Flow123d  release_3.0.0-1263-g7cf53c1
mesh.cc
Go to the documentation of this file.
1 /*!
2  *
3  * Copyright (C) 2015 Technical University of Liberec. All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify it under
6  * the terms of the GNU General Public License version 3 as published by the
7  * Free Software Foundation. (http://www.gnu.org/licenses/gpl-3.0.en.html)
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
11  * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
12  *
13  *
14  * @file mesh.cc
15  * @ingroup mesh
16  * @brief Mesh construction
17  */
18 
19 #include <unistd.h>
20 #include <set>
21 
22 
23 #include "system/system.hh"
24 #include "system/exceptions.hh"
26 #include "input/input_type.hh"
27 #include "input/accessors.hh"
28 #include "system/sys_profiler.hh"
29 #include "la/distribution.hh"
30 
31 #include "mesh/long_idx.hh"
32 #include "mesh/mesh.h"
33 #include "mesh/bc_mesh.hh"
34 #include "mesh/ref_element.hh"
35 #include "mesh/region_set.hh"
36 #include "mesh/range_wrapper.hh"
37 
38 // think about following dependencies
39 #include "mesh/accessors.hh"
40 #include "mesh/node_accessor.hh"
41 #include "mesh/partitioning.hh"
42 #include "mesh/neighbours.h"
43 
44 
45 #include "mesh/bih_tree.hh"
46 #include "mesh/duplicate_nodes.h"
47 
49 
50 
51 //TODO: sources, concentrations, initial condition and similarly boundary conditions should be
52 // instances of a Element valued field
53 // concentrations is in fact reimplemented in transport REMOVE it HERE
54 
55 // After removing non-geometrical things from mesh, this should be part of mash initializing.
56 #include "mesh/region.hh"
57 
58 #define NDEF -1
59 
60 namespace IT = Input::Type;
61 
63  return Input::Type::Selection("Types of search algorithm for finding intersection candidates.")
64  .add_value(Mesh::BIHsearch, "BIHsearch",
65  "Use BIH for finding initial candidates, then continue by prolongation.")
66  .add_value(Mesh::BIHonly, "BIHonly",
67  "Use BIH for finding all candidates.")
68  .add_value(Mesh::BBsearch, "BBsearch",
69  "Use bounding boxes for finding initial candidates, then continue by prolongation.")
70  .close();
71 }
72 
74  return IT::Record("Mesh","Record with mesh related data." )
75  .allow_auto_conversion("mesh_file")
77  "Input file with mesh description.")
79  "List of additional region and region set definitions not contained in the mesh. "
80  "There are three region sets implicitly defined:\n\n"
81  "- ALL (all regions of the mesh)\n"
82  "- .BOUNDARY (all boundary regions)\n"
83  "- BULK (all bulk regions)")
84  .declare_key("partitioning", Partitioning::get_input_type(), IT::Default("\"any_neighboring\""), "Parameters of mesh partitioning algorithms.\n" )
85  .declare_key("print_regions", IT::Bool(), IT::Default("true"), "If true, print table of all used regions.")
86  .declare_key("intersection_search", Mesh::get_input_intersection_variant(),
87  IT::Default("\"BIHsearch\""), "Search algorithm for element intersections.")
88  .declare_key("global_snap_radius", IT::Double(0.0), IT::Default("1E-3"),
89  "Maximal snapping distance from the mesh in various search operations. In particular, it is used "
90  "to find the closest mesh element of an observe point; and in FieldFormula to find closest surface "
91  "element in plan view (Z projection).")
93  "Output file with neighboring data from mesh.")
94  .close();
95 }
96 
97 const unsigned int Mesh::undef_idx;
98 
100 : tree(nullptr),
101  row_4_el(nullptr),
102  el_4_loc(nullptr),
103  el_ds(nullptr),
104  node_4_loc_(nullptr),
105  node_ds_(nullptr),
106  bc_mesh_(nullptr)
107 {}
108 
109 
110 
112 : tree(nullptr),
113  in_record_(in_record),
114  comm_(com),
115  row_4_el(nullptr),
116  el_4_loc(nullptr),
117  el_ds(nullptr),
118  node_4_loc_(nullptr),
119  node_ds_(nullptr),
120  bc_mesh_(nullptr)
121 {
122  // set in_record_, if input accessor is empty
123  if (in_record_.is_empty()) {
124  istringstream is("{mesh_file=\"\"}");
125  Input::ReaderToStorage reader;
126  IT::Record &in_rec = const_cast<IT::Record &>(Mesh::get_input_type());
127  in_rec.finish();
128  reader.read_stream(is, in_rec, Input::FileFormat::format_JSON);
130  }
131 
132  int rank;
134  if (rank == 0) {
135  // optionally open raw output file
136  FilePath raw_output_file_path;
137  if (in_record_.opt_val("raw_ngh_output", raw_output_file_path)) {
138  MessageOut() << "Opening raw ngh output: " << raw_output_file_path << "\n";
139  try {
140  raw_output_file_path.open_stream(raw_ngh_output_file);
141  } INPUT_CATCH(FilePath::ExcFileOpen, FilePath::EI_Address_String, (in_record_))
142  }
143 
144  }
145  init();
146 }
147 
149 {
150  return in_record_.val<Mesh::IntersectionSearch>("intersection_search");
151 }
152 
153 
155 {
156 
157  n_insides = NDEF;
158  n_exsides = NDEF;
159  n_sides_ = NDEF;
160 
161  // number of element of particular dimension
162  n_lines = 0;
163  n_triangles = 0;
164  n_tetrahedras = 0;
165 
166  for (int d=0; d<3; d++) max_edge_sides_[d] = 0;
167 
168  // Initialize numbering of nodes on sides.
169  // This is temporary solution, until class Element is templated
170  // by dimension. Then we can replace Mesh::side_nodes by
171  // RefElement<dim>::side_nodes.
172 
173  // indices of side nodes in element node array
174  // Currently this is made ad libitum
175  // with some ordering here we can get sides with correct orientation.
176  // This speedup normal calculation.
177 
178  side_nodes.resize(3); // three side dimensions
179  for(int i=0; i < 3; i++) {
180  side_nodes[i].resize(i+2); // number of sides
181  for(int j=0; j < i+2; j++)
182  side_nodes[i][j].resize(i+1);
183  }
184 
185  for (unsigned int sid=0; sid<RefElement<1>::n_sides; sid++)
186  for (unsigned int nid=0; nid<RefElement<1>::n_nodes_per_side; nid++)
187  side_nodes[0][sid][nid] = RefElement<1>::interact(Interaction<0,0>(sid))[nid];
188 
189  for (unsigned int sid=0; sid<RefElement<2>::n_sides; sid++)
190  for (unsigned int nid=0; nid<RefElement<2>::n_nodes_per_side; nid++)
191  side_nodes[1][sid][nid] = RefElement<2>::interact(Interaction<0,1>(sid))[nid];
192 
193  for (unsigned int sid=0; sid<RefElement<3>::n_sides; sid++)
194  for (unsigned int nid=0; nid<RefElement<3>::n_nodes_per_side; nid++)
195  side_nodes[2][sid][nid] = RefElement<3>::interact(Interaction<0,2>(sid))[nid];
196 }
197 
198 
200  for(EdgeData &edg : this->edges)
201  if (edg.side_) delete[] edg.side_;
202 
203  for (unsigned int idx=0; idx < bulk_size_; idx++) {
204  Element *ele=&(element_vec_[idx]);
205  if (ele->boundary_idx_) delete[] ele->boundary_idx_;
206  if (ele->neigh_vb) delete[] ele->neigh_vb;
207  }
208 
209  for(unsigned int idx=bulk_size_; idx < element_vec_.size(); idx++) {
210  Element *ele=&(element_vec_[idx]);
211  if (ele->boundary_idx_) delete[] ele->boundary_idx_;
212  }
213 
214  if (row_4_el != nullptr) delete[] row_4_el;
215  if (el_4_loc != nullptr) delete[] el_4_loc;
216  if (el_ds != nullptr) delete el_ds;
217  if (node_4_loc_ != nullptr) delete[] node_4_loc_;
218  if (node_ds_ != nullptr) delete node_ds_;
219  if (bc_mesh_ != nullptr) delete bc_mesh_;
220  if (tree != nullptr) delete tree;
221 }
222 
223 
224 unsigned int Mesh::n_sides() const
225 {
226  if (n_sides_ == NDEF) {
227  n_sides_=0;
228  for (auto ele : this->elements_range()) n_sides_ += ele->n_sides();
229  }
230  return n_sides_;
231 }
232 
233 unsigned int Mesh::n_vb_neighbours() const {
234  return vb_neighbours_.size();
235  }
236 
237 
238 unsigned int Mesh::n_corners() {
239  unsigned int li, count = 0;
240  for (auto ele : this->elements_range()) {
241  for (li=0; li<ele->n_nodes(); li++) {
242  count++;
243  }
244  }
245  return count;
246 }
247 
248 Edge Mesh::edge(uint edge_idx) const
249 {
250  ASSERT_LT_DBG(edge_idx, edges.size());
251  return Edge(this, edge_idx);
252 }
253 
255 {
256  ASSERT_LT_DBG(bc_idx, boundary_.size());
257  return Boundary(&boundary_[bc_idx]);
258 }
259 
261  return part_.get();
262 }
263 
265  return (LongIdx*)this->get_part()->get_loc_part();
266 }
267 
268 
269 //=============================================================================
270 // COUNT ELEMENT TYPES
271 //=============================================================================
272 
274  for (auto elm : this->elements_range())
275  switch (elm->dim()) {
276  case 1:
277  n_lines++;
278  break;
279  case 2:
280  n_triangles++;
281  break;
282  case 3:
283  n_tetrahedras++;
284  break;
285  }
286 }
287 
288 
289 
291  for (auto elem_to_region : map) {
292  Element &ele = element_vec_[ elem_index(elem_to_region.first) ];
293  ele.region_idx_ = region_db_.get_region( elem_to_region.second, ele.dim() );
295  }
296 }
297 
298 
299 
301  START_TIMER("MESH - setup topology");
302 
304 
305  // check mesh quality
306  for (auto ele : this->elements_range())
307  if (ele.quality_measure_smooth(ele.side(0)) < 0.001) WarningOut().fmt("Bad quality (<0.001) of the element {}.\n", ele.idx());
308 
313 
314  tree = new DuplicateNodes(this);
315 
316  part_ = std::make_shared<Partitioning>(this, in_record_.val<Input::Record>("partitioning") );
317 
318  // create parallel distribution and numbering of elements
319  LongIdx *id_4_old = new LongIdx[n_elements()];
320  int i = 0;
321  for (auto ele : this->elements_range())
322  id_4_old[i++] = ele.idx();
323  part_->id_maps(n_elements(), id_4_old, el_ds, el_4_loc, row_4_el);
324 
325  delete[] id_4_old;
326 
327  this->distribute_nodes();
328 
330 }
331 
332 
333 //
335 {
336 
337  n_insides = 0;
338  n_exsides = 0;
339  for (auto ele : this->elements_range())
340  for(SideIter sde = ele.side(0); sde->side_idx() < ele->n_sides(); ++sde) {
341  if (sde->is_external()) n_exsides++;
342  else n_insides++;
343  }
344 }
345 
346 
347 
349  // for each node we make a list of elements that use this node
350  node_elements_.resize( this->n_nodes() );
351 
352  for (auto ele : this->elements_range())
353  for (unsigned int n=0; n<ele->n_nodes(); n++)
354  node_elements_[ele.node_accessor(n).idx()].push_back(ele.idx());
355 
356  for (vector<vector<unsigned int> >::iterator n=node_elements_.begin(); n!=node_elements_.end(); n++)
357  stable_sort(n->begin(), n->end());
358 }
359 
360 
361 void Mesh::intersect_element_lists(vector<unsigned int> const &nodes_list, vector<unsigned int> &intersection_element_list)
362 {
363  if (node_elements_.size() == 0) {
365  }
366 
367  if (nodes_list.size() == 0) {
368  intersection_element_list.clear();
369  } else if (nodes_list.size() == 1) {
370  intersection_element_list = node_elements_[ nodes_list[0] ];
371  } else {
372  vector<unsigned int>::const_iterator it1=nodes_list.begin();
374  intersection_element_list.resize( node_elements_[*it1].size() ); // make enough space
375 
376  it1=set_intersection(
377  node_elements_[*it1].begin(), node_elements_[*it1].end(),
378  node_elements_[*it2].begin(), node_elements_[*it2].end(),
379  intersection_element_list.begin());
380  intersection_element_list.resize(it1-intersection_element_list.begin()); // resize to true size
381 
382  for(;it2<nodes_list.end();++it2) {
383  it1=set_intersection(
384  intersection_element_list.begin(), intersection_element_list.end(),
385  node_elements_[*it2].begin(), node_elements_[*it2].end(),
386  intersection_element_list.begin());
387  intersection_element_list.resize(it1-intersection_element_list.begin()); // resize to true size
388  }
389  }
390 }
391 
392 
393 bool Mesh::find_lower_dim_element( vector<unsigned int> &element_list, unsigned int dim, unsigned int &element_idx) {
394  bool is_neighbour = false;
395 
396  vector<unsigned int>::iterator e_dest=element_list.begin();
397  for( vector<unsigned int>::iterator ele = element_list.begin(); ele!=element_list.end(); ++ele) {
398  if (element_vec_[*ele].dim() == dim) { // keep only indexes of elements of same dimension
399  *e_dest=*ele;
400  ++e_dest;
401  } else if (element_vec_[*ele].dim() == dim-1) { // get only first element of lower dimension
402  if (is_neighbour) xprintf(UsrErr, "Too matching elements id: %d and id: %d in the same mesh.\n",
403  this->elem_index(*ele), this->elem_index(element_idx) );
404 
405  is_neighbour = true;
406  element_idx = *ele;
407  }
408  }
409  element_list.resize( e_dest - element_list.begin());
410  return is_neighbour;
411 }
412 
414  // check if nodes lists match (this is slow and will be faster only when we convert whole mesh into hierarchical design like in deal.ii)
415  unsigned int ni=0;
416  while ( ni < si->n_nodes()
417  && find(side_nodes.begin(), side_nodes.end(), si->node(ni).idx() ) != side_nodes.end() ) ni++;
418  return ( ni == si->n_nodes() );
419 }
420 
421 /**
422  * TODO:
423  * - use std::is_any for setting is_neigbour
424  * - possibly make appropriate constructors for Edge and Neighbour
425  * - check side!=-1 when searching neigbouring element
426  * - process boundary elements first, there should be no Neigh, but check it
427  * set Edge and boundary there
428  */
429 
431 {
432  ASSERT(bc_element_tmp_.size()==0)
433  .error("Temporary structure of boundary element data is not empty. Did you call create_boundary_elements?");
434 
435  Neighbour neighbour;
436  EdgeData *edg = nullptr;
437  unsigned int ngh_element_idx;
438  unsigned int last_edge_idx = Mesh::undef_idx;
439 
440  neighbour.mesh_ = this;
441 
443 
444  // pointers to created edges
445  //vector<Edge *> tmp_edges;
446  edges.resize(0); // be sure that edges are empty
447 
449  vector<unsigned int> intersection_list; // list of elements in intersection of node element lists
450 
451  for( unsigned int i=bulk_size_; i<element_vec_.size(); ++i) {
452  ElementAccessor<3> bc_ele = this->element_accessor(i);
453  // Find all elements that share this side.
454  side_nodes.resize(bc_ele->n_nodes());
455  for (unsigned n=0; n<bc_ele->n_nodes(); n++) side_nodes[n] = bc_ele->node_idx(n);
456  intersect_element_lists(side_nodes, intersection_list);
457  bool is_neighbour = find_lower_dim_element(intersection_list, bc_ele->dim() +1, ngh_element_idx);
458  if (is_neighbour) {
459  xprintf(UsrErr, "Boundary element (id: %d) match a regular element (id: %d) of lower dimension.\n",
460  bc_ele.idx(), this->elem_index(ngh_element_idx));
461  } else {
462  if (intersection_list.size() == 0) {
463  // no matching dim+1 element found
464  WarningOut().fmt("Lonely boundary element, id: {}, region: {}, dimension {}.\n",
465  bc_ele.idx(), bc_ele.region().id(), bc_ele->dim());
466  continue; // skip the boundary element
467  }
468  last_edge_idx=edges.size();
469  edges.resize(last_edge_idx+1);
470  edg = &( edges.back() );
471  edg->n_sides = 0;
472  edg->side_ = new struct SideIter[ intersection_list.size() ];
473 
474  // common boundary object
475  unsigned int bdr_idx=boundary_.size();
476  boundary_.resize(bdr_idx+1);
477  BoundaryData &bdr=boundary_.back();
478  bdr.bc_ele_idx_ = i;
479  bdr.edge_idx_ = last_edge_idx;
480  bdr.mesh_=this;
481 
482  // for 1d boundaries there can be more then one 1d elements connected to the boundary element
483  // we do not detect this case later in the main search over bulk elements
484  for( vector<unsigned int>::iterator isect = intersection_list.begin(); isect!=intersection_list.end(); ++isect) {
485  ElementAccessor<3> elem = this->element_accessor(*isect);
486  for (unsigned int ecs=0; ecs<elem->n_sides(); ecs++) {
487  SideIter si = elem.side(ecs);
488  if ( same_sides( si, side_nodes) ) {
489  if (elem->edge_idx(ecs) != Mesh::undef_idx) {
490  OLD_ASSERT(elem->boundary_idx_!=nullptr, "Null boundary idx array.\n");
491  int last_bc_ele_idx=this->boundary_[elem->boundary_idx_[ecs]].bc_ele_idx_;
492  int new_bc_ele_idx=i;
493  THROW( ExcDuplicateBoundary()
494  << EI_ElemLast(this->elem_index(last_bc_ele_idx))
495  << EI_RegLast(this->element_accessor(last_bc_ele_idx).region().label())
496  << EI_ElemNew(this->elem_index(new_bc_ele_idx))
497  << EI_RegNew(this->element_accessor(new_bc_ele_idx).region().label())
498  );
499  }
500  element_vec_[*isect].edge_idx_[ecs] = last_edge_idx;
501  edg->side_[ edg->n_sides++ ] = si;
502 
503  if (elem->boundary_idx_ == NULL) {
504  Element *el = &(element_vec_[*isect]);
505  el->boundary_idx_ = new unsigned int [ el->n_sides() ];
506  std::fill( el->boundary_idx_, el->boundary_idx_ + el->n_sides(), Mesh::undef_idx);
507  }
508  elem->boundary_idx_[ecs] = bdr_idx;
509  break; // next element in intersection list
510  }
511  }
512  }
513 
514  }
515 
516  }
517  // Now we go through all element sides and create edges and neighbours
518  for (auto e : this->elements_range()) {
519  for (unsigned int s=0; s<e->n_sides(); s++)
520  {
521  // skip sides that were already found
522  if (e->edge_idx(s) != Mesh::undef_idx) continue;
523 
524 
525  // Find all elements that share this side.
526  side_nodes.resize(e.side(s)->n_nodes());
527  for (unsigned n=0; n<e.side(s)->n_nodes(); n++) side_nodes[n] = e.side(s)->node(n).idx();
528  intersect_element_lists(side_nodes, intersection_list);
529 
530  bool is_neighbour = find_lower_dim_element(intersection_list, e->dim(), ngh_element_idx);
531 
532  if (is_neighbour) { // edge connects elements of different dimensions
533  neighbour.elem_idx_ = ngh_element_idx;
534  } else { // edge connects only elements of the same dimension
535  // Allocate the array of sides.
536  last_edge_idx=edges.size();
537  edges.resize(last_edge_idx+1);
538  edg = &( edges.back() );
539  edg->n_sides = 0;
540  edg->side_ = new struct SideIter[ intersection_list.size() ];
541  if (intersection_list.size() > max_edge_sides_[e->dim()-1])
542  max_edge_sides_[e->dim()-1] = intersection_list.size();
543 
544  if (intersection_list.size() == 1) { // outer edge, create boundary object as well
545  Element &elm = element_vec_[e.idx()];
546  edg->n_sides=1;
547  edg->side_[0] = e.side(s);
548  element_vec_[e.idx()].edge_idx_[s] = last_edge_idx;
549 
550  if (e->boundary_idx_ == NULL) {
551  elm.boundary_idx_ = new unsigned int [ e->n_sides() ];
552  std::fill( elm.boundary_idx_, elm.boundary_idx_ + e->n_sides(), Mesh::undef_idx);
553  }
554 
555  unsigned int bdr_idx=boundary_.size()+1; // need for VTK mesh that has no boundary elements
556  // and bulk elements are indexed from 0
557  boundary_.resize(bdr_idx+1);
558  BoundaryData &bdr=boundary_.back();
559  elm.boundary_idx_[s] = bdr_idx;
560 
561  // fill boundary element
562  Element * bc_ele = add_element_to_vector(-bdr_idx, true);
563  bc_ele->init(e->dim()-1, region_db_.implicit_boundary_region() );
565  for(unsigned int ni = 0; ni< side_nodes.size(); ni++) bc_ele->nodes_[ni] = side_nodes[ni];
566 
567  // fill Boundary object
568  bdr.edge_idx_ = last_edge_idx;
569  bdr.bc_ele_idx_ = elem_index(-bdr_idx);
570  bdr.mesh_=this;
571 
572  continue; // next side of element e
573  }
574  }
575 
576  // go through the elements connected to the edge or neighbour
577  for( vector<unsigned int>::iterator isect = intersection_list.begin(); isect!=intersection_list.end(); ++isect) {
578  ElementAccessor<3> elem = this->element_accessor(*isect);
579  for (unsigned int ecs=0; ecs<elem->n_sides(); ecs++) {
580  if (elem->edge_idx(ecs) != Mesh::undef_idx) continue;
581  SideIter si = elem.side(ecs);
582  if ( same_sides( si, side_nodes) ) {
583  if (is_neighbour) {
584  // create a new edge and neighbour for this side, and element to the edge
585  last_edge_idx=edges.size();
586  edges.resize(last_edge_idx+1);
587  edg = &( edges.back() );
588  edg->n_sides = 1;
589  edg->side_ = new struct SideIter[1];
590  edg->side_[0] = si;
591  element_vec_[elem.idx()].edge_idx_[ecs] = last_edge_idx;
592 
593  neighbour.edge_idx_ = last_edge_idx;
594 
595  vb_neighbours_.push_back(neighbour); // copy neighbour with this edge setting
596  } else {
597  // connect the side to the edge, and side to the edge
598  ASSERT_PTR_DBG(edg);
599  edg->side_[ edg->n_sides++ ] = si;
600  ASSERT_DBG(last_edge_idx != Mesh::undef_idx);
601  element_vec_[elem.idx()].edge_idx_[ecs] = last_edge_idx;
602  }
603  break; // next element from intersection list
604  }
605  } // search for side of other connected element
606  } // connected elements
607  OLD_ASSERT( is_neighbour || ( (unsigned int) edg->n_sides ) == intersection_list.size(), "Some connected sides were not found.\n");
608  } // for element sides
609  } // for elements
610 
611  MessageOut().fmt( "Created {} edges and {} neighbours.\n", edges.size(), vb_neighbours_.size() );
612 }
613 
614 
615 
617 {
618  for (auto edg : edge_range())
619  {
620  // side 0 is reference, so its permutation is 0
621  edg.side(0)->element()->permutation_idx_[edg.side(0)->side_idx()] = 0;
622 
623  if (edg.n_sides() > 1)
624  {
625  map<unsigned int,unsigned int> node_numbers;
626  unsigned int permutation[edg.side(0)->n_nodes()];
627 
628  for (unsigned int i=0; i<edg.side(0)->n_nodes(); i++)
629  node_numbers[edg.side(0)->node(i).idx()] = i;
630  //node_numbers[edg.side(0)->node(i).node()] = i;
631 
632  for (uint sid=1; sid<edg.n_sides(); sid++)
633  {
634  for (unsigned int i=0; i<edg.side(0)->n_nodes(); i++)
635  permutation[node_numbers[edg.side(sid)->node(i).idx()]] = i;
636  //permutation[node_numbers[edg.side(sid)->node(i).node()]] = i;
637 
638  switch (edg.side(0)->dim())
639  {
640  case 0:
641  edg.side(sid)->element()->permutation_idx_[edg.side(sid)->side_idx()] = RefElement<1>::permutation_index(permutation);
642  break;
643  case 1:
644  edg.side(sid)->element()->permutation_idx_[edg.side(sid)->side_idx()] = RefElement<2>::permutation_index(permutation);
645  break;
646  case 2:
647  edg.side(sid)->element()->permutation_idx_[edg.side(sid)->side_idx()] = RefElement<3>::permutation_index(permutation);
648  break;
649  }
650  }
651  }
652  }
653 
654  for (vector<Neighbour>::iterator nb=vb_neighbours_.begin(); nb!=vb_neighbours_.end(); nb++)
655  {
656  map<const Node*,unsigned int> node_numbers;
657  unsigned int permutation[nb->element()->n_nodes()];
658 
659  // element of lower dimension is reference, so
660  // we calculate permutation for the adjacent side
661  for (unsigned int i=0; i<nb->element()->n_nodes(); i++)
662  node_numbers[nb->element().node(i)] = i;
663 
664  for (unsigned int i=0; i<nb->side()->n_nodes(); i++)
665  permutation[node_numbers[nb->side()->node(i).node()]] = i;
666 
667  switch (nb->side()->dim())
668  {
669  case 0:
670  nb->side()->element()->permutation_idx_[nb->side()->side_idx()] = RefElement<1>::permutation_index(permutation);
671  break;
672  case 1:
673  nb->side()->element()->permutation_idx_[nb->side()->side_idx()] = RefElement<2>::permutation_index(permutation);
674  break;
675  case 2:
676  nb->side()->element()->permutation_idx_[nb->side()->side_idx()] = RefElement<3>::permutation_index(permutation);
677  break;
678  }
679  }
680 }
681 
682 
683 
684 
685 
686 //=============================================================================
687 //
688 //=============================================================================
690 {
691 
692  //MessageOut() << "Element to neighbours of vb2 type... "/*orig verb 5*/;
693 
694  for (vector<Element>::iterator ele = element_vec_.begin(); ele!= element_vec_.begin()+bulk_size_; ++ele)
695  ele->n_neighs_vb_ =0;
696 
697  // count vb neighs per element
698  for (auto & ngh : this->vb_neighbours_) ngh.element()->n_neighs_vb_++;
699 
700  // Allocation of the array per element
701  for (vector<Element>::iterator ele = element_vec_.begin(); ele!= element_vec_.begin()+bulk_size_; ++ele)
702  if( ele->n_neighs_vb() > 0 ) {
703  ele->neigh_vb = new struct Neighbour* [ele->n_neighs_vb()];
704  ele->n_neighs_vb_=0;
705  }
706 
707  // fill
708  ElementAccessor<3> ele;
709  for (auto & ngh : this->vb_neighbours_) {
710  ele = ngh.element();
711  ele->neigh_vb[ ele->n_neighs_vb_++ ] = &ngh;
712  }
713 
714  //MessageOut() << "... O.K.\n"/*orig verb 6*/;
715 }
716 
717 
718 
719 
720 
721 
723  /* Algorithm:
724  *
725  * 1) create BIH tree
726  * 2) for every 1D, find list of candidates
727  * 3) compute intersections for 1d, store it to master_elements
728  *
729  */
730  if (! intersections) {
731  intersections = std::make_shared<MixedMeshIntersections>(this);
732  intersections->compute_intersections();
733  }
734  return *intersections;
735 }
736 
737 
738 
740  return ElementAccessor<3>(this, idx);
741 }
742 
743 
744 
745 NodeAccessor<3> Mesh::node_accessor(unsigned int idx) const {
746  return NodeAccessor<3>(this, idx);
747 }
748 
749 
750 
751 void Mesh::elements_id_maps( vector<LongIdx> & bulk_elements_id, vector<LongIdx> & boundary_elements_id) const
752 {
753  if (bulk_elements_id.size() ==0) {
755  LongIdx last_id;
756 
757  bulk_elements_id.resize(n_elements());
758  map_it = bulk_elements_id.begin();
759  last_id = -1;
760  for(unsigned int idx=0; idx < n_elements(); idx++, ++map_it) {
761  LongIdx id = this->find_elem_id(idx);
762  if (last_id >= id) xprintf(UsrErr, "Element IDs in non-increasing order, ID: %d\n", id);
763  last_id=*map_it = id;
764  }
765 
766  boundary_elements_id.resize(n_elements(true));
767  map_it = boundary_elements_id.begin();
768  last_id = -1;
769  for(unsigned int idx=bulk_size_; idx<element_vec_.size(); idx++, ++map_it) {
770  LongIdx id = this->find_elem_id(idx);
771  // We set ID for boundary elements created by the mesh itself to "-1"
772  // this force gmsh reader to skip all remaining entries in boundary_elements_id
773  // and thus report error for any remaining data lines
774  if (id < 0) last_id=*map_it=-1;
775  else {
776  if (last_id >= id) xprintf(UsrErr, "Element IDs in non-increasing order, ID: %d\n", id);
777  last_id=*map_it = id;
778  }
779  }
780  }
781 }
782 
783 
784 bool compare_points(const arma::vec3 &p1, const arma::vec3 &p2) {
785  static const double point_tolerance = 1E-10;
786  return fabs(p1[0]-p2[0]) < point_tolerance
787  && fabs(p1[1]-p2[1]) < point_tolerance
788  && fabs(p1[2]-p2[2]) < point_tolerance;
789 }
790 
791 
792 bool Mesh::check_compatible_mesh( Mesh & mesh, vector<LongIdx> & bulk_elements_id, vector<LongIdx> & boundary_elements_id )
793 {
794  std::vector<unsigned int> node_ids; // allow mapping ids of nodes from source mesh to target mesh
795  std::vector<unsigned int> node_list;
796  std::vector<unsigned int> candidate_list; // returned by intersect_element_lists
797  std::vector<unsigned int> result_list; // list of elements with same dimension as vtk element
798  unsigned int i; // counter over vectors
799 
800  {
801  // iterates over node vector of \p this object
802  // to each node must be found just only one node in target \p mesh
803  // store orders (mapping between source and target meshes) into node_ids vector
804  std::vector<unsigned int> searched_elements; // for BIH tree
805  unsigned int i_node, i_elm_node;
806  const BIHTree &bih_tree=mesh.get_bih_tree();
807 
808  // create nodes of mesh
809  node_ids.resize( this->n_nodes() );
810  i=0;
811  for (auto nod : this->node_range()) {
812  arma::vec3 point = nod->point();
813  uint found_i_node = Mesh::undef_idx;
814  bih_tree.find_point(point, searched_elements);
815 
816  for (std::vector<unsigned int>::iterator it = searched_elements.begin(); it!=searched_elements.end(); it++) {
817  ElementAccessor<3> ele = mesh.element_accessor( *it );
818  for (i_node=0; i_node<ele->n_nodes(); i_node++)
819  {
820  if ( compare_points(ele.node(i_node)->point(), point) ) {
821  i_elm_node = ele.node_accessor(i_node).idx();
822  if (found_i_node == Mesh::undef_idx) found_i_node = i_elm_node;
823  else if (found_i_node != i_elm_node) {
824  // duplicate nodes in target mesh
825  this->elements_id_maps(bulk_elements_id, boundary_elements_id);
826  return false;
827  }
828  }
829  }
830  }
831  if (found_i_node == Mesh::undef_idx) {
832  // no node found in target mesh
833  this->elements_id_maps(bulk_elements_id, boundary_elements_id);
834  return false;
835  }
836  node_ids[i] = found_i_node;
837  searched_elements.clear();
838  i++;
839  }
840  }
841 
842  {
843  // iterates over bulk elements of \p this object
844  // elements in both meshes must be in ratio 1:1
845  // store orders (mapping between both mesh files) into bulk_elements_id vector
846  bulk_elements_id.clear();
847  bulk_elements_id.resize(this->n_elements());
848  // iterate trough bulk part of element vector, to each element in source mesh must exist only one element in target mesh
849  // fill bulk_elements_id vector
850  i=0;
851  for (auto elm : this->elements_range()) {
852  for (unsigned int j=0; j<elm->n_nodes(); j++) { // iterate trough all nodes of any element
853  node_list.push_back( node_ids[ elm->node_idx(j) ] );
854  }
855  mesh.intersect_element_lists(node_list, candidate_list);
856  for (auto i_elm : candidate_list) {
857  if ( mesh.element_accessor(i_elm)->dim() == elm.dim() ) result_list.push_back( elm.index() );
858  }
859  if (result_list.size() != 1) {
860  // intersect_element_lists must produce one element
861  this->elements_id_maps(bulk_elements_id, boundary_elements_id);
862  return false;
863  }
864  bulk_elements_id[i] = (LongIdx)result_list[0];
865  node_list.clear();
866  result_list.clear();
867  i++;
868  }
869  }
870 
871  {
872  // iterates over boundary elements of \p this object
873  // elements in both meshes must be in ratio 1:1
874  // store orders (mapping between both mesh files) into boundary_elements_id vector
875  auto bc_mesh = this->get_bc_mesh();
876  boundary_elements_id.clear();
877  boundary_elements_id.resize(bc_mesh->n_elements());
878  // iterate trough boundary part of element vector, to each element in source mesh must exist only one element in target mesh
879  // fill boundary_elements_id vector
880  i=0;
881  for (auto elm : bc_mesh->elements_range()) {
882  for (unsigned int j=0; j<elm->n_nodes(); j++) { // iterate trough all nodes of any element
883  node_list.push_back( node_ids[ elm->node_idx(j) ] );
884  }
885  mesh.get_bc_mesh()->intersect_element_lists(node_list, candidate_list);
886  for (auto i_elm : candidate_list) {
887  if ( mesh.get_bc_mesh()->element_accessor(i_elm)->dim() == elm.dim() ) result_list.push_back( elm.index() );
888  }
889  if (result_list.size() != 1) {
890  // intersect_element_lists must produce one element
891  this->elements_id_maps(bulk_elements_id, boundary_elements_id);
892  return false;
893  }
894  boundary_elements_id[i] = (LongIdx)result_list[0];
895  node_list.clear();
896  result_list.clear();
897  i++;
898  }
899  }
900 
901  return true;
902 }
903 
905 {
907  it != region_list.end();
908  ++it) {
909  // constructor has side effect in the mesh - create new region or set and store them to Mesh::region_db_
910  (*it).factory< RegionSetBase, const Input::Record &, Mesh * >(*it, this);
911  }
912 }
913 
915 {
917  region_db_.el_to_reg_map_.clear();
918  region_db_.close();
920 
921  if ( in_record_.val<bool>("print_regions") ) {
922  stringstream ss;
924  MessageOut() << ss.str();
925  }
926 }
927 
928 
930  START_TIMER("Mesh::compute_element_boxes");
932 
933  // make element boxes
934  unsigned int i=0;
935  boxes.resize(this->n_elements());
936  for (auto element : this->elements_range()) {
937  boxes[i] = element.bounding_box();
938  i++;
939  }
940 
941  return boxes;
942 }
943 
945  if (! this->bih_tree_) {
946  bih_tree_ = std::make_shared<BIHTree>();
947  bih_tree_->add_boxes( this->get_element_boxes() );
948  bih_tree_->construct();
949  }
950  return *bih_tree_;
951 }
952 
953 double Mesh::global_snap_radius() const {
954  return in_record_.val<double>("global_snap_radius");
955 }
956 
957 void Mesh::add_physical_name(unsigned int dim, unsigned int id, std::string name) {
958  region_db_.add_region(id, name, dim, "$PhysicalNames");
959 }
960 
961 
962 void Mesh::add_node(unsigned int node_id, arma::vec3 coords) {
963  node_vec_.push_back( Node() );
964  Node &node = node_vec_[node_vec_.size()-1];
965  node.point() = coords;
966  node_ids_.add_item(node_id);
967 }
968 
969 
970 void Mesh::add_element(unsigned int elm_id, unsigned int dim, unsigned int region_id, unsigned int partition_id,
971  std::vector<unsigned int> node_ids) {
972  RegionIdx region_idx = region_db_.get_region( region_id, dim );
973  if ( !region_idx.is_valid() ) {
974  region_idx = region_db_.add_region( region_id, region_db_.create_label_from_id(region_id), dim, "$Element" );
975  }
976  region_db_.mark_used_region(region_idx.idx());
977 
978  if (region_idx.is_boundary()) {
979  bc_element_tmp_.push_back( ElementTmpData(elm_id, dim, region_idx, partition_id, node_ids) );
980  } else {
981  if(dim == 0 ) {
982  WarningOut().fmt("Bulk elements of zero size(dim=0) are not supported. Element ID: {}.\n", elm_id);
983  }
984  else {
985  Element *ele = add_element_to_vector(elm_id);
986  this->init_element(ele, elm_id, dim, region_idx, partition_id, node_ids);
987  }
988  }
989 }
990 
991 
992 void Mesh::init_element(Element *ele, unsigned int elm_id, unsigned int dim, RegionIdx region_idx, unsigned int partition_id,
993  std::vector<unsigned int> node_ids) {
994  ele->init(dim, region_idx);
995  ele->pid_ = partition_id;
996 
997  for (unsigned int ni=0; ni<ele->n_nodes(); ni++) {
998  ele->nodes_[ni] = this->node_index(node_ids[ni]);
999  }
1000 
1001  // check that tetrahedron element is numbered correctly and is not degenerated
1002  if(ele->dim() == 3)
1003  {
1004  double jac = this->element_accessor( this->elem_index(elm_id) ).tetrahedron_jacobian();
1005  if( ! (jac > 0) )
1006  WarningOut().fmt("Tetrahedron element with id {} has wrong numbering or is degenerated (Jacobian = {}).",elm_id,jac);
1007  }
1008 }
1009 
1010 
1012  if (node_elements_.size() == 0) {
1013  this->create_node_element_lists();
1014  }
1015  return node_elements_;
1016 }
1017 
1018 
1019 void Mesh::init_element_vector(unsigned int size) {
1020  element_vec_.clear();
1021  element_vec_.resize(size);
1022  element_ids_.reinit(size);
1023  bc_element_tmp_.clear();
1024  bc_element_tmp_.reserve(size);
1025  bulk_size_ = 0;
1027 }
1028 
1029 
1030 void Mesh::init_node_vector(unsigned int size) {
1031  node_vec_.clear();
1032  node_vec_.reserve(size);
1033  node_ids_.reinit(0);
1034 }
1035 
1036 
1038  Element * elem=nullptr;
1039  if (boundary) {
1040  ASSERT_DBG(id<0)(id).error("Add boundary element from mesh file trough temporary structure!");
1041  element_vec_.push_back( Element() );
1042  elem = &element_vec_[element_vec_.size()-1];
1043  element_ids_.add_item(id);
1044  } else {
1045  elem = &element_vec_[bulk_size_];
1047  bulk_size_++;
1048  }
1049 
1050  return elem;
1051 }
1052 
1054  auto bgn_it = make_iter<ElementAccessor<3>>( ElementAccessor<3>(this, 0) );
1055  auto end_it = make_iter<ElementAccessor<3>>( ElementAccessor<3>(this, bulk_size_) );
1056  return Range<ElementAccessor<3>>(bgn_it, end_it);
1057 }
1058 
1060  auto bgn_it = make_iter<NodeAccessor<3>>( NodeAccessor<3>(this, 0) );
1061  auto end_it = make_iter<NodeAccessor<3>>( NodeAccessor<3>(this, node_vec_.size()) );
1062  return Range<NodeAccessor<3>>(bgn_it, end_it);
1063 }
1064 
1066  auto bgn_it = make_iter<Edge>( Edge(this, 0) );
1067  auto end_it = make_iter<Edge>( Edge(this, edges.size()) );
1068  return Range<Edge>(bgn_it, end_it);
1069 }
1070 
1071 inline void Mesh::check_element_size(unsigned int elem_idx) const
1072 {
1073  ASSERT(elem_idx < element_vec_.size())(elem_idx)(element_vec_.size()).error("Index of element is out of bound of element vector!");
1074 }
1075 
1076 /*
1077  * Output of internal flow data.
1078  */
1080 {
1081  START_TIMER("Mesh::output_internal_ngh_data");
1082 
1083  if (! raw_ngh_output_file.is_open()) return;
1084 
1085  // header
1086  raw_ngh_output_file << "// fields:\n//ele_id n_sides ns_side_neighbors[n] neighbors[n*ns] n_vb_neighbors vb_neighbors[n_vb]\n";
1088 
1089  int cit = 0;
1090 
1091  // map from higher dim elements to its lower dim neighbors, using gmsh IDs: ele->id()
1092  unsigned int undefined_ele_id = -1;
1094  for (auto ele : this->elements_range()) {
1095  if(ele->n_neighs_vb() > 0){
1096  for (unsigned int i = 0; i < ele->n_neighs_vb(); i++){
1097  ElementAccessor<3> higher_ele = ele->neigh_vb[i]->side()->element();
1098 
1099  auto search = neigh_vb_map.find(higher_ele.idx());
1100  if(search != neigh_vb_map.end()){
1101  // if found, add id to correct local side idx
1102  search->second[ele->neigh_vb[i]->side()->side_idx()] = ele.idx();
1103  }
1104  else{
1105  // if not found, create new vector, each side can have one vb neighbour
1106  std::vector<unsigned int> higher_ele_side_ngh(higher_ele->n_sides(), undefined_ele_id);
1107  higher_ele_side_ngh[ele->neigh_vb[i]->side()->side_idx()] = ele.idx();
1108  neigh_vb_map[higher_ele.idx()] = higher_ele_side_ngh;
1109  }
1110  }
1111  }
1112  }
1113 
1114  for (auto ele : this->elements_range()) {
1115  raw_ngh_output_file << ele.idx() << " ";
1116  raw_ngh_output_file << ele->n_sides() << " ";
1117 
1118  auto search_neigh = neigh_vb_map.end();
1119  for (unsigned int i = 0; i < ele->n_sides(); i++) {
1120  unsigned int n_side_neighs = ele.side(i)->edge().n_sides()-1; //n_sides - the current one
1121  // check vb neighbors (lower dimension)
1122  if(n_side_neighs == 0){
1123  //update search
1124  if(search_neigh == neigh_vb_map.end())
1125  search_neigh = neigh_vb_map.find(ele.idx());
1126 
1127  if(search_neigh != neigh_vb_map.end())
1128  if(search_neigh->second[i] != undefined_ele_id)
1129  n_side_neighs = 1;
1130  }
1131  raw_ngh_output_file << n_side_neighs << " ";
1132  }
1133 
1134  for (unsigned int i = 0; i < ele->n_sides(); i++) {
1135  Edge edge = ele.side(i)->edge();
1136  if(edge.n_sides() > 1){
1137  for (uint j = 0; j < edge.n_sides(); j++) {
1138  if(edge.side(j) != ele.side(i))
1139  raw_ngh_output_file << edge.side(j)->element().idx() << " ";
1140  }
1141  }
1142  //check vb neighbour
1143  else if(search_neigh != neigh_vb_map.end()
1144  && search_neigh->second[i] != undefined_ele_id){
1145  raw_ngh_output_file << search_neigh->second[i] << " ";
1146  }
1147  }
1148 
1149  // list higher dim neighbours
1150  raw_ngh_output_file << ele->n_neighs_vb() << " ";
1151  for (unsigned int i = 0; i < ele->n_neighs_vb(); i++)
1152  raw_ngh_output_file << ele->neigh_vb[i]->side()->element().idx() << " ";
1153 
1154  raw_ngh_output_file << endl;
1155  cit ++;
1156  }
1157  raw_ngh_output_file << "$EndFlowField\n" << endl;
1158 }
1159 
1160 
1162  unsigned int i, pos;
1164  for (i=0, pos=bulk_size_; i<bc_element_tmp_.size(); ++i, ++pos) {
1165  Element *ele = &element_vec_[pos];
1166  element_ids_.set_item(bc_element_tmp_[i].elm_id, pos);
1167  this->init_element(ele, bc_element_tmp_[i].elm_id, bc_element_tmp_[i].dim, bc_element_tmp_[i].region_idx,
1168  bc_element_tmp_[i].partition_id, bc_element_tmp_[i].node_ids);
1169 
1170  }
1171 
1172  element_vec_.resize(pos); // remove empty element (count is equal with zero-dimensional bulk elements)
1173  bc_element_tmp_.clear();
1174  bc_element_tmp_.reserve(0);
1175 }
1176 
1177 
1178 void Mesh::permute_tetrahedron(unsigned int elm_idx, std::vector<unsigned int> permutation_vec)
1179 {
1180  ASSERT_LT_DBG(elm_idx, element_vec_.size());
1181  ASSERT_EQ_DBG(permutation_vec.size(), 4);
1182 
1183  std::array<unsigned int, 4> tmp_nodes;
1184  Element &elem = element_vec_[elm_idx];
1185  ASSERT_EQ_DBG(elem.dim(), 3);
1186 
1187  for(unsigned int i=0; i<elem.n_nodes(); i++)
1188  {
1189  tmp_nodes[i] = elem.nodes_[permutation_vec[i]];
1190  }
1191  elem.nodes_ = tmp_nodes;
1192 }
1193 
1194 
1195 void Mesh::permute_triangle(unsigned int elm_idx, std::vector<unsigned int> permutation_vec)
1196 {
1197  ASSERT_LT_DBG(elm_idx, element_vec_.size());
1198  ASSERT_EQ_DBG(permutation_vec.size(), 3);
1199 
1200  std::array<unsigned int, 4> tmp_nodes;
1201  Element &elem = element_vec_[elm_idx];
1202  ASSERT_EQ_DBG(elem.dim(), 2);
1203 
1204  for(unsigned int i=0; i<elem.n_nodes(); i++)
1205  {
1206  tmp_nodes[i] = elem.nodes_[permutation_vec[i]];
1207  }
1208  elem.nodes_ = tmp_nodes;
1209 }
1210 
1211 
1213  if (bc_mesh_ == nullptr) bc_mesh_ = new BCMesh(this);
1214  return bc_mesh_;
1215 }
1216 
1217 
1219  ASSERT_PTR(el_4_loc).error("Array 'el_4_loc' is not initialized. Did you call Partitioning::id_maps?\n");
1220 
1221  unsigned int i_proc, i_node, i_ghost_node, elm_node;
1222  unsigned int my_proc = el_ds->myp();
1223  unsigned int n_proc = el_ds->np();
1224 
1225  // distribute nodes between processes, every node is assigned to minimal process of elements that own node
1226  // fill min_node_proc vector with same values on all processes
1227  std::vector<unsigned int> node_proc( this->n_nodes(), n_proc );
1228  std::vector<bool> local_node_flag( this->n_nodes(), false );
1229 
1230  for ( auto elm : this->elements_range() ) {
1231  i_proc = elm.proc();
1232  for (elm_node=0; elm_node<elm->n_nodes(); elm_node++) {
1233  i_node = elm->node_idx(elm_node);
1234  if (i_proc == my_proc) local_node_flag[i_node] = true;
1235  if (i_proc < node_proc[i_node]) node_proc[i_node] = i_proc;
1236  }
1237  }
1238 
1239  unsigned int n_own_nodes=0, n_local_nodes=0; // number of own and ghost nodes
1240  for(uint i_proc : node_proc) if (i_proc == my_proc) n_own_nodes++;
1241  for(uint loc_flag : local_node_flag) if (loc_flag) n_local_nodes++;
1242 
1243  //DebugOut() << print_var(n_own_nodes) << print_var(n_local_nodes) << this->n_nodes();
1244  // create and fill node_4_loc_ (mapping local to global indexes)
1245  node_4_loc_ = new LongIdx [ n_local_nodes ];
1246  i_node=0;
1247  i_ghost_node = n_own_nodes;
1248  for (unsigned int i=0; i<this->n_nodes(); ++i) {
1249  if (local_node_flag[i]) {
1250  if (node_proc[i]==my_proc)
1251  node_4_loc_[i_node++] = i;
1252  else
1253  node_4_loc_[i_ghost_node++] = i;
1254  }
1255  }
1256 
1257  // Construct node distribution object, set number of local nodes (own+ghost)
1258  node_ds_ = new Distribution(n_own_nodes, PETSC_COMM_WORLD);
1259  node_ds_->get_lsizes_array(); // need to initialize lsizes data member
1261 
1262 }
1263 
1264 //-----------------------------------------------------------------------------
1265 // vim: set cindent:
int n_triangles
Definition: mesh.h:275
Distribution * el_ds
Parallel distribution of elements.
Definition: mesh.h:560
int LongIdx
Define type that represents indices of large arrays (elements, nodes, dofs etc.)
Definition: long_idx.hh:22
Class for the mesh partitioning. This should provide:
Definition: partitioning.hh:52
Iterator< ValueType > begin() const
void read_stream(istream &in, const Type::TypeBase &root_type, FileFormat format)
This method actually reads the given stream in.
unsigned int n_sides() const
Returns number of sides aligned with the edge.
Definition: accessors.hh:298
void output_internal_ngh_data()
Output of neighboring data into raw output.
Definition: mesh.cc:1079
const Element * element() const
Definition: accessors.hh:159
unsigned int n_nodes() const
Definition: elements.h:128
std::array< unsigned int, 4 > nodes_
indices to element&#39;s nodes
Definition: elements.h:113
vector< Element > element_vec_
Definition: mesh.h:512
BidirectionalMap< int > node_ids_
Maps node ids to indexes into vector node_vec_.
Definition: mesh.h:532
vector< vector< unsigned int > > const & node_elements()
Definition: mesh.cc:1011
#define ASSERT_EQ_DBG(a, b)
Definition of comparative assert macro (EQual) only for debug mode.
Definition: asserts.hh:332
Accessor to input data conforming to declared Array.
Definition: accessors.hh:567
unsigned int n_local_nodes_
Hold number of local nodes (own + ghost), value is equal with size of node_4_loc array.
Definition: mesh.h:566
unsigned int * boundary_idx_
Definition: elements.h:82
void permute_tetrahedron(unsigned int elm_idx, std::vector< unsigned int > permutation_vec)
Permute nodes of 3D elements of given elm_idx.
Definition: mesh.cc:1178
bool is_boundary() const
Returns true if it is a Boundary region and false if it is a Bulk region.
Definition: region.hh:74
unsigned int uint
unsigned int bc_ele_idx_
Definition: mesh_data.hh:53
friend class Element
Definition: mesh.h:541
void count_side_types()
Definition: mesh.cc:334
NodeAccessor< 3 > node_accessor(unsigned int ni) const
Definition: accessors.hh:202
int MPI_Comm
Definition: mpi.h:141
BCMesh * bc_mesh_
Boundary mesh, object is created only if it&#39;s necessary.
Definition: mesh.h:568
Definition: nodes.hh:31
unsigned int side_idx() const
Returns local index of the side on the element.
Definition: accessors.hh:413
void check_and_finish()
Definition: mesh.cc:914
MapElementIDToRegionID el_to_reg_map_
Definition: region.hh:571
Reader for (slightly) modified input files.
void init_element_vector(unsigned int size)
Initialize element_vec_, set size and reset counters of boundary and bulk elements.
Definition: mesh.cc:1019
virtual const LongIdx * get_local_part()
Definition: mesh.cc:264
MixedMeshIntersections & mixed_intersections()
Definition: mesh.cc:722
Class Input::Type::Default specifies default value of keys of a Input::Type::Record.
Definition: type_record.hh:61
BidirectionalMap< int > element_ids_
Maps element ids to indexes into vector element_vec_.
Definition: mesh.h:524
Class for declaration of the input of type Bool.
Definition: type_base.hh:459
Edge edge() const
Returns pointer to the edge connected to the side.
void add_node(unsigned int node_id, arma::vec3 coords)
Add new node of given id and coordinates to mesh.
Definition: mesh.cc:962
LongIdx * node_4_loc_
Index set assigning to local node index its global index.
Definition: mesh.h:562
#define MessageOut()
Macro defining &#39;message&#39; record of log.
Definition: logger.hh:243
DuplicateNodes * tree
Definition: mesh.h:263
unsigned int elem_idx_
Index of element in Mesh::element_vec_.
Definition: neighbours.h:137
int n_lines
Definition: mesh.h:274
static const Input::Type::Record & get_input_type()
Definition: partitioning.cc:49
ElementAccessor< 3 > element_accessor(unsigned int idx) const override
Overwrite Mesh::element_accessor()
Definition: bc_mesh.cc:89
static const unsigned int undef_idx
Definition: mesh.h:102
std::vector< BoundingBox > get_element_boxes()
Compute bounding boxes of elements contained in mesh.
Definition: mesh.cc:929
void init()
Definition: mesh.cc:154
ofstream raw_ngh_output_file
Definition: mesh.h:570
std::string format(CStringRef format_str, ArgList args)
Definition: format.h:3141
NodeAccessor< 3 > node_accessor(unsigned int idx) const
Create and return NodeAccessor to node of given idx.
Definition: mesh.cc:745
#define INPUT_CATCH(ExceptionType, AddressEITag, input_accessor)
Definition: accessors.hh:64
void create_node_element_lists()
Definition: mesh.cc:348
static unsigned int permutation_index(unsigned int p[n_nodes_per_side])
Definition: ref_element.cc:552
BCMesh * get_bc_mesh()
Create boundary mesh if doesn&#39;t exist and return it.
Definition: mesh.cc:1212
static const Input::Type::Record & get_input_type()
Definition: mesh.cc:73
int elem_index(int elem_id) const
For element of given elem_id returns index in element_vec_ or (-1) if element doesn&#39;t exist...
Definition: mesh.h:353
static Default obligatory()
The factory function to make an empty default value which is obligatory.
Definition: type_record.hh:110
std::shared_ptr< MixedMeshIntersections > intersections
Definition: mesh.h:255
double global_snap_radius() const
Maximal distance of observe point from Mesh relative to its size.
Definition: mesh.cc:953
unsigned int max_edge_sides_[3]
Maximal number of sides per one edge in the actual mesh (set in make_neighbours_and_edges()).
Definition: mesh.h:476
Definition: mesh.h:76
unsigned int n_local_nodes() const
Definition: mesh.h:177
std::vector< EdgeData > edges
Vector of MH edges, this should not be part of the geometrical mesh.
Definition: mesh.h:535
Input::Record in_record_
Definition: mesh.h:500
std::string create_label_from_id(unsigned int id) const
Definition: region.cc:338
vector< vector< vector< unsigned int > > > side_nodes
Definition: mesh.h:287
SideIter side(const unsigned int loc_index)
int n_tetrahedras
Definition: mesh.h:276
#define ASSERT(expr)
Allow use shorter versions of macro names if these names is not used with external library...
Definition: asserts.hh:347
virtual unsigned int n_nodes() const
Definition: mesh.h:124
vector< BoundaryData > boundary_
Definition: mesh.h:247
Boundary boundary(uint edge_idx) const
Definition: mesh.cc:254
void add_physical_name(unsigned int dim, unsigned int id, std::string name)
Add new node of given id and coordinates to mesh.
Definition: mesh.cc:957
int node_index(int node_id) const
For node of given node_id returns index in element_vec_ or (-1) if node doesn&#39;t exist.
Definition: mesh.h:365
ElementAccessor< 3 > element() const
Returns iterator to the element of the side.
virtual Partitioning * get_part()
Definition: mesh.cc:260
Record & close() const
Close the Record for further declarations of keys.
Definition: type_record.cc:304
Class for declaration of inputs sequences.
Definition: type_base.hh:346
virtual ElementAccessor< 3 > element_accessor(unsigned int idx) const
Create and return ElementAccessor to element of given idx.
Definition: mesh.cc:739
int n_exsides
Definition: mesh.h:271
void init(unsigned int dim, RegionIdx reg)
Definition: elements.cc:52
IteratorBase end() const
const unsigned int * get_lsizes_array()
get local sizes array
Region get_region(unsigned int id, unsigned int dim)
Definition: region.cc:151
unsigned int dim() const
Definition: elements.h:123
static Default optional()
The factory function to make an empty default value which is optional.
Definition: type_record.hh:124
#define OLD_ASSERT(...)
Definition: global_defs.h:131
unsigned int n_vb_neighbours() const
Definition: mesh.cc:233
ElementAccessor< 3 > element()
Definition: neighbours.h:161
void open_stream(Stream &stream) const
Definition: file_path.cc:211
virtual bool check_compatible_mesh(Mesh &mesh, vector< LongIdx > &bulk_elements_id, vector< LongIdx > &boundary_elements_id)
Definition: mesh.cc:792
bool opt_val(const string &key, Ret &value) const
unsigned int edge_idx_
Index of Edge in Mesh.
Definition: neighbours.h:138
void read_regions_from_input(Input::Array region_list)
Definition: mesh.cc:904
unsigned int boundary_loaded_size_
Count of boundary elements loaded from mesh file.
Definition: mesh.h:521
virtual Record & allow_auto_conversion(const string &from_key)
Allows shorter input of the Record providing only value of the from_key given as the parameter...
Definition: type_record.cc:133
bool same_sides(const SideIter &si, vector< unsigned int > &side_nodes)
Definition: mesh.cc:413
Class for declaration of the input data that are floating point numbers.
Definition: type_base.hh:541
int find_elem_id(unsigned int pos) const
Return element id (in GMSH file) of element of given position in element vector.
Definition: mesh.h:359
unsigned int add_item(T val)
Add new item at the end position of map.
Mesh * mesh_
Definition: mesh_data.hh:54
unsigned int node_idx(unsigned int ni) const
Return index (in Mesh::node_vec) of ni-th node.
Definition: elements.h:74
void check_element_size(unsigned int elem_idx) const
Check if given index is in element_vec_.
Definition: mesh.cc:1071
void setup_topology()
Definition: mesh.cc:300
IntersectionSearch get_intersection_search()
Getter for input type selection for intersection search algorithm.
Definition: mesh.cc:148
Neighbour ** neigh_vb
Definition: elements.h:86
LongIdx * el_4_loc
Index set assigning to local element index its global index.
Definition: mesh.h:558
Range helper class.
friend class BCMesh
Definition: mesh.h:544
T get_root_interface() const
Returns the root accessor.
unsigned int edge_idx(unsigned int edg_idx) const
Return edge_idx of given index.
Definition: elements.h:138
friend class RegionSetBase
Definition: mesh.h:540
static const Input::Type::Selection & get_input_intersection_variant()
The definition of input record for selection of variant of file format.
Definition: mesh.cc:62
static FileName input()
The factory function for declaring type FileName for input files.
Definition: type_base.cc:526
SideIter side()
Definition: neighbours.h:145
Accessor to the data with type Type::Record.
Definition: accessors.hh:292
unsigned int edge_idx_
Definition: mesh_data.hh:49
#define NDEF
Definition: mesh.cc:58
const Ret val(const string &key) const
unsigned int n_sides() const
Definition: elements.h:134
#define xprintf(...)
Definition: system.hh:93
#define START_TIMER(tag)
Starts a timer with specified tag.
Class for O(log N) lookup for intersections with a set of bounding boxes.
Definition: bih_tree.hh:38
Selection & add_value(const int value, const std::string &key, const std::string &description="", TypeBase::attribute_map attributes=TypeBase::attribute_map())
Adds one new value with name given by key to the Selection.
unsigned int n_corners()
Definition: mesh.cc:238
void set_item(T val, unsigned int pos)
LongIdx * row_4_el
Index set assigning to global element index the local index used in parallel vectors.
Definition: mesh.h:556
BoundingBox bounding_box() const
Definition: accessors.hh:210
Record & declare_key(const string &key, std::shared_ptr< TypeBase > type, const Default &default_value, const string &description, TypeBase::attribute_map key_attributes=TypeBase::attribute_map())
Declares a new key of the Record.
Definition: type_record.cc:503
void close()
Definition: region.cc:250
bool is_empty() const
Definition: accessors.hh:366
vector< Node > node_vec_
Definition: mesh.h:529
Region implicit_boundary_region()
Definition: region.cc:76
virtual Range< ElementAccessor< 3 > > elements_range() const
Returns range of bulk elements.
Definition: mesh.cc:1053
unsigned int np() const
get num of processors
unsigned int n_sides() const
Definition: mesh.cc:224
std::shared_ptr< BIHTree > bih_tree_
Definition: mesh.h:494
Element * add_element_to_vector(int id, bool boundary=false)
Adds element to mesh data structures (element_vec_, element_ids_), returns pointer to this element...
Definition: mesh.cc:1037
vector< vector< unsigned int > > node_elements_
For each node the vector contains a list of elements that use this node.
Definition: mesh.h:350
void reinit(unsigned int init_size=0)
Reset data of map, allow reserve size.
NodeAccessor< 3 > node(unsigned int i) const
Returns node for given local index i on the side.
friend class Boundary
Definition: mesh.h:543
Accessor to the polymorphic input data of a type given by an AbstracRecord object.
Definition: accessors.hh:459
Region region() const
Definition: accessors.hh:164
void elements_id_maps(vector< LongIdx > &bulk_elements_id, vector< LongIdx > &boundary_elements_id) const
Definition: mesh.cc:751
void count_element_types()
Definition: mesh.cc:273
bool compare_points(const arma::vec3 &p1, const arma::vec3 &p2)
Definition: mesh.cc:784
const BIHTree & get_bih_tree()
Getter for BIH. Creates and compute BIH at first call.
Definition: mesh.cc:944
void create_boundary_elements()
Create boundary elements from data of temporary structure, this method MUST be call after read mesh f...
Definition: mesh.cc:1161
#define MPI_Comm_rank
Definition: mpi.h:236
void check_regions()
Definition: region.cc:462
Dedicated class for storing path to input and output files.
Definition: file_path.hh:54
unsigned int myp() const
get my processor
Definition: system.hh:65
void mark_used_region(unsigned int idx)
Definition: region.cc:236
Support classes for parallel programing.
Region add_region(unsigned int id, const std::string &label, unsigned int dim, const std::string &address="implicit")
Definition: region.cc:86
vector< Neighbour > vb_neighbours_
Definition: mesh.h:268
Distribution * node_ds_
Parallel distribution of nodes. Depends on elements distribution.
Definition: mesh.h:564
FinishStatus finish(FinishStatus finish_type=FinishStatus::regular_) override
Finish declaration of the Record type.
Definition: type_record.cc:243
virtual unsigned int n_elements(bool boundary=false) const
Returns count of boundary or bulk elements.
Definition: mesh.h:344
void distribute_nodes()
Fill array node_4_loc_ and create object node_ds_ according to element distribution.
Definition: mesh.cc:1218
void find_point(const Space< 3 >::Point &point, std::vector< unsigned int > &result_list, bool full_list=false) const
Definition: bih_tree.cc:287
int n_sides_
Definition: mesh.h:272
RegionIdx region_idx_
Definition: elements.h:109
Class represents boundary part of mesh.
Definition: bc_mesh.hh:35
#define ASSERT_PTR(ptr)
Definition of assert macro checking non-null pointer (PTR)
Definition: asserts.hh:336
const Selection & close() const
Close the Selection, no more values can be added.
RegionDB region_db_
Definition: mesh.h:485
MPI_Comm comm_
Definition: mesh.h:505
#define ASSERT_DBG(expr)
bool find_lower_dim_element(vector< unsigned int > &element_list, unsigned int dim, unsigned int &element_idx)
Definition: mesh.cc:393
int pid_
Id # of mesh partition.
Definition: elements.h:91
int n_insides
Definition: mesh.h:270
void print_region_table(std::ostream &stream) const
Definition: region.cc:410
void intersect_element_lists(vector< unsigned int > const &nodes_list, vector< unsigned int > &intersection_element_list)
Definition: mesh.cc:361
void modify_element_ids(const RegionDB::MapElementIDToRegionID &map)
Definition: mesh.cc:290
#define WarningOut()
Macro defining &#39;warning&#39; record of log.
Definition: logger.hh:246
#define MPI_COMM_WORLD
Definition: mpi.h:123
void make_edge_permutations()
Definition: mesh.cc:616
double tetrahedron_jacobian() const
Class RefElement defines numbering of vertices, sides, calculation of normal vectors etc...
static Input::Type::Abstract & get_input_type()
Definition: region_set.cc:25
Range< NodeAccessor< 3 > > node_range() const
Returns range of nodes.
Definition: mesh.cc:1059
SideIter * side_
Definition: mesh_data.hh:32
Edge edge(uint edge_idx) const
Definition: mesh.cc:248
const LongIdx * get_loc_part() const
Definition: partitioning.cc:85
void add_element(unsigned int elm_id, unsigned int dim, unsigned int region_id, unsigned int partition_id, std::vector< unsigned int > node_ids)
Add new element of given id to mesh.
Definition: mesh.cc:970
Record type proxy class.
Definition: type_record.hh:182
bool is_valid() const
Returns false if the region has undefined/invalid value.
Definition: region.hh:78
IntersectionSearch
Types of search algorithm for finding intersection candidates.
Definition: mesh.h:91
void element_to_neigh_vb()
Definition: mesh.cc:689
void init_element(Element *ele, unsigned int elm_id, unsigned int dim, RegionIdx region_idx, unsigned int partition_id, std::vector< unsigned int > node_ids)
Initialize element.
Definition: mesh.cc:992
friend class Edge
Definition: mesh.h:538
Mesh()
Definition: mesh.cc:99
arma::vec3 & point()
Definition: nodes.hh:67
static FileName output()
The factory function for declaring type FileName for input files.
Definition: type_base.cc:533
unsigned int n_neighs_vb_
of neighbours, V-B type (comp.)
Definition: elements.h:93
void permute_triangle(unsigned int elm_idx, std::vector< unsigned int > permutation_vec)
Permute nodes of 2D elements of given elm_idx.
Definition: mesh.cc:1195
#define ASSERT_PTR_DBG(ptr)
Definition of assert macro checking non-null pointer (PTR) only for debug mode.
Definition: asserts.hh:340
unsigned int idx() const
Return local idx of element in boundary / bulk part of element vector.
Definition: accessors.hh:180
#define THROW(whole_exception_expr)
Wrapper for throw. Saves the throwing point.
Definition: exceptions.hh:53
SideIter side(const unsigned int i) const
Gets side iterator of the i -th side.
Range< Edge > edge_range() const
Returns range of edges.
Definition: mesh.cc:1065
Template for classes storing finite set of named values.
Implementation of range helper class.
unsigned int bulk_size_
Count of bulk elements.
Definition: mesh.h:518
std::shared_ptr< Partitioning > part_
Definition: mesh.h:489
void make_neighbours_and_edges()
Definition: mesh.cc:430
vector< ElementTmpData > bc_element_tmp_
Hold data of boundary elements during reading mesh (allow to preserve correct order during reading of...
Definition: mesh.h:515
Mesh * mesh_
Pointer to Mesh to which belonged.
Definition: neighbours.h:136
void init_node_vector(unsigned int size)
Initialize node_vec_, set size.
Definition: mesh.cc:1030
unsigned int id() const
Returns id of the region (using RegionDB)
Definition: region.cc:38
Main class for computation of intersection of meshes of combined dimensions.
unsigned int n_nodes() const
Returns number of nodes of the side.
Definition: accessors.hh:405
virtual ~Mesh()
Destructor.
Definition: mesh.cc:199
unsigned int idx() const
Returns a global index of the region.
Definition: region.hh:82
#define ASSERT_LT_DBG(a, b)
Definition of comparative assert macro (Less Than) only for debug mode.
Definition: asserts.hh:300
const Node * node(unsigned int ni) const
Definition: accessors.hh:198
unsigned int n_sides
Definition: mesh_data.hh:29