Flow123d  JS_before_hm-2-g912b55d
fe_p.cc
Go to the documentation of this file.
1 /*!
2  *
3  * Copyright (C) 2015 Technical University of Liberec. All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify it under
6  * the terms of the GNU General Public License version 3 as published by the
7  * Free Software Foundation. (http://www.gnu.org/licenses/gpl-3.0.en.html)
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
11  * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
12  *
13  *
14  * @file fe_p.cc
15  * @brief
16  */
17 
18 // !! implementation of specializations has to be i *.cc file to avoid multiple definition error during linking
19 #include "fe_p.hh"
20 #include "mesh/ref_element.hh"
21 
22 
23 
24 
25 PolynomialSpace::PolynomialSpace(unsigned int degree, unsigned int dim)
26  : FunctionSpace(dim, 1),
27  degree_(degree)
28 {
29 // computes powers of all monomials up to given @p degree
30 // the order is: 1,x,x^2, y, yx,y^2
31 //
32 // TODO: - check and possibly rewrite to be more clear (use sum_degree temporary
33 // - change order of monomials: 1, x, y, xy, x^2 , y^2 (increasing order)
34 // - allow Q polynomials: 1,x, y, xy
35 // - can use tensor products
36 
37  arma::uvec pows(dim);
38  pows.zeros();
39 
40  unsigned int degree_sum=0;
41  unsigned int i_dim;
42 
43  while (true) {
44  powers.push_back(pows);
45 
46  // increment pows
47  for(i_dim=0; i_dim < dim; i_dim++) {
48  if (degree_sum < degree) {
49  pows[i_dim]++;
50  degree_sum++;
51  break;
52  } else { // if degree_sum == degree, we find first non empty power, free it, and raise the next one
53  degree_sum-=pows[i_dim];
54  pows[i_dim]=0;
55  }
56  }
57  if (i_dim == dim) break; // just after pow == (0, 0, .., degree)
58  }
59 }
60 
61 
62 double PolynomialSpace::basis_value(unsigned int i,
63  const arma::vec &point,
64  unsigned int comp_index
65  ) const
66 {
67  ASSERT(comp_index == 0);
68  OLD_ASSERT(i<=powers.size(), "Index of basis function is out of range.");
69  ASSERT(point.size()==space_dim_);
70 
71  double v = 1;
72  for (unsigned int j=0; j<this->space_dim_; j++)
73  v *= pow(point[j], (int) powers[i][j]);
74 
75  return v;
76 }
77 
78 
80  const arma::vec &p,
81  unsigned int comp_index
82  ) const
83 {
84  ASSERT(comp_index == 0);
85  OLD_ASSERT(i<=powers.size(), "Index of basis function is out of range.");
86 
87  arma::vec grad(this->space_dim_);
88 
89  for (unsigned int j=0; j<this->space_dim_; j++)
90  {
91  grad[j] = powers[i][j];
92  if (powers[i][j] == 0) continue;
93 
94  for (unsigned int k=0; k<this->space_dim_; k++)
95  {
96  grad[j] *= pow(p[k], (int) (k==j?powers[i][k]-1:powers[i][k]));
97  }
98  }
99  return grad;
100 }
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 template<unsigned int dim>
114 {
115  if (degree_ == 0 || dim == 0)
116  {
117  // we define nodal dof:
118  // coords = barycentric coordinates of the support point,
119  // coefs = 1 (dof value = function value at the point)
120  arma::vec coords = arma::ones<arma::vec>(dim+1)/(dim+1);
121  this->dofs_.push_back(Dof(dim, 0, coords, { 1 }, Value));
122  }
123  else
124  {
125  // Create vector of barycentric coordinates.
126  // First we make vector uvbc which contains barycentric coordinates
127  // multiplied by degree_, so that its values are unsigned ints.
128  // Then by counting the nonzero barycentric coordinates we can decide
129  // whether the dof lies on node, line, triangle or tetrahedron.
131  arma::uvec ubc = arma::zeros<arma::uvec>(dim+1);
132  ubc[0] = degree_;
133  bool finish = false;
134  do {
135  uvbc.push_back(ubc);
136  if (ubc[0] > 0)
137  {
138  // by default increment the first coordinate
139  ubc[1] += 1;
140  ubc[0] -= 1;
141  }
142  else
143  {
144  // if sum of coordinates is maximal (0-th coordinate is zero)
145  // then find first nonzero coordinate,
146  // set it to zero, and increment the following coordinate.
147  unsigned int c = 1;
148  while (ubc[c] == 0) c++;
149  // if the first nonzero coordinate is the last but one, we reach the end
150  if (c == dim) finish = true;
151  else {
152  ubc[0] = ubc[c]-1;
153  ubc[c] = 0;
154  ubc[c+1] += 1;
155  }
156  }
157  } while (!finish);
158 
159  // define dofs
160  for (auto ubc : uvbc)
161  {
162  // we define nodal dof:
163  // coords = barycentric coordinates of the support point,
164  // coefs = 1 (dof value = function value at the point)
165 
166  // count nonzero coordinates in ubc: 1=>nodal dof, 2=>dof on line etc.
167  arma::uvec nonzeros = find(ubc);
168  // convert "unsigned barycentric coordinates" to real ones
169  arma::vec coords = arma::conv_to<arma::vec>::from(ubc);
170  coords /= degree_;
171 
172  // find index of n-face
173  std::pair<unsigned int, unsigned int> zeros = RefElement<dim>::zeros_positions(coords);
174  unsigned int n_face_idx = -1;
175  switch (dim-zeros.first) {
176  case 0:
177  n_face_idx = RefElement<dim>::template topology_idx<0>(zeros.second);
178  break;
179  case 1:
180  n_face_idx = RefElement<dim>::template topology_idx<1>(zeros.second);
181  break;
182  case 2:
183  n_face_idx = RefElement<dim>::template topology_idx<2>(zeros.second);
184  break;
185  case 3:
186  n_face_idx = RefElement<dim>::template topology_idx<3>(zeros.second);
187  break;
188  }
189  this->dofs_.push_back(Dof(nonzeros.size()-1, n_face_idx, coords, { 1 }, Value));
190  }
191  }
192 }
193 
194 
195 
196 
197 template<unsigned int dim>
198 FE_P<dim>::FE_P(unsigned int degree)
199  : FiniteElement<dim>(),
200  degree_(degree)
201 {
202  this->function_space_ = std::make_shared<PolynomialSpace>(degree,dim);
203 
204  init_dofs();
205 
206  this->setup_components();
207 
208  this->compute_node_matrix();
209 }
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 template<unsigned int dim>
226 FE_P_disc<dim>::FE_P_disc(unsigned int degree)
227  : FE_P<dim>(degree)
228 {
229  // all dofs are "inside" the cell (not shared with neighbours)
230  for (unsigned int i=0; i<this->dofs_.size(); i++)
231  this->dofs_[i].dim = dim;
232 
233  this->setup_components();
234 
235  this->compute_node_matrix();
236 }
237 
238 
239 
240 
241 
242 
243 template<unsigned int dim>
245 : FiniteElement<dim>()
246 {
247  this->function_space_ = std::make_shared<PolynomialSpace>(1,dim);
248 
249  if (dim == 0)
250  {
251  this->dofs_.push_back(Dof(0, 0, { 1 }, { 1 }, Value));
252  }
253  else
254  {
255  arma::vec::fixed<dim> sp; // support point
256  for (unsigned int sid=0; sid<RefElement<dim>::n_sides; ++sid)
257  {
258  sp.fill(0);
259  for (unsigned int i=0; i<RefElement<dim>::n_nodes_per_side; ++i)
262  // barycentric coordinates
263  arma::vec::fixed<dim+1> bsp;
264  bsp.subvec(1,dim) = sp;
265  bsp[0] = 1. - arma::sum(sp);
266  this->dofs_.push_back(Dof(dim-1, sid, bsp, { 1 }, Value));
267  }
268  }
269 
270  this->setup_components();
271  this->compute_node_matrix();
272 }
273 
274 
275 
276 
277 template<unsigned int dim>
279 : FiniteElement<dim>()
280 {
281  this->function_space_ = std::make_shared<PolynomialSpace>(1,dim);
282 
283  if (dim == 0)
284  {
285  this->dofs_.push_back(Dof(0, 0, { 1 }, { 1 }, Value));
286  }
287  else
288  {
289  arma::vec::fixed<dim> sp; // support point
290  for (unsigned int sid=0; sid<RefElement<dim>::n_sides; ++sid)
291  {
292  sp.fill(0);
293  for (unsigned int i=0; i<RefElement<dim>::n_nodes_per_side; ++i)
296  // barycentric coordinates
297  arma::vec::fixed<dim+1> bsp;
298  bsp.subvec(1,dim) = sp;
299  bsp[0] = 1. - arma::sum(sp);
300  this->dofs_.push_back(Dof(dim, 0, bsp, { 1 }, Value));
301  }
302  }
303 
304  this->setup_components();
305  this->compute_node_matrix();
306 }
307 
308 
309 
310 
311 
312 template class FE_P<0>;
313 template class FE_P<1>;
314 template class FE_P<2>;
315 template class FE_P<3>;
316 
317 
318 template class FE_P_disc<0>;
319 template class FE_P_disc<1>;
320 template class FE_P_disc<2>;
321 template class FE_P_disc<3>;
322 
323 
324 template class FE_CR<0>;
325 template class FE_CR<1>;
326 template class FE_CR<2>;
327 template class FE_CR<3>;
328 
const arma::vec basis_grad(unsigned int basis_index, const arma::vec &point, unsigned int comp_index=0) const override
Gradient of the i th basis function at point point.
Definition: fe_p.cc:79
PolynomialSpace(unsigned int degree, unsigned int dim)
Constructor.
Definition: fe_p.cc:25
FE_P_disc(unsigned int degree)
Constructor.
Definition: fe_p.cc:226
Mat< double, N, 1 > vec
Definition: armor.hh:211
static std::pair< unsigned int, unsigned int > zeros_positions(const BaryPoint &barycentric, double tolerance=std::numeric_limits< double >::epsilon()*2)
Definition: ref_element.cc:412
#define ASSERT(expr)
Allow use shorter versions of macro names if these names is not used with external library...
Definition: asserts.hh:347
std::vector< arma::uvec > powers
Coefficients of basis functions.
Definition: fe_p.hh:73
#define OLD_ASSERT(...)
Definition: global_defs.h:131
FE_CR()
Definition: fe_p.cc:244
std::vector< Dof > dofs_
Set of degrees of freedom (functionals) defining the FE.
Definitions of basic Lagrangean finite elements with polynomial shape functions.
unsigned int dim() const override
Dimension of function space (number of basis functions).
Definition: fe_p.hh:60
double basis_value(unsigned int basis_index, const arma::vec &point, unsigned int comp_index=0) const override
Value of the i th basis function at point point.
Definition: fe_p.cc:62
FE_P(unsigned int degree)
Constructor.
Definition: fe_p.cc:198
void init_dofs()
Definition: fe_p.cc:113
virtual void compute_node_matrix()
Initializes the node_matrix for computing the coefficients of the shape functions in the raw basis of...
std::shared_ptr< FunctionSpace > function_space_
Function space defining the FE.
void setup_components()
Initialize vectors with information about components of basis functions.
Conforming Lagrangean finite element on dim dimensional simplex.
Definition: fe_p.hh:88
Class RefElement defines numbering of vertices, sides, calculation of normal vectors etc...
unsigned int space_dim_
Space dimension of function arguments (i.e. 1, 2 or 3).
Abstract class for the description of a general finite element on a reference simplex in dim dimensio...
Crouzeix-Raviart finite element on dim dimensional simplex.
Definition: fe_p.hh:126
FE_CR_disc()
Definition: fe_p.cc:278
const unsigned int degree_
Max. degree of polynomials.
Definition: fe_p.hh:65