] += init_value/n_sides_of_edge;
417  }
418  }
419 
420  data_->full_solution.ghost_to_local_begin();
421  data_->full_solution.ghost_to_local_end();
422 
423  data_->p_edge_solution.ghost_to_local_begin();
424  data_->p_edge_solution.ghost_to_local_end();
425  data_->p_edge_solution_previous_time.copy_from(data_->p_edge_solution);
426 
428 }
429 
431 {}
432 
434 {
435 
436  /* TODO:
437  * - Allow solution reconstruction (pressure and velocity) from initial condition on user request.
438  * - Steady solution as an intitial condition may be forced by setting inti_time =-1, and set data for the steady solver in that time.
439  * Solver should be able to switch from and to steady case depending on the zero time term.
440  */
441 
443 
444  // zero_time_term means steady case
445  data_->use_steady_assembly_ = zero_time_term();
446 
447  data_->p_edge_solution.zero_entries();
448 
449  if (data_->use_steady_assembly_) { // steady case
450  //read_initial_condition(); // Possible solution guess for steady case.
451  solve_nonlinear(); // with right limit data
452  } else {
454 
455  // we reconstruct the initial solution here
456 
457  // during the reconstruction assembly:
458  // - the balance objects are actually allocated
459  // - the full solution vector is computed
460  // - to not changing the ref data in the tests at the moment, we need zero velocities,
461  // so we keep only the pressure in the full solution (reason for the temp vector)
462  // Once we want to change the ref data including nonzero velocities,
463  // we can remove the temp vector and also remove the settings of full_solution vector
464  // in the read_initial_condition(). (use the commented out version read_initial_condition() above)
465  VectorMPI temp = data_->dh_->create_vector();
466  temp.copy_from(data_->full_solution);
467  reconstruct_solution_from_schur(data_->multidim_assembler);
468  data_->full_solution.copy_from(temp);
469 
470  // print_matlab_matrix("matrix_zero");
471  accept_time_step(); // accept zero time step, i.e. initial condition
472  }
473  //solution_output(T,right_limit); // data for time T in any case
474  output_data();
475 }
476 
477 //=============================================================================
478 // COMPOSE and SOLVE WATER MH System possibly through Schur complements
479 //=============================================================================
481 {
482  START_TIMER("Solving MH system");
483 
484  time_->next_time();
485 
486  time_->view("DARCY"); //time governor information output
487 
488  solve_time_step();
489 
490  data_->full_solution.local_to_ghost_begin();
491  data_->full_solution.local_to_ghost_end();
492 }
493 
494 void DarcyLMH::solve_time_step(bool output)
495 {
497  bool zero_time_term_from_left=zero_time_term();
498 
499  bool jump_time = data_->storativity.is_jump_time();
500  if (! zero_time_term_from_left) {
501  // time term not treated as zero
502  // Unsteady solution up to the T.
503 
504  // this flag is necesssary for switching BC to avoid setting zero neumann on the whole boundary in the steady case
505  data_->use_steady_assembly_ = false;
506 
507  solve_nonlinear(); // with left limit data
508  if(output)
510  if (jump_time) {
511  WarningOut() << "Output of solution discontinuous in time not supported yet.\n";
512  //solution_output(T, left_limit); // output use time T- delta*dt
513  //output_data();
514  }
515  }
516 
517  if (time_->is_end()) {
518  // output for unsteady case, end_time should not be the jump time
519  // but rether check that
520  if (! zero_time_term_from_left && ! jump_time && output)
521  output_data();
522  return;
523  }
524 
526  bool zero_time_term_from_right=zero_time_term();
527  if (zero_time_term_from_right) {
528  // this flag is necesssary for switching BC to avoid setting zero neumann on the whole boundary in the steady case
529  data_->use_steady_assembly_ = true;
530  solve_nonlinear(); // with right limit data
531  if(output)
533 
534  } else if (! zero_time_term_from_left && jump_time) {
535  WarningOut() << "Discontinuous time term not supported yet.\n";
536  //solution_transfer(); // internally call set_time(T, left) and set_time(T,right) again
537  //solve_nonlinear(); // with right limit data
538  }
539  //solution_output(T,right_limit); // data for time T in any case
540  if (output)
541  output_data();
542 }
543 
544 bool DarcyLMH::zero_time_term(bool time_global) {
545  if (time_global) {
546  return (data_->storativity.input_list_size() == 0);
547  } else {
548  return data_->storativity.field_result(mesh_->region_db().get_region_set("BULK")) == result_zeros;
549  }
550 }
551 
552 
554 {
555 
557  double residual_norm = lin_sys_schur().compute_residual();
559  MessageOut().fmt("[nonlinear solver] norm of initial residual: {}\n", residual_norm);
560 
561  // Reduce is_linear flag.
562  int is_linear_common;
563  MPI_Allreduce(&(data_->is_linear), &is_linear_common,1, MPI_INT ,MPI_MIN,PETSC_COMM_WORLD);
564 
565  Input::Record nl_solver_rec = input_record_.val<Input::Record>("nonlinear_solver");
566  this->tolerance_ = nl_solver_rec.val<double>("tolerance");
567  this->max_n_it_ = nl_solver_rec.val<unsigned int>("max_it");
568  this->min_n_it_ = nl_solver_rec.val<unsigned int>("min_it");
569  if (this->min_n_it_ > this->max_n_it_) this->min_n_it_ = this->max_n_it_;
570 
571  if (! is_linear_common) {
572  // set tolerances of the linear solver unless they are set by user.
573  lin_sys_schur().set_tolerances(0.1*this->tolerance_, 0.01*this->tolerance_, 100);
574  }
575  vector<double> convergence_history;
576 
577  while (nonlinear_iteration_ < this->min_n_it_ ||
578  (residual_norm > this->tolerance_ && nonlinear_iteration_ < this->max_n_it_ )) {
579  OLD_ASSERT_EQUAL( convergence_history.size(), nonlinear_iteration_ );
580  convergence_history.push_back(residual_norm);
581 
582  // print_matlab_matrix("matrix_" + std::to_string(time_->step().index()) + "_it_" + std::to_string(nonlinear_iteration_));
583  // stagnation test
584  if (convergence_history.size() >= 5 &&
585  convergence_history[ convergence_history.size() - 1]/convergence_history[ convergence_history.size() - 2] > 0.9 &&
586  convergence_history[ convergence_history.size() - 1]/convergence_history[ convergence_history.size() - 5] > 0.8) {
587  // stagnation
588  if (input_record_.val<Input::Record>("nonlinear_solver").val<bool>("converge_on_stagnation")) {
589  WarningOut().fmt("Accept solution on stagnation. Its: {} Residual: {}\n", nonlinear_iteration_, residual_norm);
590  break;
591  } else {
592  THROW(ExcSolverDiverge() << EI_Reason("Stagnation."));
593  }
594  }
595 
596  if (! is_linear_common){
597  data_->p_edge_solution_previous.copy_from(data_->p_edge_solution);
598  data_->p_edge_solution_previous.local_to_ghost_begin();
599  data_->p_edge_solution_previous.local_to_ghost_end();
600  }
601 
603  MessageOut().fmt("[schur solver] lin. it: {}, reason: {}, residual: {}\n",
604  si.n_iterations, si.converged_reason, lin_sys_schur().compute_residual());
605 
607 
608  // hack to make BDDC work with empty compute_residual
609  if (is_linear_common){
610  // we want to print this info in linear (and steady) case
611  residual_norm = lin_sys_schur().compute_residual();
612  MessageOut().fmt("[nonlinear solver] lin. it: {}, reason: {}, residual: {}\n",
613  si.n_iterations, si.converged_reason, residual_norm);
614  break;
615  }
616  data_changed_=true; // force reassembly for non-linear case
617 
618  double alpha = 1; // how much of new solution
619  VecAXPBY(data_->p_edge_solution.petsc_vec(), (1-alpha), alpha, data_->p_edge_solution_previous.petsc_vec());
620 
621  //LogOut().fmt("Linear solver ended with reason: {} \n", si.converged_reason );
622  //OLD_ASSERT( si.converged_reason >= 0, "Linear solver failed to converge. Convergence reason %d \n", si.converged_reason );
624 
625  residual_norm = lin_sys_schur().compute_residual();
626  MessageOut().fmt("[nonlinear solver] it: {} lin. it: {}, reason: {}, residual: {}\n",
627  nonlinear_iteration_, si.n_iterations, si.converged_reason, residual_norm);
628  }
629 
630  reconstruct_solution_from_schur(data_->multidim_assembler);
631 
632  // adapt timestep
633  if (! this->zero_time_term()) {
634  double mult = 1.0;
635  if (nonlinear_iteration_ < 3) mult = 1.6;
636  if (nonlinear_iteration_ > 7) mult = 0.7;
637  time_->set_upper_constraint(time_->dt() * mult, "Darcy adaptivity.");
638  // int result = time_->set_upper_constraint(time_->dt() * mult, "Darcy adaptivity.");
639  //DebugOut().fmt("time adaptivity, res: {} it: {} m: {} dt: {} edt: {}\n", result, nonlinear_iteration_, mult, time_->dt(), time_->estimate_dt());
640  }
641 }
642 
643 
645 {
646  data_->p_edge_solution_previous_time.copy_from(data_->p_edge_solution);
647  data_->p_edge_solution_previous_time.local_to_ghost_begin();
648  data_->p_edge_solution_previous_time.local_to_ghost_end();
649 }
650 
651 
653  START_TIMER("Darcy output data");
654 
655  // print_matlab_matrix("matrix_" + std::to_string(time_->step().index()));
656 
657  //time_->view("DARCY"); //time governor information output
658  this->output_object->output();
659 
660 
661  START_TIMER("Darcy balance output");
662  balance_->calculate_cumulative(data_->water_balance_idx, data_->full_solution.petsc_vec());
663  balance_->calculate_instant(data_->water_balance_idx, data_->full_solution.petsc_vec());
664  balance_->output();
665 }
666 
667 
669 {
670  return data_->lin_sys_schur->get_solution_precision();
671 }
672 
673 
674 // ===========================================================================================
675 //
676 // MATRIX ASSEMBLY - we use abstract assembly routine, where LS Mat/Vec SetValues
677 // are in fact pointers to allocating or filling functions - this is governed by Linsystem roitunes
678 //
679 // =======================================================================================
681 {
682  START_TIMER("DarcyLMH::assembly_steady_mh_matrix");
683 
684  // DebugOut() << "assembly_mh_matrix \n";
685  // set auxiliary flag for switchting Dirichlet like BC
686  data_->force_no_neumann_bc = data_->use_steady_assembly_ && (nonlinear_iteration_ == 0);
687 
688  balance_->start_flux_assembly(data_->water_balance_idx);
689  balance_->start_source_assembly(data_->water_balance_idx);
690  balance_->start_mass_assembly(data_->water_balance_idx);
691 
692  // TODO: try to move this into balance, or have it in the generic assembler class, that should perform the cell loop
693  // including various pre- and post-actions
694  for ( DHCellAccessor dh_cell : data_->dh_->own_range() ) {
695  unsigned int dim = dh_cell.dim();
696  assembler[dim-1]->assemble(dh_cell);
697  }
698 
699 
700  balance_->finish_mass_assembly(data_->water_balance_idx);
701  balance_->finish_source_assembly(data_->water_balance_idx);
702  balance_->finish_flux_assembly(data_->water_balance_idx);
703 
704 }
705 
706 
708 {
709  START_TIMER("DarcyLMH::allocate_mh_matrix");
710 
711  // to make space for second schur complement, max. 10 neighbour edges of one el.
712  double zeros[100000];
713  for(int i=0; i<100000; i++) zeros[i] = 0.0;
714 
715  std::vector<LongIdx> tmp_rows;
716  tmp_rows.reserve(200);
717 
718  std::vector<LongIdx> dofs, dofs_ngh;
719  dofs.reserve(data_->dh_cr_->max_elem_dofs());
720  dofs_ngh.reserve(data_->dh_cr_->max_elem_dofs());
721 
722  // DebugOut() << "Allocate new schur\n";
723  for ( DHCellAccessor dh_cell : data_->dh_cr_->own_range() ) {
724  ElementAccessor<3> ele = dh_cell.elm();
725 
726  const uint ndofs = dh_cell.n_dofs();
727  dofs.resize(dh_cell.n_dofs());
728  dh_cell.get_dof_indices(dofs);
729 
730  int* dofs_ptr = dofs.data();
731  lin_sys_schur().mat_set_values(ndofs, dofs_ptr, ndofs, dofs_ptr, zeros);
732 
733  tmp_rows.clear();
734 
735  // compatible neighborings rows
736  unsigned int n_neighs = ele->n_neighs_vb();
737  for ( DHCellSide neighb_side : dh_cell.neighb_sides() ) {
738  // every compatible connection adds a 2x2 matrix involving
739  // current element pressure and a connected edge pressure
740 
741  // read neighbor dofs (dh_cr dofhandler)
742  // neighbor cell owning neighb_side
743  DHCellAccessor dh_neighb_cell = neighb_side.cell();
744 
745  const uint ndofs_ngh = dh_neighb_cell.n_dofs();
746  dofs_ngh.resize(ndofs_ngh);
747  dh_neighb_cell.get_dof_indices(dofs_ngh);
748 
749  // local index of pedge dof on neighboring cell
750  tmp_rows.push_back(dofs_ngh[neighb_side.side().side_idx()]);
751  }
752 
753  lin_sys_schur().mat_set_values(ndofs, dofs_ptr, n_neighs, tmp_rows.data(), zeros); // (edges) x (neigh edges)
754  lin_sys_schur().mat_set_values(n_neighs, tmp_rows.data(), ndofs, dofs_ptr, zeros); // (neigh edges) x (edges)
755  lin_sys_schur().mat_set_values(n_neighs, tmp_rows.data(), n_neighs, tmp_rows.data(), zeros); // (neigh edges) x (neigh edges)
756 
757  tmp_rows.clear();
758  if (data_->mortar_method_ != NoMortar) {
759  auto &isec_list = mesh_->mixed_intersections().element_intersections_[ele.idx()];
760  for(auto &isec : isec_list ) {
761  IntersectionLocalBase *local = isec.second;
762  DHCellAccessor dh_cell_slave = data_->dh_cr_->cell_accessor_from_element(local->bulk_ele_idx());
763 
764  const uint ndofs_slave = dh_cell_slave.n_dofs();
765  dofs_ngh.resize(ndofs_slave);
766  dh_cell_slave.get_dof_indices(dofs_ngh);
767 
768  //DebugOut().fmt("Alloc: {} {}", ele.idx(), local->bulk_ele_idx());
769  for(unsigned int i_side=0; i_side < dh_cell_slave.elm()->n_sides(); i_side++) {
770  tmp_rows.push_back( dofs_ngh[i_side] );
771  //DebugOut() << "aedge" << print_var(tmp_rows[tmp_rows.size()-1]);
772  }
773  }
774  }
775 
776  lin_sys_schur().mat_set_values(ndofs, dofs_ptr, tmp_rows.size(), tmp_rows.data(), zeros); // master edges x slave edges
777  lin_sys_schur().mat_set_values(tmp_rows.size(), tmp_rows.data(), ndofs, dofs_ptr, zeros); // slave edges x master edges
778  lin_sys_schur().mat_set_values(tmp_rows.size(), tmp_rows.data(), tmp_rows.size(), tmp_rows.data(), zeros); // slave edges x slave edges
779  }
780  // DebugOut() << "end Allocate new schur\n";
781 
782  // int local_dofs[10];
783  // unsigned int nsides;
784  // for ( DHCellAccessor dh_cell : data_->dh_->own_range() ) {
785  // LocalElementAccessorBase<3> ele_ac(dh_cell);
786  // nsides = ele_ac.n_sides();
787 
788  // //allocate at once matrix [sides,ele,edges]x[sides,ele,edges]
789  // loc_size = 1 + 2*nsides;
790  // unsigned int i_side = 0;
791 
792  // for (; i_side < nsides; i_side++) {
793  // local_dofs[i_side] = ele_ac.side_row(i_side);
794  // local_dofs[i_side+nsides] = ele_ac.edge_row(i_side);
795  // }
796  // local_dofs[i_side+nsides] = ele_ac.ele_row();
797  // int * edge_rows = local_dofs + nsides;
798  // //int ele_row = local_dofs[0];
799 
800  // // whole local MH matrix
801  // ls->mat_set_values(loc_size, local_dofs, loc_size, local_dofs, zeros);
802 
803 
804  // // compatible neighborings rows
805  // unsigned int n_neighs = ele_ac.element_accessor()->n_neighs_vb();
806  // unsigned int i=0;
807  // for ( DHCellSide neighb_side : dh_cell.neighb_sides() ) {
808  // //for (unsigned int i = 0; i < n_neighs; i++) {
809  // // every compatible connection adds a 2x2 matrix involving
810  // // current element pressure and a connected edge pressure
811  // Neighbour *ngh = ele_ac.element_accessor()->neigh_vb[i];
812  // DHCellAccessor cell_higher_dim = data_->dh_->cell_accessor_from_element(neighb_side.elem_idx());
813  // LocalElementAccessorBase<3> acc_higher_dim( cell_higher_dim );
814  // for (unsigned int j = 0; j < neighb_side.element().dim()+1; j++)
815  // if (neighb_side.element()->edge_idx(j) == ngh->edge_idx()) {
816  // int neigh_edge_row = acc_higher_dim.edge_row(j);
817  // tmp_rows.push_back(neigh_edge_row);
818  // break;
819  // }
820  // //DebugOut() << "CC" << print_var(tmp_rows[i]);
821  // ++i;
822  // }
823 
824  // // allocate always also for schur 2
825  // ls->mat_set_values(nsides+1, edge_rows, n_neighs, tmp_rows.data(), zeros); // (edges, ele) x (neigh edges)
826  // ls->mat_set_values(n_neighs, tmp_rows.data(), nsides+1, edge_rows, zeros); // (neigh edges) x (edges, ele)
827  // ls->mat_set_values(n_neighs, tmp_rows.data(), n_neighs, tmp_rows.data(), zeros); // (neigh edges) x (neigh edges)
828 
829  // tmp_rows.clear();
830 
831  // if (data_->mortar_method_ != NoMortar) {
832  // auto &isec_list = mesh_->mixed_intersections().element_intersections_[ele_ac.ele_global_idx()];
833  // for(auto &isec : isec_list ) {
834  // IntersectionLocalBase *local = isec.second;
835  // LocalElementAccessorBase<3> slave_acc( data_->dh_->cell_accessor_from_element(local->bulk_ele_idx()) );
836  // //DebugOut().fmt("Alloc: {} {}", ele_ac.ele_global_idx(), local->bulk_ele_idx());
837  // for(unsigned int i_side=0; i_side < slave_acc.dim()+1; i_side++) {
838  // tmp_rows.push_back( slave_acc.edge_row(i_side) );
839  // //DebugOut() << "aedge" << print_var(tmp_rows[tmp_rows.size()-1]);
840  // }
841  // }
842  // }
843  // /*
844  // for(unsigned int i_side=0; i_side < ele_ac.element_accessor()->n_sides(); i_side++) {
845  // DebugOut() << "aedge:" << print_var(edge_rows[i_side]);
846  // }*/
847 
848  // ls->mat_set_values(nsides, edge_rows, tmp_rows.size(), tmp_rows.data(), zeros); // master edges x neigh edges
849  // ls->mat_set_values(tmp_rows.size(), tmp_rows.data(), nsides, edge_rows, zeros); // neigh edges x master edges
850  // ls->mat_set_values(tmp_rows.size(), tmp_rows.data(), tmp_rows.size(), tmp_rows.data(), zeros); // neigh edges x neigh edges
851 
852  // }
853 /*
854  // alloc edge diagonal entries
855  if(rank == 0)
856  for( vector<Edge>::iterator edg = mesh_->edges.begin(); edg != mesh_->edges.end(); ++edg) {
857  int edg_idx = mh_dh.row_4_edge[edg->side(0)->edge_idx()];
858 
859 // for( vector<Edge>::iterator edg2 = mesh_->edges.begin(); edg2 != mesh_->edges.end(); ++edg2){
860 // int edg_idx2 = mh_dh.row_4_edge[edg2->side(0)->edge_idx()];
861 // if(edg_idx == edg_idx2){
862 // DBGCOUT(<< "P[ " << rank << " ] " << "edg alloc: " << edg_idx << " " << edg_idx2 << "\n");
863  ls->mat_set_value(edg_idx, edg_idx, 0.0);
864 // }
865 // }
866  }
867  */
868  /*
869  if (mortar_method_ == MortarP0) {
870  P0_CouplingAssembler(*this).assembly(*ls);
871  } else if (mortar_method_ == MortarP1) {
872  P1_CouplingAssembler(*this).assembly(*ls);
873  }*/
874 }
875 
876 
877 
878 /*******************************************************************************
879  * COMPOSE WATER MH MATRIX WITHOUT SCHUR COMPLEMENT
880  ******************************************************************************/
881 
883 
884  START_TIMER("preallocation");
885 
886  // if (schur0 == NULL) { // create Linear System for MH matrix
887 
888 // if (in_rec.type() == LinSys_BDDC::get_input_type()) {
889 // #ifdef FLOW123D_HAVE_BDDCML
890 // WarningOut() << "For BDDC no Schur complements are used.";
891 // n_schur_compls = 0;
892 // LinSys_BDDC *ls = new LinSys_BDDC(&(*data_->dh_->distr()),
893 // true); // swap signs of matrix and rhs to make the matrix SPD
894 // ls->set_from_input(in_rec);
895 // ls->set_solution( data_->full_solution.petsc_vec() );
896 // // possible initialization particular to BDDC
897 // START_TIMER("BDDC set mesh data");
898 // set_mesh_data_for_bddc(ls);
899 // schur0=ls;
900 // END_TIMER("BDDC set mesh data");
901 // #else
902 // Exception
903 // xprintf(Err, "Flow123d was not build with BDDCML support.\n");
904 // #endif // FLOW123D_HAVE_BDDCML
905 // }
906 // else
907  if (in_rec.type() == LinSys_PETSC::get_input_type()) {
908  // use PETSC for serial case even when user wants BDDC
909 
910  data_->lin_sys_schur = std::make_shared<LinSys_PETSC>( &(*data_->dh_cr_->distr()) );
911  lin_sys_schur().set_from_input(in_rec);
913  lin_sys_schur().set_solution( data_->p_edge_solution.petsc_vec() );
915 
916 // LinSys_PETSC *schur1, *schur2;
917 
918 // if (n_schur_compls == 0) {
919 // LinSys_PETSC *ls = new LinSys_PETSC( &(*data_->dh_->distr()) );
920 
921 // // temporary solution; we have to set precision also for sequantial case of BDDC
922 // // final solution should be probably call of direct solver for oneproc case
923 // // if (in_rec.type() != LinSys_BDDC::get_input_type()) ls->set_from_input(in_rec);
924 // // else {
925 // // ls->LinSys::set_from_input(in_rec); // get only common options
926 // // }
927 // ls->set_from_input(in_rec);
928 
929 // // ls->set_solution( data_->full_solution.petsc_vec() );
930 // schur0=ls;
931 // } else {
932 // IS is;
933 // auto side_dofs_vec = get_component_indices_vec(0);
934 
935 // ISCreateGeneral(PETSC_COMM_SELF, side_dofs_vec.size(), &(side_dofs_vec[0]), PETSC_COPY_VALUES, &is);
936 // //ISView(is, PETSC_VIEWER_STDOUT_SELF);
937 // //OLD_ASSERT(err == 0,"Error in ISCreateStride.");
938 
939 // SchurComplement *ls = new SchurComplement(&(*data_->dh_->distr()), is);
940 
941 // // make schur1
942 // Distribution *ds = ls->make_complement_distribution();
943 // if (n_schur_compls==1) {
944 // schur1 = new LinSys_PETSC(ds);
945 // schur1->set_positive_definite();
946 // } else {
947 // IS is;
948 // auto elem_dofs_vec = get_component_indices_vec(1);
949 
950 // const PetscInt *b_indices;
951 // ISGetIndices(ls->IsB, &b_indices);
952 // uint b_size = ls->loc_size_B;
953 // for(uint i_b=0, i_bb=0; i_b < b_size && i_bb < elem_dofs_vec.size(); i_b++) {
954 // if (b_indices[i_b] == elem_dofs_vec[i_bb])
955 // elem_dofs_vec[i_bb++] = i_b + ds->begin();
956 // }
957 // ISRestoreIndices(ls->IsB, &b_indices);
958 
959 
960 // ISCreateGeneral(PETSC_COMM_SELF, elem_dofs_vec.size(), &(elem_dofs_vec[0]), PETSC_COPY_VALUES, &is);
961 // //ISView(is, PETSC_VIEWER_STDOUT_SELF);
962 // //OLD_ASSERT(err == 0,"Error in ISCreateStride.");
963 // SchurComplement *ls1 = new SchurComplement(ds, is); // is is deallocated by SchurComplement
964 // ls1->set_negative_definite();
965 
966 // // make schur2
967 // schur2 = new LinSys_PETSC( ls1->make_complement_distribution() );
968 // schur2->set_positive_definite();
969 // ls1->set_complement( schur2 );
970 // schur1 = ls1;
971 // }
972 // ls->set_complement( schur1 );
973 // ls->set_from_input(in_rec);
974 // // ls->set_solution( data_->full_solution.petsc_vec() );
975 // schur0=ls;
976  // }
977 
978  START_TIMER("PETSC PREALLOCATION");
980 
982 
983  data_->full_solution.zero_entries();
984  data_->p_edge_solution.zero_entries();
985  END_TIMER("PETSC PREALLOCATION");
986  }
987  else {
988  xprintf(Err, "Unknown solver type. Internal error.\n");
989  }
990 
991  END_TIMER("preallocation");
992 }
993 
995 {}
996 
998 {
999  START_TIMER("DarcyFlowMH::reconstruct_solution_from_schur");
1000 
1001  data_->full_solution.zero_entries();
1002  data_->p_edge_solution.local_to_ghost_begin();
1003  data_->p_edge_solution.local_to_ghost_end();
1004 
1005  balance_->start_flux_assembly(data_->water_balance_idx);
1006  balance_->start_source_assembly(data_->water_balance_idx);
1007  balance_->start_mass_assembly(data_->water_balance_idx);
1008 
1009  for ( DHCellAccessor dh_cell : data_->dh_->own_range() ) {
1010  unsigned int dim = dh_cell.dim();
1011  assembler[dim-1]->assemble_reconstruct(dh_cell);
1012  }
1013 
1014  data_->full_solution.local_to_ghost_begin();
1015  data_->full_solution.local_to_ghost_end();
1016 
1017  balance_->finish_mass_assembly(data_->water_balance_idx);
1018  balance_->finish_source_assembly(data_->water_balance_idx);
1019  balance_->finish_flux_assembly(data_->water_balance_idx);
1020 }
1021 
1023  START_TIMER("DarcyFlowMH::assembly_linear_system");
1024 // DebugOut() << "DarcyLMH::assembly_linear_system\n";
1025 
1026  data_->p_edge_solution.local_to_ghost_begin();
1027  data_->p_edge_solution.local_to_ghost_end();
1028 
1029  data_->is_linear=true;
1030  //DebugOut() << "Assembly linear system\n";
1031 // if (data_changed_) {
1032 // data_changed_ = false;
1033  {
1034  //DebugOut() << "Data changed\n";
1035  // currently we have no optimization for cases when just time term data or RHS data are changed
1036  START_TIMER("full assembly");
1037 // if (typeid(*schur0) != typeid(LinSys_BDDC)) {
1038 // schur0->start_add_assembly(); // finish allocation and create matrix
1039 // schur_compl->start_add_assembly();
1040 // }
1041 
1043 
1046 
1047  data_->time_step_ = time_->dt();
1048 
1049  assembly_mh_matrix( data_->multidim_assembler ); // fill matrix
1050 
1053 
1054  // print_matlab_matrix("matrix");
1055  }
1056 }
1057 
1058 
1059 void DarcyLMH::print_matlab_matrix(std::string matlab_file)
1060 {
1061  std::string output_file;
1062 
1063  // compute h_min for different dimensions
1064  double d_max = std::numeric_limits<double>::max();
1065  double h1 = d_max, h2 = d_max, h3 = d_max;
1066  double he2 = d_max, he3 = d_max;
1067  for (auto ele : mesh_->elements_range()) {
1068  switch(ele->dim()){
1069  case 1: h1 = std::min(h1,ele.measure()); break;
1070  case 2: h2 = std::min(h2,ele.measure()); break;
1071  case 3: h3 = std::min(h3,ele.measure()); break;
1072  }
1073 
1074  for (unsigned int j=0; j<ele->n_sides(); j++) {
1075  switch(ele->dim()){
1076  case 2: he2 = std::min(he2, ele.side(j)->measure()); break;
1077  case 3: he3 = std::min(he3, ele.side(j)->measure()); break;
1078  }
1079  }
1080  }
1081  if(h1 == d_max) h1 = 0;
1082  if(h2 == d_max) h2 = 0;
1083  if(h3 == d_max) h3 = 0;
1084  if(he2 == d_max) he2 = 0;
1085  if(he3 == d_max) he3 = 0;
1086 
1087  FILE * file;
1088  file = fopen(output_file.c_str(),"a");
1089  fprintf(file, "nA = %d;\n", data_->dh_cr_disc_->distr()->size());
1090  fprintf(file, "nB = %d;\n", data_->dh_->mesh()->get_el_ds()->size());
1091  fprintf(file, "nBF = %d;\n", data_->dh_cr_->distr()->size());
1092  fprintf(file, "h1 = %e;\nh2 = %e;\nh3 = %e;\n", h1, h2, h3);
1093  fprintf(file, "he2 = %e;\nhe3 = %e;\n", he2, he3);
1094  fclose(file);
1095 
1096  {
1097  output_file = FilePath(matlab_file + "_sch_new.m", FilePath::output_file);
1098  PetscViewer viewer;
1099  PetscViewerASCIIOpen(PETSC_COMM_WORLD, output_file.c_str(), &viewer);
1100  PetscViewerSetFormat(viewer, PETSC_VIEWER_ASCII_MATLAB);
1101  MatView( *const_cast<Mat*>(lin_sys_schur().get_matrix()), viewer);
1102  VecView( *const_cast<Vec*>(lin_sys_schur().get_rhs()), viewer);
1103  VecView( *const_cast<Vec*>(&(lin_sys_schur().get_solution())), viewer);
1104  VecView( *const_cast<Vec*>(&(data_->full_solution.petsc_vec())), viewer);
1105  }
1106 }
1107 
1108 
1109 //template <int dim>
1110 //std::vector<arma::vec3> dof_points(DHCellAccessor cell, const Mapping<dim, 3> &mapping) {
1111 //
1112 //
1113 // vector<arma::vec::fixed<dim+1>> bary_dof_points = cell->fe()->dof_points();
1114 //
1115 // std::vector<arma::vec3> points(20);
1116 // points.resize(0);
1117 //
1118 //}
1119 //
1120 
1121 // void DarcyLMH::set_mesh_data_for_bddc(LinSys_BDDC * bddc_ls) {
1122 // START_TIMER("DarcyFlowMH_Steady::set_mesh_data_for_bddc");
1123 // // prepare mesh for BDDCML
1124 // // initialize arrays
1125 // // auxiliary map for creating coordinates of local dofs and global-to-local numbering
1126 // std::map<int, arma::vec3> localDofMap;
1127 // // connectivity for the subdomain, i.e. global dof numbers on element, stored element-by-element
1128 // // Indices of Nodes on Elements
1129 // std::vector<int> inet;
1130 // // number of degrees of freedom on elements - determines elementwise chunks of INET array
1131 // // Number of Nodes on Elements
1132 // std::vector<int> nnet;
1133 // // Indices of Subdomain Elements in Global Numbering - for local elements, their global indices
1134 // std::vector<int> isegn;
1135 //
1136 // // This array is currently not used in BDDCML, it was used as an interface scaling alternative to scaling
1137 // // by diagonal. It corresponds to the rho-scaling.
1138 // std::vector<double> element_permeability;
1139 //
1140 // // maximal and minimal dimension of elements
1141 // uint elDimMax = 1;
1142 // uint elDimMin = 3;
1143 // std::vector<LongIdx> cell_dofs_global(10);
1144 //
1145 //
1146 //
1147 // for ( DHCellAccessor dh_cell : data_->dh_->own_range() ) {
1148 // // LocalElementAccessorBase<3> ele_ac(dh_cell);
1149 // // for each element, create local numbering of dofs as fluxes (sides), pressure (element centre), Lagrange multipliers (edges), compatible connections
1150 //
1151 // dh_cell.get_dof_indices(cell_dofs_global);
1152 //
1153 // inet.insert(inet.end(), cell_dofs_global.begin(), cell_dofs_global.end());
1154 // uint n_inet = cell_dofs_global.size();
1155 //
1156 //
1157 // uint dim = dh_cell.elm().dim();
1158 // elDimMax = std::max( elDimMax, dim );
1159 // elDimMin = std::min( elDimMin, dim );
1160 //
1161 // // TODO: this is consistent with previous implementation, but may be wrong as it use global element numbering
1162 // // used in sequential mesh, do global numbering of distributed elements.
1163 // isegn.push_back( dh_cell.elm_idx());
1164 //
1165 // // TODO: use FiniteElement::dof_points
1166 // for (unsigned int si=0; si<dh_cell.elm()->n_sides(); si++) {
1167 // arma::vec3 coord = dh_cell.elm().side(si)->centre();
1168 // // flux dof points
1169 // localDofMap.insert( std::make_pair( cell_dofs_global[si], coord ) );
1170 // // pressure trace dof points
1171 // localDofMap.insert( std::make_pair( cell_dofs_global[si+dim+2], coord ) );
1172 // }
1173 // // pressure dof points
1174 // arma::vec3 elm_centre = dh_cell.elm().centre();
1175 // localDofMap.insert( std::make_pair( cell_dofs_global[dim+1], elm_centre ) );
1176 //
1177 // // insert dofs related to compatible connections
1178 // //const Element *ele = dh_cell.elm().element();
1179 // for(DHCellSide side : dh_cell.neighb_sides()) {
1180 // uint neigh_dim = side.cell().elm().dim();
1181 // side.cell().get_dof_indices(cell_dofs_global);
1182 // int edge_row = cell_dofs_global[neigh_dim+2+side.side_idx()];
1183 // localDofMap.insert( std::make_pair( edge_row, side.centre() ) );
1184 // inet.push_back( edge_row );
1185 // n_inet++;
1186 // }
1187 // nnet.push_back(n_inet);
1188 //
1189 //
1190 // // version for rho scaling
1191 // // trace computation
1192 // double conduct = data_->conductivity.value( elm_centre , dh_cell.elm() );
1193 // auto aniso = data_->anisotropy.value( elm_centre , dh_cell.elm() );
1194 //
1195 // // compute mean on the diagonal
1196 // double coef = 0.;
1197 // for ( int i = 0; i < 3; i++) {
1198 // coef = coef + aniso.at(i,i);
1199 // }
1200 // // Maybe divide by cs
1201 // coef = conduct*coef / 3;
1202 //
1203 // OLD_ASSERT( coef > 0.,
1204 // "Zero coefficient of hydrodynamic resistance %f . \n ", coef );
1205 // element_permeability.push_back( 1. / coef );
1206 // }
1207 // // uint i_inet = 0;
1208 // // for(int n_dofs : nnet) {
1209 // // DebugOut() << "nnet: " << n_dofs;
1210 // // for(int j=0; j < n_dofs; j++, i_inet++) {
1211 // // DebugOut() << "inet: " << inet[i_inet];
1212 // // }
1213 // // }
1214 //
1215 // auto distr = data_->dh_->distr();
1216 // // for(auto pair : localDofMap) {
1217 // // DebugOut().every_proc() << "r: " << distr->myp() << " gi: " << pair.first << "xyz: " << pair.second[0];
1218 // //
1219 // // }
1220 //
1221 //
1222 // //convert set of dofs to vectors
1223 // // number of nodes (= dofs) on the subdomain
1224 // int numNodeSub = localDofMap.size();
1225 // //ASSERT_EQ( (unsigned int)numNodeSub, data_->dh_->lsize() );
1226 // // Indices of Subdomain Nodes in Global Numbering - for local nodes, their global indices
1227 // std::vector<int> isngn( numNodeSub );
1228 // // pseudo-coordinates of local nodes (i.e. dofs)
1229 // // they need not be exact, they are used just for some geometrical considerations in BDDCML,
1230 // // such as selection of corners maximizing area of a triangle, bounding boxes fro subdomains to
1231 // // find candidate neighbours etc.
1232 // std::vector<double> xyz( numNodeSub * 3 ) ;
1233 // int ind = 0;
1234 // std::map<int,arma::vec3>::iterator itB = localDofMap.begin();
1235 // for ( ; itB != localDofMap.end(); ++itB ) {
1236 // isngn[ind] = itB -> first;
1237 //
1238 // arma::vec3 coord = itB -> second;
1239 // for ( int j = 0; j < 3; j++ ) {
1240 // xyz[ j*numNodeSub + ind ] = coord[j];
1241 // }
1242 //
1243 // ind++;
1244 // }
1245 // localDofMap.clear();
1246 //
1247 // // Number of Nodal Degrees of Freedom
1248 // // nndf is trivially one - dofs coincide with nodes
1249 // std::vector<int> nndf( numNodeSub, 1 );
1250 //
1251 // // prepare auxiliary map for renumbering nodes
1252 // typedef std::map<int,int> Global2LocalMap_; //! type for storage of global to local map
1253 // Global2LocalMap_ global2LocalNodeMap;
1254 // for ( unsigned ind = 0; ind < isngn.size(); ++ind ) {
1255 // global2LocalNodeMap.insert( std::make_pair( static_cast<unsigned>( isngn[ind] ), ind ) );
1256 // }
1257 //
1258 // // renumber nodes in the inet array to locals
1259 // int indInet = 0;
1260 // for ( unsigned int iEle = 0; iEle < isegn.size(); iEle++ ) {
1261 // int nne = nnet[ iEle ];
1262 // for ( int ien = 0; ien < nne; ien++ ) {
1263 //
1264 // int indGlob = inet[indInet];
1265 // // map it to local node
1266 // Global2LocalMap_::iterator pos = global2LocalNodeMap.find( indGlob );
1267 // OLD_ASSERT( pos != global2LocalNodeMap.end(),
1268 // "Cannot remap node index %d to local indices. \n ", indGlob );
1269 // int indLoc = static_cast<int> ( pos -> second );
1270 //
1271 // // store the node
1272 // inet[ indInet++ ] = indLoc;
1273 // }
1274 // }
1275 //
1276 // int numNodes = size;
1277 // int numDofsInt = size;
1278 // int spaceDim = 3; // TODO: what is the proper value here?
1279 // int meshDim = elDimMax;
1280 //
1281 // /**
1282 // * We need:
1283 // * - local to global element map (possibly mesh->el_4_loc
1284 // * - inet, nnet - local dof numbers per element, local numbering of only those dofs that are on owned elements
1285 // * 1. collect DH local dof indices on elements, manage map from DH local indices to BDDC local dof indices
1286 // * 2. map collected DH indices to BDDC indices using the map
1287 // * - local BDDC dofs to global dofs, use DH to BDDC map with DH local to global map
1288 // * - XYZ - permuted, collect in main loop into array of size of all DH local dofs, compress and rearrange latter
1289 // * - element_permeability - in main loop
1290 // */
1291 // bddc_ls -> load_mesh( LinSys_BDDC::BDDCMatrixType::SPD_VIA_SYMMETRICGENERAL, spaceDim, numNodes, numDofsInt, inet, nnet, nndf, isegn, isngn, isngn, xyz, element_permeability, meshDim );
1292 // }
1293 
1294 
1295 
1296 
1297 //=============================================================================
1298 // DESTROY WATER MH SYSTEM STRUCTURE
1299 //=============================================================================
1301  if (output_object) delete output_object;
1302 
1303  if(time_ != nullptr)
1304  delete time_;
1305 
1306 }
1307 
1308 
1310  ASSERT_LT_DBG(component, 3).error("Invalid component!");
1311  unsigned int i, n_dofs, min, max;
1312  std::vector<int> dof_vec;
1313  std::vector<LongIdx> dof_indices(data_->dh_->max_elem_dofs());
1314  for ( DHCellAccessor dh_cell : data_->dh_->own_range() ) {
1315  n_dofs = dh_cell.get_dof_indices(dof_indices);
1316  dofs_range(n_dofs, min, max, component);
1317  for (i=min; i<max; ++i) dof_vec.push_back(dof_indices[i]);
1318  }
1319  return dof_vec;
1320 }
1321 
1322 
1323 //-----------------------------------------------------------------------------
1324 // vim: set cindent:
TimeGovernor & time()
Definition: equation.hh:151
unsigned int n_sides() const
Returns number of sides aligned with the edge.
Definition: accessors.hh:300
virtual bool zero_time_term(bool time_global=false)
FieldSet * eq_data_
Definition: equation.hh:229
static const Input::Type::Record & get_input_type()
Main balance input record type.
Definition: balance.cc:50
Output class for darcy_flow_mh model.
RegionSet get_region_set(const std::string &set_name) const
Definition: region.cc:329
Accessor to input data conforming to declared Array.
Definition: accessors.hh:567
arma::Col< IntIdx > LocDofVec
Definition: index_types.hh:28
ArmaVec< double, N > vec
Definition: armor.hh:861
void set_symmetric(bool flag=true)
Definition: linsys.hh:561
unsigned int uint
Classes with algorithms for computation of intersections of meshes.
unsigned int size() const
Returns number of keys in the Record.
Definition: type_record.hh:602
static const int registrar
Registrar of class to factory.
Solver based on the original PETSc solver using MPIAIJ matrix and succesive Schur complement construc...
virtual void set_from_input(const Input::Record in_rec)
Definition: linsys.hh:641
MixedMeshIntersections & mixed_intersections()
Definition: mesh.cc:822
static const Input::Type::Record & get_input_type()
The specification of output stream.
Definition: output_time.cc:37
Common base for intersection object.
unsigned int get_dof_indices(std::vector< LongIdx > &indices) const
Fill vector of the global indices of dofs associated to the cell.
Class Input::Type::Default specifies default value of keys of a Input::Type::Record.
Definition: type_record.hh:61
Class for declaration of the input of type Bool.
Definition: type_base.hh:459
Edge edge() const
Returns pointer to the edge connected to the side.
static const Input::Type::Record & get_input_type()
virtual void initialize_specific()
#define MessageOut()
Macro defining &#39;message&#39; record of log.
Definition: logger.hh:255
virtual void start_add_assembly()
Definition: linsys.hh:341
void assembly_mh_matrix(MultidimAssembly &assembler)
virtual PetscErrorCode mat_zero_entries()
Definition: linsys.hh:264
Abstract linear system class.
Definition: balance.hh:40
Wrappers for linear systems based on MPIAIJ and MATIS format.
bool is_end() const
Returns true if the actual time is greater than or equal to the end time.
void next_time()
Proceed to the next time according to current estimated time step.
void zero_time_step() override
static Default obligatory()
The factory function to make an empty default value which is obligatory.
Definition: type_record.hh:110
void create_linear_system(Input::AbstractRecord rec)
void solve_time_step(bool output=true)
Solve the problem without moving to next time and without output.
Lumped mixed-hybrid model of linear Darcy flow, possibly unsteady.
friend class DarcyFlowMHOutput
std::vector< int > get_component_indices_vec(unsigned int component) const
Get vector of all DOF indices of given component (0..side, 1..element, 2..edge)
Definition: mesh.h:78
virtual void start_allocation()
Definition: linsys.hh:333
Cell accessor allow iterate over DOF handler cells.
virtual void finish_assembly()=0
std::vector< std::vector< ILpair > > element_intersections_
static const Input::Type::Instance & get_input_type(FieldSet &eq_data, const std::string &equation_name)
SideIter side(const unsigned int loc_index)
const RegionDB & region_db() const
Definition: mesh.h:143
#define ASSERT(expr)
Allow use shorter versions of macro names if these names is not used with external library...
Definition: asserts.hh:347
const TimeStep & step(int index=-1) const
static const Input::Type::Selection & get_mh_mortar_selection()
Selection for enum MortarMethod.
Mixed-hybrid model of linear Darcy flow, possibly unsteady.
static const std::string field_descriptor_record_description(const string &record_name)
Definition: field_common.cc:73
virtual void initial_condition_postprocess()
Class for declaration of the integral input data.
Definition: type_base.hh:490
Basic time management functionality for unsteady (and steady) solvers (class Equation).
unsigned int bulk_ele_idx() const
Returns index of bulk element.
unsigned int n_dofs() const
Return number of dofs on given cell.
Record & close() const
Close the Record for further declarations of keys.
Definition: type_record.cc:304
Basic time management class.
virtual void set_tolerances(double r_tol, double a_tol, unsigned int max_it)=0
Class for declaration of inputs sequences.
Definition: type_base.hh:346
DarcyFlowMHOutput * output_object
void view(const char *name="") const
static Input::Type::Record & record_template()
Template Record with common keys for derived equations.
Definition: equation.cc:36
Assembly explicit Schur complement for the given linear system. Provides method for resolution of the...
void initialize() override
arma::vec::fixed< spacedim > centre() const
Computes the barycenter.
virtual Record & derive_from(Abstract &parent)
Method to derive new Record from an AbstractRecord parent.
Definition: type_record.cc:196
void print_matlab_matrix(string matlab_file)
Print darcy flow matrix in matlab format into a file.
static Default optional()
The factory function to make an empty default value which is optional.
Definition: type_record.hh:124
void copy_from(VectorMPI &other)
Definition: vector_mpi.cc:103
virtual void postprocess()
const ElementAccessor< 3 > elm() const
Return ElementAccessor to element of loc_ele_idx_.
void read_initial_condition()
Class for declaration of the input data that are floating point numbers.
Definition: type_base.hh:541
unsigned int min_n_it_
static const Input::Type::Instance & get_input_type_specific()
Compound finite element on dim dimensional simplex.
Definition: fe_system.hh:101
double tolerance_
#define MPI_MIN
Definition: mpi.h:198
void allocate_mh_matrix()
Input::Type::Record type() const
Definition: accessors.cc:273
FMT_FUNC int fprintf(std::ostream &os, CStringRef format, ArgList args)
Definition: ostream.cc:56
Definitions of basic Lagrangean finite elements with polynomial shape functions.
Accessor to the data with type Type::Record.
Definition: accessors.hh:292
const Ret val(const string &key) const
unsigned int n_sides() const
Definition: elements.h:132
#define xprintf(...)
Definition: system.hh:93
virtual void output_data() override
Write computed fields.
#define START_TIMER(tag)
Starts a timer with specified tag.
int converged_reason
Definition: linsys.hh:109
Mesh * mesh_
Definition: equation.hh:220
bool data_changed_
Selection & add_value(const int value, const std::string &key, const std::string &description="", TypeBase::attribute_map attributes=TypeBase::attribute_map())
Adds one new value with name given by key to the Selection.
Record & declare_key(const string &key, std::shared_ptr< TypeBase > type, const Default &default_value, const string &description, TypeBase::attribute_map key_attributes=TypeBase::attribute_map())
Declares a new key of the Record.
Definition: type_record.cc:503
static Input::Type::Abstract & get_input_type()
virtual Range< ElementAccessor< 3 > > elements_range() const
Returns range of bulk elements.
Definition: mesh.cc:1147
virtual ~DarcyLMH() override
unsigned int max_n_it_
unsigned int n_sides() const
Definition: mesh.cc:230
void init_eq_data()
std::shared_ptr< EqData > data_
unsigned int nonlinear_iteration_
Accessor to the polymorphic input data of a type given by an AbstracRecord object.
Definition: accessors.hh:459
virtual PetscErrorCode rhs_zero_entries()
Definition: linsys.hh:273
virtual void accept_time_step()
postprocess velocity field (add sources)
void set_solution(Vec sol_vec)
Definition: linsys.hh:290
Record & copy_keys(const Record &other)
Copy keys from other record.
Definition: type_record.cc:216
Dedicated class for storing path to input and output files.
Definition: file_path.hh:54
Support classes for parallel programing.
#define MPI_Allreduce(sendbuf, recvbuf, count, datatype, op, comm)
Definition: mpi.h:612
int set_upper_constraint(double upper, std::string message)
Sets upper constraint for the next time step estimating.
void solve_nonlinear()
Solve method common to zero_time_step and update solution.
void update_solution() override
virtual unsigned int n_elements(bool boundary=false) const
Returns count of boundary or bulk elements.
Definition: mesh.h:337
LinSys & lin_sys_schur()
Getter for the linear system of the 2. Schur complement.
const Selection & close() const
Close the Selection, no more values can be added.
Input::Record input_record_
Definition: equation.hh:222
std::shared_ptr< Balance > balance_
#define MPI_INT
Definition: mpi.h:160
double dt() const
virtual void assembly_linear_system()
#define ASSERT_DBG(expr)
#define WarningOut()
Macro defining &#39;warning&#39; record of log.
Definition: logger.hh:258
virtual SolveInfo solve()=0
virtual double solution_precision() const
#define END_TIMER(tag)
Ends a timer with specified tag.
#define OLD_ASSERT_EQUAL(a, b)
Definition: global_defs.h:133
Definition: system.hh:65
void set_matrix_changed()
Definition: linsys.hh:212
static const Input::Type::Record & get_input_type()
Definition: linsys_PETSC.cc:32
void dofs_range(unsigned int n_dofs, unsigned int &min, unsigned int &max, unsigned int component)
Helper method fills range (min and max) of given component.
void set_positive_definite(bool flag=true)
Definition: linsys.hh:576
static const Input::Type::Record & type_field_descriptor()
Record type proxy class.
Definition: type_record.hh:182
static Input::Type::Abstract & get_input_type()
Definition: linsys.cc:29
virtual void mat_set_values(int nrow, int *rows, int ncol, int *cols, double *vals)=0
unsigned int n_edges() const
Definition: mesh.h:134
Class for representation SI units of Fields.
Definition: unit_si.hh:40
void reconstruct_solution_from_schur(MultidimAssembly &assembler)
MortarMethod
Type of experimental Mortar-like method for non-compatible 1d-2d interaction.
unsigned int n_neighs_vb() const
Return number of neighbours.
Definition: elements.h:67
#define DebugOut()
Macro defining &#39;debug&#39; record of log.
Definition: logger.hh:264
unsigned int idx() const
Return local idx of element in boundary / bulk part of element vector.
Definition: accessors.hh:181
virtual double compute_residual()=0
#define THROW(whole_exception_expr)
Wrapper for throw. Saves the throwing point.
Definition: exceptions.hh:53
Template for classes storing finite set of named values.
Implementation of range helper class.
Side accessor allows to iterate over sides of DOF handler cell.
#define FLOW123D_FORCE_LINK_IN_CHILD(x)
Definition: global_defs.h:180
DarcyLMH(Mesh &mesh, const Input::Record in_rec, TimeGovernor *tm=nullptr)
CREATE AND FILL GLOBAL MH MATRIX OF THE WATER MODEL.
TimeGovernor * time_
Definition: equation.hh:221
void output()
Calculate values for output.
#define ASSERT_LT_DBG(a, b)
Definition of comparative assert macro (Less Than) only for debug mode.
Definition: asserts.hh:300
Mixed-hybrid model of linear Darcy flow, possibly unsteady.