Flow123d  release_3.0.0-1263-g7cf53c1
heat_model.cc
Go to the documentation of this file.
1 /*!
2  *
3  * Copyright (C) 2015 Technical University of Liberec. All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify it under
6  * the terms of the GNU General Public License version 3 as published by the
7  * Free Software Foundation. (http://www.gnu.org/licenses/gpl-3.0.en.html)
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
11  * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
12  *
13  *
14  * @file heat_model.cc
15  * @brief Discontinuous Galerkin method for equation of transport with dispersion.
16  * @author Jan Stebel
17  */
18 
19 #include "input/input_type.hh"
20 #include "mesh/mesh.h"
21 #include "mesh/accessors.hh"
22 //#include "transport/transport_operator_splitting.hh"
23 #include "heat_model.hh"
24 #include "tools/unit_si.hh"
25 #include "coupling/balance.hh"
26 
27 
28 
29 using namespace std;
30 using namespace Input::Type;
31 
32 
33 
34 
35 
36 
37 
38 
40  return Selection("Heat_BC_Type", "Types of boundary conditions for heat transfer model.")
41  .add_value(bc_inflow, "inflow",
42  "Default heat transfer boundary condition.\n"
43  "On water inflow (($(q_w \\le 0)$)), total energy flux is given by the reference temperature 'bc_temperature'. "
44  "On water outflow we prescribe zero diffusive flux, "
45  "i.e. the energy flows out only due to advection.")
46  .add_value(bc_dirichlet, "dirichlet",
47  "Dirichlet boundary condition (($T = T_D $)).\n"
48  "The prescribed temperature (($T_D$)) is specified by the field 'bc_temperature'.")
49  .add_value(bc_total_flux, "total_flux",
50  "Total energy flux boundary condition.\n"
51  "The prescribed incoming total flux can have the general form (($\\delta(f_N+\\sigma_R(T_R-T) )$)), "
52  "where the absolute flux (($f_N$)) is specified by the field 'bc_flux', "
53  "the transition parameter (($\\sigma_R$)) by 'bc_robin_sigma', "
54  "and the reference temperature (($T_R$)) by 'bc_temperature'.")
55  .add_value(bc_diffusive_flux, "diffusive_flux",
56  "Diffusive flux boundary condition.\n"
57  "The prescribed incoming energy flux due to diffusion can have the general form (($\\delta(f_N+\\sigma_R(T_R-T) )$)), "
58  "where the absolute flux (($f_N$)) is specified by the field 'bc_flux', "
59  "the transition parameter (($\\sigma_R$)) by 'bc_robin_sigma', "
60  "and the reference temperature (($T_R$)) by 'bc_temperature'.")
61  .close();
62 }
63 
64 
66 {
67  *this+=bc_type
68  .name("bc_type")
69  .description(
70  "Type of boundary condition.")
71  .units( UnitSI::dimensionless() )
72  .input_default("\"inflow\"")
73  .input_selection( get_bc_type_selection() )
75  *this+=bc_dirichlet_value
76  .name("bc_temperature")
77  .description("Boundary value of temperature.")
78  .units( UnitSI().K() )
79  .input_default("0.0")
80  .flags_add(in_rhs);
81  *this+=bc_flux
82  .disable_where(bc_type, { bc_dirichlet, bc_inflow })
83  .name("bc_flux")
84  .description("Flux in Neumann boundary condition.")
85  .units( UnitSI().kg().m().s(-1).md() )
86  .input_default("0.0")
87  .flags_add(FieldFlag::in_rhs);
88  *this+=bc_robin_sigma
89  .disable_where(bc_type, { bc_dirichlet, bc_inflow })
90  .name("bc_robin_sigma")
91  .description("Conductivity coefficient in Robin boundary condition.")
92  .units( UnitSI().m(4).s(-1).md() )
93  .input_default("0.0")
94  .flags_add(FieldFlag::in_rhs & FieldFlag::in_main_matrix);
95 
96  *this+=init_temperature
97  .name("init_temperature")
98  .description("Initial temperature.")
99  .units( UnitSI().K() )
100  .input_default("0.0");
101 
102  *this+=porosity
103  .name("porosity")
104  .description("Porosity.")
105  .units( UnitSI::dimensionless() )
106  .input_default("1.0")
107  .flags_add(in_main_matrix & in_time_term)
108  .set_limits(0.0);
109 
110  *this+=water_content
111  .name("water_content")
112  .units( UnitSI::dimensionless() )
113  .input_default("1.0")
114  .flags_add(input_copy & in_main_matrix & in_time_term);
115 
116  *this+=fluid_density
117  .name("fluid_density")
118  .description("Density of fluid.")
119  .units( UnitSI().kg().m(-3) )
120  .input_default("1000")
121  .flags_add(in_main_matrix & in_time_term);
122 
123  *this+=fluid_heat_capacity
124  .name("fluid_heat_capacity")
125  .description("Heat capacity of fluid.")
126  .units( UnitSI::J() * UnitSI().kg(-1).K(-1) )
127  .flags_add(in_main_matrix & in_time_term);
128 
129  *this+=fluid_heat_conductivity
130  .name("fluid_heat_conductivity")
131  .description("Heat conductivity of fluid.")
132  .units( UnitSI::W() * UnitSI().m(-1).K(-1) )
133  .flags_add(in_main_matrix)
134  .set_limits(0.0);
135 
136 
137  *this+=solid_density
138  .name("solid_density")
139  .description("Density of solid (rock).")
140  .units( UnitSI().kg().m(-3) )
141  .flags_add(in_time_term);
142 
143  *this+=solid_heat_capacity
144  .name("solid_heat_capacity")
145  .description("Heat capacity of solid (rock).")
146  .units( UnitSI::J() * UnitSI().kg(-1).K(-1) )
147  .flags_add(in_time_term);
148 
149  *this+=solid_heat_conductivity
150  .name("solid_heat_conductivity")
151  .description("Heat conductivity of solid (rock).")
152  .units( UnitSI::W() * UnitSI().m(-1).K(-1) )
153  .flags_add(in_main_matrix)
154  .set_limits(0.0);
155 
156  *this+=disp_l
157  .name("disp_l")
158  .description("Longitudinal heat dispersivity in fluid.")
159  .units( UnitSI().m() )
160  .input_default("0.0")
161  .flags_add(in_main_matrix);
162 
163  *this+=disp_t
164  .name("disp_t")
165  .description("Transverse heat dispersivity in fluid.")
166  .units( UnitSI().m() )
167  .input_default("0.0")
168  .flags_add(in_main_matrix);
169 
170  *this+=fluid_thermal_source
171  .name("fluid_thermal_source")
172  .description("Density of thermal source in fluid.")
173  .units( UnitSI::W() * UnitSI().m(-3) )
174  .input_default("0.0")
175  .flags_add(in_rhs);
176 
177  *this+=solid_thermal_source
178  .name("solid_thermal_source")
179  .description("Density of thermal source in solid.")
180  .units( UnitSI::W() * UnitSI().m(-3) )
181  .input_default("0.0")
182  .flags_add(in_rhs);
183 
184  *this+=fluid_heat_exchange_rate
185  .name("fluid_heat_exchange_rate")
186  .description("Heat exchange rate of source in fluid.")
187  .units( UnitSI().s(-1) )
188  .input_default("0.0")
189  .flags_add(in_rhs);
190 
191  *this+=solid_heat_exchange_rate
192  .name("solid_heat_exchange_rate")
193  .description("Heat exchange rate of source in solid.")
194  .units( UnitSI().s(-1) )
195  .input_default("0.0")
196  .flags_add(in_rhs);
197 
198  *this+=fluid_ref_temperature
199  .name("fluid_ref_temperature")
200  .description("Reference temperature of source in fluid.")
201  .units( UnitSI().K() )
202  .input_default("0.0")
203  .flags_add(in_rhs);
204 
205  *this+=solid_ref_temperature
206  .name("solid_ref_temperature")
207  .description("Reference temperature in solid.")
208  .units( UnitSI().K() )
209  .input_default("0.0")
210  .flags_add(in_rhs);
211 
212  *this+=cross_section
213  .name("cross_section")
214  .units( UnitSI().m(3).md() )
215  .flags(input_copy & in_time_term & in_main_matrix);
216 
217  *this+=output_field
218  .name("temperature")
219  .description("Temperature solution.")
220  .units( UnitSI().K() )
221  .flags(equation_result);
222 }
223 
224 
225 
226 IT::Record HeatTransferModel::get_input_type(const string &implementation, const string &description)
227 {
228  return IT::Record(
229  std::string(ModelEqData::name()) + "_" + implementation,
230  description + " for heat transfer.")
232  .declare_key("time", TimeGovernor::get_input_type(), Default::obligatory(),
233  "Time governor setting for the secondary equation.")
234  .declare_key("balance", Balance::get_input_type(), Default("{}"),
235  "Settings for computing balance.")
236  .declare_key("output_stream", OutputTime::get_input_type(), Default("{}"),
237  "Parameters of output stream.");
238 }
239 
240 
242 {
243  // Return empty selection just to provide model specific selection name and description.
244  // The fields are added by TransportDG using an auxiliary selection.
245  return IT::Selection(
246  std::string(ModelEqData::name()) + "_DG_output_fields",
247  "Selection of output fields for Heat Transfer DG model.");
248 }
249 
250 
252  AdvectionProcessBase(mesh, in_rec),
253  flux_changed(true),
254  mh_dh(nullptr)
255 {
256  time_ = new TimeGovernor(in_rec.val<Input::Record>("time"));
257  substances_.initialize({""});
258 
259  output_stream_ = OutputTime::create_output_stream("heat", in_rec.val<Input::Record>("output_stream"), time().get_unit_string());
260  //output_stream_->add_admissible_field_names(in_rec.val<Input::Array>("output_fields"));
261 
262  balance_ = std::make_shared<Balance>("energy", mesh_);
263  balance_->init_from_input(in_rec.val<Input::Record>("balance"), *time_);
264  // initialization of balance object
265  subst_idx = {balance_->add_quantity("energy")};
266  balance_->units(UnitSI().m(2).kg().s(-2));
267 }
268 
269 
271 {
272  output_stream_->write_time_frame();
273 }
274 
275 
277  const ElementAccessor<3> &ele_acc,
278  std::vector<double> &mm_coef)
279 {
280  vector<double> elem_csec(point_list.size()),
281  por(point_list.size()),
282  f_rho(point_list.size()),
283  s_rho(point_list.size()),
284  f_c(point_list.size()),
285  s_c(point_list.size());
286 
287  data().cross_section.value_list(point_list, ele_acc, elem_csec);
288  data().porosity.value_list(point_list, ele_acc, por);
289  data().fluid_density.value_list(point_list, ele_acc, f_rho);
290  data().fluid_heat_capacity.value_list(point_list, ele_acc, f_c);
291  data().solid_density.value_list(point_list, ele_acc, s_rho);
292  data().solid_heat_capacity.value_list(point_list, ele_acc, s_c);
293 
294  for (unsigned int i=0; i<point_list.size(); i++)
295  mm_coef[i] = elem_csec[i]*(por[i]*f_rho[i]*f_c[i] + (1.-por[i])*s_rho[i]*s_c[i]);
296 }
297 
298 
300  const std::vector<arma::vec3> &velocity,
301  const ElementAccessor<3> &ele_acc,
304 {
305  const unsigned int qsize = point_list.size();
306  std::vector<double> f_rho(qsize), f_cap(qsize), f_cond(qsize),
307  s_cond(qsize), por(qsize), csection(qsize), disp_l(qsize), disp_t(qsize);
308 
309  data().fluid_density.value_list(point_list, ele_acc, f_rho);
310  data().fluid_heat_capacity.value_list(point_list, ele_acc, f_cap);
311  data().fluid_heat_conductivity.value_list(point_list, ele_acc, f_cond);
312  data().solid_heat_conductivity.value_list(point_list, ele_acc, s_cond);
313  data().disp_l.value_list(point_list, ele_acc, disp_l);
314  data().disp_t.value_list(point_list, ele_acc, disp_t);
315  data().porosity.value_list(point_list, ele_acc, por);
316  data().cross_section.value_list(point_list, ele_acc, csection);
317 
318  for (unsigned int k=0; k<qsize; k++) {
319  ad_coef[0][k] = velocity[k]*f_rho[k]*f_cap[k];
320 
321  // dispersive part of thermal diffusion
322  // Note that the velocity vector is in fact the Darcian flux,
323  // so to obtain |v| we have to divide vnorm by porosity and cross_section.
324  double vnorm = arma::norm(velocity[k], 2);
325  if (fabs(vnorm) > 0)
326  for (int i=0; i<3; i++)
327  for (int j=0; j<3; j++)
328  dif_coef[0][k](i,j) = ((velocity[k][i]/vnorm)*(velocity[k][j]/vnorm)*(disp_l[k]-disp_t[k]) + disp_t[k]*(i==j?1:0))
329  *vnorm*f_rho[k]*f_cond[k];
330  else
331  dif_coef[0][k].zeros();
332 
333  // conductive part of thermal diffusion
334  dif_coef[0][k] += csection[k]*(por[k]*f_cond[k] + (1.-por[k])*s_cond[k])*arma::eye(3,3);
335  }
336 }
337 
338 
340  const ElementAccessor<3> &ele_acc,
341  std::vector<std::vector<double> > &init_values)
342 {
343  data().init_temperature.value_list(point_list, ele_acc, init_values[0]);
344 }
345 
346 
348  arma::uvec &bc_types)
349 {
350  // Currently the bc types for HeatTransfer are numbered in the same way as in TransportDG.
351  // In general we should use some map here.
352  bc_types = { data().bc_type.value(ele_acc.centre(), ele_acc) };
353 }
354 
355 
356 void HeatTransferModel::get_flux_bc_data(unsigned int index,
357  const std::vector<arma::vec3> &point_list,
358  const ElementAccessor<3> &ele_acc,
359  std::vector< double > &bc_flux,
360  std::vector< double > &bc_sigma,
361  std::vector< double > &bc_ref_value)
362 {
363  data().bc_flux.value_list(point_list, ele_acc, bc_flux);
364  data().bc_robin_sigma.value_list(point_list, ele_acc, bc_sigma);
365  data().bc_dirichlet_value[index].value_list(point_list, ele_acc, bc_ref_value);
366 
367  // Change sign in bc_flux since internally we work with outgoing fluxes.
368  for (auto f : bc_flux) f = -f;
369 }
370 
372  const std::vector<arma::vec3> &point_list,
373  const ElementAccessor<3> &ele_acc,
374  std::vector< double > &bc_sigma)
375 {
376  data().bc_robin_sigma.value_list(point_list, ele_acc, bc_sigma);
377 }
378 
379 
381  const ElementAccessor<3> &ele_acc,
382  std::vector<std::vector<double> > &sources_value,
383  std::vector<std::vector<double> > &sources_density,
384  std::vector<std::vector<double> > &sources_sigma)
385 {
386  const unsigned int qsize = point_list.size();
387  std::vector<double> por(qsize), csection(qsize), f_rho(qsize), s_rho(qsize), f_cap(qsize), s_cap(qsize),
388  f_source(qsize), s_source(qsize), f_sigma(qsize), s_sigma(qsize), f_temp(qsize), s_temp(qsize);
389  data().porosity.value_list(point_list, ele_acc, por);
390  data().cross_section.value_list(point_list, ele_acc, csection);
391  data().fluid_density.value_list(point_list, ele_acc, f_rho);
392  data().solid_density.value_list(point_list, ele_acc, s_rho);
393  data().fluid_heat_capacity.value_list(point_list, ele_acc, f_cap);
394  data().solid_heat_capacity.value_list(point_list, ele_acc, s_cap);
395  data().fluid_thermal_source.value_list(point_list, ele_acc, f_source);
396  data().solid_thermal_source.value_list(point_list, ele_acc, s_source);
397  data().fluid_heat_exchange_rate.value_list(point_list, ele_acc, f_sigma);
398  data().solid_heat_exchange_rate.value_list(point_list, ele_acc, s_sigma);
399  data().fluid_ref_temperature.value_list(point_list, ele_acc, f_temp);
400  data().solid_ref_temperature.value_list(point_list, ele_acc, s_temp);
401 
402  sources_density[0].resize(point_list.size());
403  sources_sigma[0].resize(point_list.size());
404  sources_value[0].resize(point_list.size());
405  for (unsigned int k=0; k<point_list.size(); k++)
406  {
407  sources_density[0][k] = csection[k]*(por[k]*f_source[k] + (1.-por[k])*s_source[k]);
408  sources_sigma[0][k] = csection[k]*(por[k]*f_rho[k]*f_cap[k]*f_sigma[k] + (1.-por[k])*s_rho[k]*s_cap[k]*s_sigma[k]);
409  if (fabs(sources_sigma[0][k]) > numeric_limits<double>::epsilon())
410  sources_value[0][k] = csection[k]*(por[k]*f_rho[k]*f_cap[k]*f_sigma[k]*f_temp[k]
411  + (1.-por[k])*s_rho[k]*s_cap[k]*s_sigma[k]*s_temp[k])/sources_sigma[0][k];
412  else
413  sources_value[0][k] = 0;
414  }
415 }
416 
417 
419  const ElementAccessor<3> &ele_acc,
420  std::vector<std::vector<double> > &sources_sigma)
421 {
422  const unsigned int qsize = point_list.size();
423  std::vector<double> por(qsize), csection(qsize), f_rho(qsize), s_rho(qsize), f_cap(qsize), s_cap(qsize),
424  f_source(qsize), s_source(qsize), f_sigma(qsize), s_sigma(qsize), f_temp(qsize), s_temp(qsize);
425  data().porosity.value_list(point_list, ele_acc, por);
426  data().cross_section.value_list(point_list, ele_acc, csection);
427  data().fluid_density.value_list(point_list, ele_acc, f_rho);
428  data().solid_density.value_list(point_list, ele_acc, s_rho);
429  data().fluid_heat_capacity.value_list(point_list, ele_acc, f_cap);
430  data().solid_heat_capacity.value_list(point_list, ele_acc, s_cap);
431  data().fluid_heat_exchange_rate.value_list(point_list, ele_acc, f_sigma);
432  data().solid_heat_exchange_rate.value_list(point_list, ele_acc, s_sigma);
433  sources_sigma[0].resize(point_list.size());
434  for (unsigned int k=0; k<point_list.size(); k++)
435  {
436  sources_sigma[0][k] = csection[k]*(por[k]*f_rho[k]*f_cap[k]*f_sigma[k] + (1.-por[k])*s_rho[k]*s_cap[k]*s_sigma[k]);
437  }
438 }
439 
440 
442 {}
443 
444 
445 
446 
TimeGovernor & time()
Definition: equation.hh:148
vector< unsigned int > subst_idx
List of indices used to call balance methods for a set of quantities.
Definition: heat_model.hh:280
Field< 3, FieldValue< 3 >::Scalar > solid_heat_capacity
Heat capacity of solid.
Definition: heat_model.hh:133
static const Input::Type::Record & get_input_type()
Main balance input record type.
Definition: balance.cc:48
Field< 3, FieldValue< 3 >::Scalar > fluid_density
Density of fluid.
Definition: heat_model.hh:125
static constexpr Mask in_main_matrix
A field is part of main "stiffness matrix" of the equation.
Definition: field_flag.hh:49
Field< 3, FieldValue< 3 >::Scalar > disp_t
Transversal heat dispersivity.
Definition: heat_model.hh:139
Field< 3, FieldValue< 3 >::Scalar > cross_section
Pointer to DarcyFlow field cross_section.
Definition: heat_model.hh:154
static const Input::Type::Record & get_input_type()
The specification of output stream.
Definition: output_time.cc:37
Class Input::Type::Default specifies default value of keys of a Input::Type::Record.
Definition: type_record.hh:61
static IT::Selection get_output_selection()
Definition: heat_model.cc:241
void initialize(const Input::Array &in_array)
Read from input array.
Definition: substance.cc:58
Field< 3, FieldValue< 3 >::Scalar > fluid_heat_exchange_rate
Heat exchange rate in fluid.
Definition: heat_model.hh:145
static std::shared_ptr< OutputTime > create_output_stream(const std::string &equation_name, const Input::Record &in_rec, std::string unit_str)
This method delete all object instances of class OutputTime stored in output_streams vector...
Definition: output_time.cc:184
Field< 3, FieldValue< 3 >::Scalar > solid_heat_exchange_rate
Heat exchange rate in solid.
Definition: heat_model.hh:147
Definition: mesh.h:76
BCMultiField< 3, FieldValue< 3 >::Scalar > bc_dirichlet_value
Dirichlet boundary condition for temperature.
Definition: heat_model.hh:113
BCField< 3, FieldValue< 3 >::Enum > bc_type
Type of boundary condition (see also BC_Type)
Definition: heat_model.hh:111
static const Input::Type::Selection & get_bc_type_selection()
Definition: heat_model.cc:39
Field< 3, FieldValue< 3 >::Scalar > fluid_heat_capacity
Heat capacity of fluid.
Definition: heat_model.hh:127
Basic time management functionality for unsteady (and steady) solvers (class Equation).
BCField< 3, FieldValue< 3 >::Scalar > bc_flux
Flux value in total/diffusive flux b.c.
Definition: heat_model.hh:115
void get_bc_type(const ElementAccessor< 3 > &ele_acc, arma::uvec &bc_types) override
Definition: heat_model.cc:347
virtual void value_list(const std::vector< Point > &point_list, const ElementAccessor< spacedim > &elm, std::vector< typename Value::return_type > &value_list) const
Definition: field.hh:403
Field< 3, FieldValue< 3 >::Scalar > porosity
Porosity of solid.
Definition: heat_model.hh:121
Field< 3, FieldValue< 3 >::Scalar > fluid_thermal_source
Thermal source in fluid.
Definition: heat_model.hh:141
arma::vec::fixed< spacedim > centre() const
Computes the barycenter.
virtual Record & derive_from(Abstract &parent)
Method to derive new Record from an AbstractRecord parent.
Definition: type_record.cc:196
Field< 3, FieldValue< 3 >::Scalar > fluid_heat_conductivity
Heat conductivity of fluid.
Definition: heat_model.hh:129
void get_flux_bc_sigma(unsigned int index, const std::vector< arma::vec3 > &point_list, const ElementAccessor< 3 > &ele_acc, std::vector< double > &bc_sigma) override
Return transition coefficient for flux b.c.
Definition: heat_model.cc:371
static Input::Type::Abstract & get_input_type()
Common specification of the input record for secondary equations.
#define FMT_UNUSED
Definition: posix.h:75
Field< 3, FieldValue< 3 >::Scalar > fluid_ref_temperature
Reference temperature in fluid.
Definition: heat_model.hh:149
void get_flux_bc_data(unsigned int index, const std::vector< arma::vec3 > &point_list, const ElementAccessor< 3 > &ele_acc, std::vector< double > &bc_flux, std::vector< double > &bc_sigma, std::vector< double > &bc_ref_value) override
Return data for diffusive or total flux b.c.
Definition: heat_model.cc:356
Field< 3, FieldValue< 3 >::Scalar > init_temperature
Initial temperature.
Definition: heat_model.hh:119
Field< 3, FieldValue< 3 >::Scalar > solid_thermal_source
Thermal source in solid.
Definition: heat_model.hh:143
void compute_mass_matrix_coefficient(const std::vector< arma::vec3 > &point_list, const ElementAccessor< 3 > &ele_acc, std::vector< double > &mm_coef) override
Definition: heat_model.cc:276
static UnitSI & W()
Returns Watt.
Definition: unit_si.cc:45
Accessor to the data with type Type::Record.
Definition: accessors.hh:292
const Ret val(const string &key) const
static UnitSI & J()
Returns Joule.
Definition: unit_si.cc:40
Mesh * mesh_
Definition: equation.hh:223
Selection & add_value(const int value, const std::string &key, const std::string &description="", TypeBase::attribute_map attributes=TypeBase::attribute_map())
Adds one new value with name given by key to the Selection.
virtual Value::return_type const & value(const Point &p, const ElementAccessor< spacedim > &elm) const
Definition: field.hh:389
std::shared_ptr< Balance > balance_
object for calculation and writing the mass balance to file.
Definition: equation.hh:235
Record & declare_key(const string &key, std::shared_ptr< TypeBase > type, const Default &default_value, const string &description, TypeBase::attribute_map key_attributes=TypeBase::attribute_map())
Declares a new key of the Record.
Definition: type_record.cc:503
Field< 3, FieldValue< 3 >::Scalar > solid_heat_conductivity
Heat conductivity of solid.
Definition: heat_model.hh:135
SubstanceList substances_
Transported substances.
Definition: heat_model.hh:270
static constexpr Mask in_rhs
A field is part of the right hand side of the equation.
Definition: field_flag.hh:51
Field< 3, FieldValue< 3 >::Scalar > solid_ref_temperature
Reference temperature in solid.
Definition: heat_model.hh:151
const Selection & close() const
Close the Selection, no more values can be added.
virtual ModelEqData & data()=0
Derived class should implement getter for ModelEqData instance.
void compute_init_cond(const std::vector< arma::vec3 > &point_list, const ElementAccessor< 3 > &ele_acc, std::vector< std::vector< double > > &init_values) override
Definition: heat_model.cc:339
void compute_advection_diffusion_coefficients(const std::vector< arma::vec3 > &point_list, const std::vector< arma::vec3 > &velocity, const ElementAccessor< 3 > &ele_acc, std::vector< std::vector< arma::vec3 > > &ad_coef, std::vector< std::vector< arma::mat33 > > &dif_coef) override
Definition: heat_model.cc:299
static const Input::Type::Record & get_input_type()
~HeatTransferModel() override
Definition: heat_model.cc:441
Field< 3, FieldValue< 3 >::Scalar > solid_density
Density of solid.
Definition: heat_model.hh:131
Discontinuous Galerkin method for equation of transport with dispersion.
HeatTransferModel(Mesh &mesh, const Input::Record in_rec)
Definition: heat_model.cc:251
void compute_sources_sigma(const std::vector< arma::vec3 > &point_list, const ElementAccessor< 3 > &ele_acc, std::vector< std::vector< double > > &sources_sigma) override
Definition: heat_model.cc:418
Record type proxy class.
Definition: type_record.hh:182
BCField< 3, FieldValue< 3 >::Scalar > bc_robin_sigma
Transition coefficient in total/diffusive flux b.c.
Definition: heat_model.hh:117
std::shared_ptr< OutputTime > output_stream_
Definition: heat_model.hh:282
Class for representation SI units of Fields.
Definition: unit_si.hh:40
static UnitSI & dimensionless()
Returns dimensionless unit.
Definition: unit_si.cc:55
Template for classes storing finite set of named values.
void compute_source_coefficients(const std::vector< arma::vec3 > &point_list, const ElementAccessor< 3 > &ele_acc, std::vector< std::vector< double > > &sources_conc, std::vector< std::vector< double > > &sources_density, std::vector< std::vector< double > > &sources_sigma) override
Definition: heat_model.cc:380
void output_data() override
Write computed fields.
Definition: heat_model.cc:270
Field< 3, FieldValue< 3 >::Scalar > disp_l
Longitudal heat dispersivity.
Definition: heat_model.hh:137
TimeGovernor * time_
Definition: equation.hh:224