Flow123d  release_3.0.0-695-g67d21c4
transport_dg.cc
Go to the documentation of this file.
1 /*!
2 *
3  * Copyright (C) 2015 Technical University of Liberec. All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or modify it under
6 * the terms of the GNU General Public License version 3 as published by the
7 * Free Software Foundation. (http://www.gnu.org/licenses/gpl-3.0.en.html)
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
11 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
12 *
13 *
14 * @file transport_dg.cc
15 * @brief Discontinuous Galerkin method for equation of transport with dispersion.
16 * @author Jan Stebel
17 */
18 
19 #include "system/sys_profiler.hh"
21 
22 #include "io/output_time.hh"
24 #include "fem/mapping_p1.hh"
25 #include "fem/fe_values.hh"
26 #include "fem/fe_p.hh"
27 #include "fem/fe_rt.hh"
28 #include "fem/dh_cell_accessor.hh"
29 #include "fields/field_fe.hh"
31 #include "la/linsys_PETSC.hh"
32 #include "flow/mh_dofhandler.hh"
35 #include "transport/heat_model.hh"
36 #include "coupling/balance.hh"
37 
38 #include "fields/multi_field.hh"
39 #include "fields/generic_field.hh"
40 #include "input/factory.hh"
42 #include "mesh/long_idx.hh"
43 #include "mesh/accessors.hh"
44 
45 FLOW123D_FORCE_LINK_IN_CHILD(concentrationTransportModel);
47 
48 
49 
50 using namespace Input::Type;
51 
52 template<class Model>
54  return Selection("DG_variant", "Type of penalty term.")
55  .add_value(non_symmetric, "non-symmetric", "non-symmetric weighted interior penalty DG method")
56  .add_value(incomplete, "incomplete", "incomplete weighted interior penalty DG method")
57  .add_value(symmetric, "symmetric", "symmetric weighted interior penalty DG method")
58  .close();
59 }
60 
61 /*
62 * Should be removed
63 template<class Model>
64 const Selection & TransportDG<Model>::EqData::get_output_selection() {
65  return Model::ModelEqData::get_output_selection_input_type(
66  "DG",
67  "Implicit in time Discontinuous Galerkin solver")
68  .copy_values(EqData().make_output_field_selection("").close())
69  ConvectionTransport::EqData().output_fields
70  .make_output_field_selection(
71  "ConvectionTransport_output_fields",
72  "Selection of output fields for Convection Solute Transport model.")
73  .close()),
74  .close();
75 }
76 */
77 
78 template<class Model>
80  std::string equation_name = std::string(Model::ModelEqData::name()) + "_DG";
81  return Model::get_input_type("DG", "Discontinuous Galerkin (DG) solver")
83  "Solver for the linear system.")
84  .declare_key("input_fields", Array(
86  .make_field_descriptor_type(equation_name)),
88  "Input fields of the equation.")
90  "Variant of the interior penalty discontinuous Galerkin method.")
91  .declare_key("dg_order", Integer(0,3), Default("1"),
92  "Polynomial order for the finite element in DG method (order 0 is suitable if there is no diffusion/dispersion).")
93  .declare_key("output",
94  EqData().output_fields.make_output_type(equation_name, ""),
95  IT::Default("{ \"fields\": [ " + Model::ModelEqData::default_output_field() + "] }"),
96  "Specification of output fields and output times.")
97  .close();
98 }
99 
100 template<class Model>
102  Input::register_class< TransportDG<Model>, Mesh &, const Input::Record>(std::string(Model::ModelEqData::name()) + "_DG") +
104 
105 
106 
107 
108 FEObjects::FEObjects(Mesh *mesh_, unsigned int fe_order)
109 {
110  unsigned int q_order;
111 
112  q_order = 2*fe_order;
113  fe0_ = new FE_P_disc<0>(fe_order);
114  fe1_ = new FE_P_disc<1>(fe_order);
115  fe2_ = new FE_P_disc<2>(fe_order);
116  fe3_ = new FE_P_disc<3>(fe_order);
117 
118  fe_rt1_ = new FE_RT0<1>;
119  fe_rt2_ = new FE_RT0<2>;
120  fe_rt3_ = new FE_RT0<3>;
121 
122  q0_ = new QGauss<0>(q_order);
123  q1_ = new QGauss<1>(q_order);
124  q2_ = new QGauss<2>(q_order);
125  q3_ = new QGauss<3>(q_order);
126 
127  map1_ = new MappingP1<1,3>;
128  map2_ = new MappingP1<2,3>;
129  map3_ = new MappingP1<3,3>;
130 
131  ds_ = std::make_shared<EqualOrderDiscreteSpace>(mesh_, fe0_, fe1_, fe2_, fe3_);
132  dh_ = std::make_shared<DOFHandlerMultiDim>(*mesh_);
133 
134  dh_->distribute_dofs(ds_);
135 }
136 
137 
139 {
140  delete fe0_;
141  delete fe1_;
142  delete fe2_;
143  delete fe3_;
144  delete fe_rt1_;
145  delete fe_rt2_;
146  delete fe_rt3_;
147  delete q0_;
148  delete q1_;
149  delete q2_;
150  delete q3_;
151  delete map1_;
152  delete map2_;
153  delete map3_;
154 }
155 
156 template<> FiniteElement<0> *FEObjects::fe<0>() { return fe0_; }
157 template<> FiniteElement<1> *FEObjects::fe<1>() { return fe1_; }
158 template<> FiniteElement<2> *FEObjects::fe<2>() { return fe2_; }
159 template<> FiniteElement<3> *FEObjects::fe<3>() { return fe3_; }
160 
161 template<> FiniteElement<0> *FEObjects::fe_rt<0>() { return 0; }
162 template<> FiniteElement<1> *FEObjects::fe_rt<1>() { return fe_rt1_; }
163 template<> FiniteElement<2> *FEObjects::fe_rt<2>() { return fe_rt2_; }
164 template<> FiniteElement<3> *FEObjects::fe_rt<3>() { return fe_rt3_; }
165 
166 template<> Quadrature<0> *FEObjects::q<0>() { return q0_; }
167 template<> Quadrature<1> *FEObjects::q<1>() { return q1_; }
168 template<> Quadrature<2> *FEObjects::q<2>() { return q2_; }
169 template<> Quadrature<3> *FEObjects::q<3>() { return q3_; }
170 
171 template<> MappingP1<1,3> *FEObjects::mapping<1>() { return map1_; }
172 template<> MappingP1<2,3> *FEObjects::mapping<2>() { return map2_; }
173 template<> MappingP1<3,3> *FEObjects::mapping<3>() { return map3_; }
174 
175 std::shared_ptr<DOFHandlerMultiDim> FEObjects::dh() { return dh_; }
176 
177 
178 template<class Model>
179 TransportDG<Model>::EqData::EqData() : Model::ModelEqData()
180 {
181  *this+=fracture_sigma
182  .name("fracture_sigma")
183  .description(
184  "Coefficient of diffusive transfer through fractures (for each substance).")
186  .input_default("1.0")
188 
189  *this+=dg_penalty
190  .name("dg_penalty")
191  .description(
192  "Penalty parameter influencing the discontinuity of the solution (for each substance). "
193  "Its default value 1 is sufficient in most cases. Higher value diminishes the inter-element jumps.")
195  .input_default("1.0")
197 
198  *this += region_id.name("region_id")
201  .description("Region ids.");
202 
203  *this += subdomain.name("subdomain")
206  .description("Subdomain ids of the domain decomposition.");
207 
208 
209  // add all input fields to the output list
210  output_fields += *this;
211 
212 }
213 
214 template<class Model>
216  : Model(init_mesh, in_rec),
217  input_rec(in_rec),
218  allocation_done(false)
219 {
220  // Can not use name() + "constructor" here, since START_TIMER only accepts const char *
221  // due to constexpr optimization.
222  START_TIMER(Model::ModelEqData::name());
223  // Check that Model is derived from AdvectionDiffusionModel.
225 
226  this->eq_data_ = &data_;
227 
228 
229  // Set up physical parameters.
230  data_.set_mesh(init_mesh);
231  data_.region_id = GenericField<3>::region_id(*Model::mesh_);
232  data_.subdomain = GenericField<3>::subdomain(*Model::mesh_);
233 
234 
235  // DG variant and order
236  dg_variant = in_rec.val<DGVariant>("dg_variant");
237  dg_order = in_rec.val<unsigned int>("dg_order");
238 
239  Model::init_from_input(in_rec);
240 
241  // create finite element structures and distribute DOFs
242  feo = new FEObjects(Model::mesh_, dg_order);
243  //DebugOut().fmt("TDG: solution size {}\n", feo->dh()->n_global_dofs());
244 
245 }
246 
247 
248 template<class Model>
250 {
251  data_.set_components(Model::substances_.names());
252  data_.set_input_list( input_rec.val<Input::Array>("input_fields"), *(Model::time_) );
253 
254  // DG stabilization parameters on boundary edges
255  gamma.resize(Model::n_substances());
256  for (unsigned int sbi=0; sbi<Model::n_substances(); sbi++)
257  gamma[sbi].resize(Model::mesh_->boundary_.size());
258 
259  // Resize coefficient arrays
260  int qsize = max(feo->q<0>()->size(), max(feo->q<1>()->size(), max(feo->q<2>()->size(), feo->q<3>()->size())));
261  int max_edg_sides = max(Model::mesh_->max_edge_sides(1), max(Model::mesh_->max_edge_sides(2), Model::mesh_->max_edge_sides(3)));
262  mm_coef.resize(qsize);
263  ret_coef.resize(Model::n_substances());
264  ret_sources.resize(Model::n_substances());
265  ret_sources_prev.resize(Model::n_substances());
266  ad_coef.resize(Model::n_substances());
267  dif_coef.resize(Model::n_substances());
268  for (unsigned int sbi=0; sbi<Model::n_substances(); sbi++)
269  {
270  ret_coef[sbi].resize(qsize);
271  ad_coef[sbi].resize(qsize);
272  dif_coef[sbi].resize(qsize);
273  }
274  ad_coef_edg.resize(max_edg_sides);
275  dif_coef_edg.resize(max_edg_sides);
276  for (int sd=0; sd<max_edg_sides; sd++)
277  {
278  ad_coef_edg[sd].resize(Model::n_substances());
279  dif_coef_edg[sd].resize(Model::n_substances());
280  for (unsigned int sbi=0; sbi<Model::n_substances(); sbi++)
281  {
282  ad_coef_edg[sd][sbi].resize(qsize);
283  dif_coef_edg[sd][sbi].resize(qsize);
284  }
285  }
286 
287  output_vec.resize(Model::n_substances());
288  //output_solution.resize(Model::n_substances());
289  int rank;
290  MPI_Comm_rank(PETSC_COMM_WORLD, &rank);
291  unsigned int output_vector_size= (rank==0)?feo->dh()->n_global_dofs():0;
292  for (unsigned int sbi=0; sbi<Model::n_substances(); sbi++)
293  {
294  // for each substance we allocate output array and vector
295  //output_solution[sbi] = new double[feo->dh()->n_global_dofs()];
296  output_vec[sbi].resize(output_vector_size);
297  }
298  data_.output_field.set_components(Model::substances_.names());
299  data_.output_field.set_mesh(*Model::mesh_);
300  data_.output_type(OutputTime::CORNER_DATA);
301 
302  data_.output_field.setup_components();
303  for (unsigned int sbi=0; sbi<Model::n_substances(); sbi++)
304  {
305  // create shared pointer to a FieldFE, pass FE data and push this FieldFE to output_field on all regions
306  std::shared_ptr<FieldFE<3, FieldValue<3>::Scalar> > output_field_ptr(new FieldFE<3, FieldValue<3>::Scalar>);
307  output_field_ptr->set_fe_data(feo->dh()->sequential(), 0, &output_vec[sbi]);
308  data_.output_field[sbi].set_field(Model::mesh_->region_db().get_region_set("ALL"), output_field_ptr, 0);
309  }
310 
311  // set time marks for writing the output
312  data_.output_fields.initialize(Model::output_stream_, Model::mesh_, input_rec.val<Input::Record>("output"), this->time());
313 
314  // equation default PETSc solver options
315  std::string petsc_default_opts;
316  if (feo->dh()->distr()->np() == 1)
317  petsc_default_opts = "-ksp_type bcgs -pc_type ilu -pc_factor_levels 2 -ksp_diagonal_scale_fix -pc_factor_fill 6.0";
318  else
319  petsc_default_opts = "-ksp_type bcgs -ksp_diagonal_scale_fix -pc_type asm -pc_asm_overlap 4 -sub_pc_type ilu -sub_pc_factor_levels 3 -sub_pc_factor_fill 6.0";
320 
321  // allocate matrix and vector structures
322  ls = new LinSys*[Model::n_substances()];
323  ls_dt = new LinSys*[Model::n_substances()];
324  solution_elem_ = new double*[Model::n_substances()];
325 
326  stiffness_matrix.resize(Model::n_substances(), nullptr);
327  mass_matrix.resize(Model::n_substances(), nullptr);
328  rhs.resize(Model::n_substances(), nullptr);
329  mass_vec.resize(Model::n_substances(), nullptr);
330  ret_vec.resize(Model::n_substances(), nullptr);
331 
332  for (unsigned int sbi = 0; sbi < Model::n_substances(); sbi++) {
333  ls[sbi] = new LinSys_PETSC(feo->dh()->distr().get(), petsc_default_opts);
334  ( (LinSys_PETSC *)ls[sbi] )->set_from_input( input_rec.val<Input::Record>("solver") );
335  ls[sbi]->set_solution(NULL);
336 
337  ls_dt[sbi] = new LinSys_PETSC(feo->dh()->distr().get(), petsc_default_opts);
338  ( (LinSys_PETSC *)ls_dt[sbi] )->set_from_input( input_rec.val<Input::Record>("solver") );
339  solution_elem_[sbi] = new double[Model::mesh_->get_el_ds()->lsize()];
340 
341  VecDuplicate(ls[sbi]->get_solution(), &ret_vec[sbi]);
342  }
343 
344 
345  // initialization of balance object
346  Model::balance_->allocate(feo->dh()->distr()->lsize(),
347  max(feo->fe<1>()->n_dofs(), max(feo->fe<2>()->n_dofs(), feo->fe<3>()->n_dofs())));
348 
349 }
350 
351 
352 template<class Model>
354 {
355  delete Model::time_;
356 
357  if (gamma.size() > 0) {
358  // initialize called
359 
360  for (unsigned int i=0; i<Model::n_substances(); i++)
361  {
362  delete ls[i];
363  delete[] solution_elem_[i];
364  delete ls_dt[i];
365 
366  if (stiffness_matrix[i])
367  chkerr(MatDestroy(&stiffness_matrix[i]));
368  if (mass_matrix[i])
369  chkerr(MatDestroy(&mass_matrix[i]));
370  if (rhs[i])
371  chkerr(VecDestroy(&rhs[i]));
372  if (mass_vec[i])
373  chkerr(VecDestroy(&mass_vec[i]));
374  if (ret_vec[i])
375  chkerr(VecDestroy(&ret_vec[i]));
376  }
377  delete[] ls;
378  delete[] solution_elem_;
379  delete[] ls_dt;
380  //delete[] stiffness_matrix;
381  //delete[] mass_matrix;
382  //delete[] rhs;
383  //delete[] mass_vec;
384  //delete[] ret_vec;
385  delete feo;
386 
387  }
388 
389 }
390 
391 
392 template<class Model>
394 {
395  VecScatter output_scatter;
396  VecScatterCreateToZero(ls[0]->get_solution(), &output_scatter, PETSC_NULL);
397  for (unsigned int sbi=0; sbi<Model::n_substances(); sbi++)
398  {
399  // gather solution to output_vec[sbi]
400  VecScatterBegin(output_scatter, ls[sbi]->get_solution(), (output_vec[sbi]).petsc_vec(), INSERT_VALUES, SCATTER_FORWARD);
401  VecScatterEnd(output_scatter, ls[sbi]->get_solution(), (output_vec[sbi]).petsc_vec(), INSERT_VALUES, SCATTER_FORWARD);
402  }
403  chkerr(VecScatterDestroy(&(output_scatter)));
404 
405 }
406 
407 
408 
409 template<class Model>
411 {
412  START_TIMER(Model::ModelEqData::name());
413  data_.mark_input_times( *(Model::time_) );
414  data_.set_time(Model::time_->step(), LimitSide::left);
415  std::stringstream ss; // print warning message with table of uninitialized fields
416  if ( FieldCommon::print_message_table(ss, "transport DG") ) {
417  WarningOut() << ss.str();
418  }
419 
420 
421  // set initial conditions
423  for (unsigned int sbi = 0; sbi < Model::n_substances(); sbi++)
424  ( (LinSys_PETSC *)ls[sbi] )->set_initial_guess_nonzero();
425 
426  // check first time assembly - needs preallocation
428 
429  // after preallocation we assemble the matrices and vectors required for mass balance
430  for (unsigned int sbi=0; sbi<Model::n_substances(); ++sbi)
431  {
432  Model::balance_->calculate_instant(Model::subst_idx[sbi], ls[sbi]->get_solution());
433 
434  // add sources due to sorption
435  ret_sources_prev[sbi] = 0;
436  }
437 
438  output_data();
439 }
440 
441 
442 template<class Model>
444 {
445  // preallocate system matrix
446  for (unsigned int i=0; i<Model::n_substances(); i++)
447  {
448  // preallocate system matrix
449  ls[i]->start_allocation();
450  stiffness_matrix[i] = NULL;
451  rhs[i] = NULL;
452 
453  // preallocate mass matrix
454  ls_dt[i]->start_allocation();
455  mass_matrix[i] = NULL;
456  VecZeroEntries(ret_vec[i]);
457  }
460  set_sources();
462  for (unsigned int i=0; i<Model::n_substances(); i++)
463  {
464  VecAssemblyBegin(ret_vec[i]);
465  VecAssemblyEnd(ret_vec[i]);
466  }
467 
468  allocation_done = true;
469 }
470 
471 
472 
473 template<class Model>
475 {
476  START_TIMER("DG-ONE STEP");
477 
478  Model::time_->next_time();
479  Model::time_->view("TDG");
480 
481  START_TIMER("data reinit");
482  data_.set_time(Model::time_->step(), LimitSide::left);
483  END_TIMER("data reinit");
484 
485  // assemble mass matrix
486  if (mass_matrix[0] == NULL || data_.subset(FieldFlag::in_time_term).changed() )
487  {
488  for (unsigned int i=0; i<Model::n_substances(); i++)
489  {
491  ls_dt[i]->mat_zero_entries();
492  VecZeroEntries(ret_vec[i]);
493  }
495  for (unsigned int i=0; i<Model::n_substances(); i++)
496  {
497  ls_dt[i]->finish_assembly();
498  VecAssemblyBegin(ret_vec[i]);
499  VecAssemblyEnd(ret_vec[i]);
500  // construct mass_vec for initial time
501  if (mass_matrix[i] == NULL)
502  {
503  VecDuplicate(ls[i]->get_solution(), &mass_vec[i]);
504  MatMult(*(ls_dt[i]->get_matrix()), ls[i]->get_solution(), mass_vec[i]);
505  MatConvert(*( ls_dt[i]->get_matrix() ), MATSAME, MAT_INITIAL_MATRIX, &mass_matrix[i]);
506  }
507  else
508  MatCopy(*( ls_dt[i]->get_matrix() ), mass_matrix[i], DIFFERENT_NONZERO_PATTERN);
509  }
510  }
511 
512  // assemble stiffness matrix
513  if (stiffness_matrix[0] == NULL
514  || data_.subset(FieldFlag::in_main_matrix).changed()
515  || Model::flux_changed)
516  {
517  // new fluxes can change the location of Neumann boundary,
518  // thus stiffness matrix must be reassembled
519  for (unsigned int i=0; i<Model::n_substances(); i++)
520  {
521  ls[i]->start_add_assembly();
522  ls[i]->mat_zero_entries();
523  }
525  for (unsigned int i=0; i<Model::n_substances(); i++)
526  {
527  ls[i]->finish_assembly();
528 
529  if (stiffness_matrix[i] == NULL)
530  MatConvert(*( ls[i]->get_matrix() ), MATSAME, MAT_INITIAL_MATRIX, &stiffness_matrix[i]);
531  else
532  MatCopy(*( ls[i]->get_matrix() ), stiffness_matrix[i], DIFFERENT_NONZERO_PATTERN);
533  }
534  }
535 
536  // assemble right hand side (due to sources and boundary conditions)
537  if (rhs[0] == NULL
538  || data_.subset(FieldFlag::in_rhs).changed()
539  || Model::flux_changed)
540  {
541  for (unsigned int i=0; i<Model::n_substances(); i++)
542  {
543  ls[i]->start_add_assembly();
544  ls[i]->rhs_zero_entries();
545  }
546  set_sources();
548  for (unsigned int i=0; i<Model::n_substances(); i++)
549  {
550  ls[i]->finish_assembly();
551 
552  if (rhs[i] == nullptr) VecDuplicate(*( ls[i]->get_rhs() ), &rhs[i]);
553  VecCopy(*( ls[i]->get_rhs() ), rhs[i]);
554  }
555  }
556 
557  Model::flux_changed = false;
558 
559 
560  /* Apply backward Euler time integration.
561  *
562  * Denoting A the stiffness matrix and M the mass matrix, the algebraic system at the k-th time level reads
563  *
564  * (1/dt M + A)u^k = f + 1/dt M.u^{k-1}
565  *
566  * Hence we modify at each time level the right hand side:
567  *
568  * f^k = f + 1/dt M u^{k-1},
569  *
570  * where f stands for the term stemming from the force and boundary conditions.
571  * Accordingly, we set
572  *
573  * A^k = A + 1/dt M.
574  *
575  */
576  Mat m;
577  START_TIMER("solve");
578  for (unsigned int i=0; i<Model::n_substances(); i++)
579  {
580  MatConvert(stiffness_matrix[i], MATSAME, MAT_INITIAL_MATRIX, &m);
581  MatAXPY(m, 1./Model::time_->dt(), mass_matrix[i], SUBSET_NONZERO_PATTERN);
582  ls[i]->set_matrix(m, DIFFERENT_NONZERO_PATTERN);
583  Vec w;
584  VecDuplicate(rhs[i], &w);
585  VecWAXPY(w, 1./Model::time_->dt(), mass_vec[i], rhs[i]);
586  ls[i]->set_rhs(w);
587 
588  VecDestroy(&w);
589  chkerr(MatDestroy(&m));
590 
591  ls[i]->solve();
592 
593  // update mass_vec due to possible changes in mass matrix
594  MatMult(*(ls_dt[i]->get_matrix()), ls[i]->get_solution(), mass_vec[i]);
595  }
596  END_TIMER("solve");
597 
599 
600  END_TIMER("DG-ONE STEP");
601 }
602 
603 
604 template<class Model>
606 {
607  // calculate element averages of solution
608  unsigned int i_cell=0;
609  for (auto cell : feo->dh()->own_range() )
610  {
611 
612  unsigned int n_dofs;
613  switch (cell.dim())
614  {
615  case 1:
616  n_dofs = feo->fe<1>()->n_dofs();
617  break;
618  case 2:
619  n_dofs = feo->fe<2>()->n_dofs();
620  break;
621  case 3:
622  n_dofs = feo->fe<3>()->n_dofs();
623  break;
624  }
625 
626  std::vector<LongIdx> dof_indices(n_dofs);
627  cell.get_dof_indices(dof_indices);
628 
629  for (unsigned int sbi=0; sbi<Model::n_substances(); ++sbi)
630  {
631  solution_elem_[sbi][i_cell] = 0;
632 
633  for (unsigned int j=0; j<n_dofs; ++j)
634  solution_elem_[sbi][i_cell] += ls[sbi]->get_solution_array()[dof_indices[j]-feo->dh()->distr()->begin()];
635 
636  solution_elem_[sbi][i_cell] = max(solution_elem_[sbi][i_cell]/n_dofs, 0.);
637  }
638  ++i_cell;
639  }
640 }
641 
642 
643 
644 
645 template<class Model>
647 {
648  //if (!Model::time_->is_current( Model::time_->marks().type_output() )) return;
649 
650 
651  START_TIMER("DG-OUTPUT");
652 
653  // gather the solution from all processors
654  data_.output_fields.set_time( this->time().step(), LimitSide::left);
655  //if (data_.output_fields.is_field_output_time(data_.output_field, this->time().step()) )
657  data_.output_fields.output(this->time().step());
658 
659  Model::output_data();
660 
661  START_TIMER("TOS-balance");
662  for (unsigned int sbi=0; sbi<Model::n_substances(); ++sbi)
663  Model::balance_->calculate_instant(Model::subst_idx[sbi], ls[sbi]->get_solution());
664  Model::balance_->output();
665  END_TIMER("TOS-balance");
666 
667  END_TIMER("DG-OUTPUT");
668 }
669 
670 
671 template<class Model>
673 {
674  if (Model::balance_->cumulative())
675  {
676  for (unsigned int sbi=0; sbi<Model::n_substances(); ++sbi)
677  {
678  Model::balance_->calculate_cumulative(Model::subst_idx[sbi], ls[sbi]->get_solution());
679 
680  // update source increment due to retardation
681  VecDot(ret_vec[sbi], ls[sbi]->get_solution(), &ret_sources[sbi]);
682 
683  Model::balance_->add_cumulative_source(Model::subst_idx[sbi], (ret_sources[sbi]-ret_sources_prev[sbi])/Model::time_->dt());
684  ret_sources_prev[sbi] = ret_sources[sbi];
685  }
686  }
687 }
688 
689 
690 template<class Model>
692 {
693  START_TIMER("assemble_mass");
694  Model::balance_->start_mass_assembly(Model::subst_idx);
695  assemble_mass_matrix<1>();
696  assemble_mass_matrix<2>();
697  assemble_mass_matrix<3>();
698  Model::balance_->finish_mass_assembly(Model::subst_idx);
699  END_TIMER("assemble_mass");
700 }
701 
702 
703 template<class Model> template<unsigned int dim>
705 {
706  FEValues<dim,3> fe_values(*feo->mapping<dim>(), *feo->q<dim>(), *feo->fe<dim>(), update_values | update_JxW_values | update_quadrature_points);
707  const unsigned int ndofs = feo->fe<dim>()->n_dofs(), qsize = feo->q<dim>()->size();
708  vector<LongIdx> dof_indices(ndofs);
709  PetscScalar local_mass_matrix[ndofs*ndofs], local_retardation_balance_vector[ndofs];
710  vector<PetscScalar> local_mass_balance_vector(ndofs);
711 
712  // assemble integral over elements
713  for (auto cell : feo->dh()->own_range() )
714  {
715  if (cell.dim() != dim) continue;
716  ElementAccessor<3> elm = cell.elm();
717 
718  fe_values.reinit(elm);
719  cell.get_dof_indices(dof_indices);
720 
721  Model::compute_mass_matrix_coefficient(fe_values.point_list(), elm, mm_coef);
722  Model::compute_retardation_coefficient(fe_values.point_list(), elm, ret_coef);
723 
724  for (unsigned int sbi=0; sbi<Model::n_substances(); ++sbi)
725  {
726  // assemble the local mass matrix
727  for (unsigned int i=0; i<ndofs; i++)
728  {
729  for (unsigned int j=0; j<ndofs; j++)
730  {
731  local_mass_matrix[i*ndofs+j] = 0;
732  for (unsigned int k=0; k<qsize; k++)
733  local_mass_matrix[i*ndofs+j] += (mm_coef[k]+ret_coef[sbi][k])*fe_values.shape_value(j,k)*fe_values.shape_value(i,k)*fe_values.JxW(k);
734  }
735  }
736 
737  for (unsigned int i=0; i<ndofs; i++)
738  {
739  local_mass_balance_vector[i] = 0;
740  local_retardation_balance_vector[i] = 0;
741  for (unsigned int k=0; k<qsize; k++)
742  {
743  local_mass_balance_vector[i] += mm_coef[k]*fe_values.shape_value(i,k)*fe_values.JxW(k);
744  local_retardation_balance_vector[i] -= ret_coef[sbi][k]*fe_values.shape_value(i,k)*fe_values.JxW(k);
745  }
746  }
747 
748  Model::balance_->add_mass_matrix_values(Model::subst_idx[sbi], elm.region().bulk_idx(), dof_indices, local_mass_balance_vector);
749  ls_dt[sbi]->mat_set_values(ndofs, &(dof_indices[0]), ndofs, &(dof_indices[0]), local_mass_matrix);
750  VecSetValues(ret_vec[sbi], ndofs, &(dof_indices[0]), local_retardation_balance_vector, ADD_VALUES);
751  }
752  }
753 }
754 
755 
756 
757 
758 template<class Model>
760 {
761  START_TIMER("assemble_stiffness");
762  START_TIMER("assemble_volume_integrals");
763  assemble_volume_integrals<1>();
764  assemble_volume_integrals<2>();
765  assemble_volume_integrals<3>();
766  END_TIMER("assemble_volume_integrals");
767 
768  START_TIMER("assemble_fluxes_boundary");
769  assemble_fluxes_boundary<1>();
770  assemble_fluxes_boundary<2>();
771  assemble_fluxes_boundary<3>();
772  END_TIMER("assemble_fluxes_boundary");
773 
774  START_TIMER("assemble_fluxes_elem_elem");
775  assemble_fluxes_element_element<1>();
776  assemble_fluxes_element_element<2>();
777  assemble_fluxes_element_element<3>();
778  END_TIMER("assemble_fluxes_elem_elem");
779 
780  START_TIMER("assemble_fluxes_elem_side");
781  assemble_fluxes_element_side<1>();
782  assemble_fluxes_element_side<2>();
783  assemble_fluxes_element_side<3>();
784  END_TIMER("assemble_fluxes_elem_side");
785  END_TIMER("assemble_stiffness");
786 }
787 
788 
789 
790 template<class Model>
791 template<unsigned int dim>
793 {
794  FEValues<dim,3> fv_rt(*feo->mapping<dim>(), *feo->q<dim>(), *feo->fe_rt<dim>(),
796  FEValues<dim,3> fe_values(*feo->mapping<dim>(), *feo->q<dim>(), *feo->fe<dim>(),
798  const unsigned int ndofs = feo->fe<dim>()->n_dofs(), qsize = feo->q<dim>()->size();
799  std::vector<LongIdx> dof_indices(ndofs);
800  vector<arma::vec3> velocity(qsize);
801  vector<vector<double> > sources_sigma(Model::n_substances(), std::vector<double>(qsize));
802  PetscScalar local_matrix[ndofs*ndofs];
803 
804  // assemble integral over elements
805  for (auto cell : feo->dh()->own_range() )
806  {
807  if (cell.dim() != dim) continue;
808  ElementAccessor<3> elm = cell.elm();
809 
810  fe_values.reinit(elm);
811  fv_rt.reinit(elm);
812  cell.get_dof_indices(dof_indices);
813 
814  calculate_velocity(elm, velocity, fv_rt);
815  Model::compute_advection_diffusion_coefficients(fe_values.point_list(), velocity, elm, ad_coef, dif_coef);
816  Model::compute_sources_sigma(fe_values.point_list(), elm, sources_sigma);
817 
818  // assemble the local stiffness matrix
819  for (unsigned int sbi=0; sbi<Model::n_substances(); sbi++)
820  {
821  for (unsigned int i=0; i<ndofs; i++)
822  for (unsigned int j=0; j<ndofs; j++)
823  local_matrix[i*ndofs+j] = 0;
824 
825  for (unsigned int k=0; k<qsize; k++)
826  {
827  for (unsigned int i=0; i<ndofs; i++)
828  {
829  arma::vec3 Kt_grad_i = dif_coef[sbi][k].t()*fe_values.shape_grad(i,k);
830  double ad_dot_grad_i = arma::dot(ad_coef[sbi][k], fe_values.shape_grad(i,k));
831 
832  for (unsigned int j=0; j<ndofs; j++)
833  local_matrix[i*ndofs+j] += (arma::dot(Kt_grad_i, fe_values.shape_grad(j,k))
834  -fe_values.shape_value(j,k)*ad_dot_grad_i
835  +sources_sigma[sbi][k]*fe_values.shape_value(j,k)*fe_values.shape_value(i,k))*fe_values.JxW(k);
836  }
837  }
838  ls[sbi]->mat_set_values(ndofs, &(dof_indices[0]), ndofs, &(dof_indices[0]), local_matrix);
839  }
840  }
841 }
842 
843 
844 template<class Model>
846 {
847  START_TIMER("assemble_sources");
848  Model::balance_->start_source_assembly(Model::subst_idx);
849  set_sources<1>();
850  set_sources<2>();
851  set_sources<3>();
852  Model::balance_->finish_source_assembly(Model::subst_idx);
853  END_TIMER("assemble_sources");
854 }
855 
856 template<class Model>
857 template<unsigned int dim>
859 {
860  FEValues<dim,3> fe_values(*feo->mapping<dim>(), *feo->q<dim>(), *feo->fe<dim>(),
862  const unsigned int ndofs = feo->fe<dim>()->n_dofs(), qsize = feo->q<dim>()->size();
863  vector<std::vector<double> > sources_conc(Model::n_substances(), std::vector<double>(qsize)),
864  sources_density(Model::n_substances(), std::vector<double>(qsize)),
865  sources_sigma(Model::n_substances(), std::vector<double>(qsize));
866  vector<LongIdx> dof_indices(ndofs);
867  PetscScalar local_rhs[ndofs];
868  vector<PetscScalar> local_source_balance_vector(ndofs), local_source_balance_rhs(ndofs);
869  double source;
870 
871  // assemble integral over elements
872  for (auto cell : feo->dh()->own_range() )
873  {
874  if (cell.dim() != dim) continue;
875  ElementAccessor<3> elm = cell.elm();
876 
877  fe_values.reinit(elm);
878  cell.get_dof_indices(dof_indices);
879 
880  Model::compute_source_coefficients(fe_values.point_list(), elm, sources_conc, sources_density, sources_sigma);
881 
882  // assemble the local stiffness matrix
883  for (unsigned int sbi=0; sbi<Model::n_substances(); sbi++)
884  {
885  fill_n(local_rhs, ndofs, 0);
886  local_source_balance_vector.assign(ndofs, 0);
887  local_source_balance_rhs.assign(ndofs, 0);
888 
889  // compute sources
890  for (unsigned int k=0; k<qsize; k++)
891  {
892  source = (sources_density[sbi][k] + sources_conc[sbi][k]*sources_sigma[sbi][k])*fe_values.JxW(k);
893 
894  for (unsigned int i=0; i<ndofs; i++)
895  local_rhs[i] += source*fe_values.shape_value(i,k);
896  }
897  ls[sbi]->rhs_set_values(ndofs, &(dof_indices[0]), local_rhs);
898 
899  for (unsigned int i=0; i<ndofs; i++)
900  {
901  for (unsigned int k=0; k<qsize; k++)
902  local_source_balance_vector[i] -= sources_sigma[sbi][k]*fe_values.shape_value(i,k)*fe_values.JxW(k);
903 
904  local_source_balance_rhs[i] += local_rhs[i];
905  }
906  Model::balance_->add_source_matrix_values(Model::subst_idx[sbi], elm.region().bulk_idx(), dof_indices, local_source_balance_vector);
907  Model::balance_->add_source_vec_values(Model::subst_idx[sbi], elm.region().bulk_idx(), dof_indices, local_source_balance_rhs);
908  }
909  }
910 }
911 
912 
913 
914 template<class Model>
915 template<unsigned int dim>
917 {
918  vector<FESideValues<dim,3>*> fe_values;
919  FESideValues<dim,3> fsv_rt(*feo->mapping<dim>(), *feo->q<dim-1>(), *feo->fe_rt<dim>(),
920  update_values);
921  const unsigned int ndofs = feo->fe<dim>()->n_dofs(), qsize = feo->q<dim-1>()->size(),
922  n_max_sides = ad_coef_edg.size();
923  vector< vector<LongIdx> > side_dof_indices;
924  PetscScalar local_matrix[ndofs*ndofs];
925  vector<vector<arma::vec3> > side_velocity(n_max_sides);
926  vector<vector<double> > dg_penalty(n_max_sides);
927  double gamma_l, omega[2], transport_flux;
928 
929  for (unsigned int sid=0; sid<n_max_sides; sid++) // Optimize: SWAP LOOPS
930  {
931  side_dof_indices.push_back( vector<LongIdx>(ndofs) );
932  fe_values.push_back(new FESideValues<dim,3>(*feo->mapping<dim>(), *feo->q<dim-1>(), *feo->fe<dim>(),
934  }
935 
936  // assemble integral over sides
937  for (unsigned int iedg=0; iedg<feo->dh()->n_loc_edges(); iedg++)
938  {
939  Edge *edg = &Model::mesh_->edges[feo->dh()->edge_index(iedg)];
940  if (edg->n_sides < 2 || edg->side(0)->element()->dim() != dim) continue;
941 
942  for (int sid=0; sid<edg->n_sides; sid++)
943  {
944  auto dh_cell = feo->dh()->cell_accessor_from_element( edg->side(sid)->element().idx() );
945  ElementAccessor<3> cell = dh_cell.elm(); //Model::mesh_->element_accessor( edg->side(sid)->element().idx() );
946  dh_cell.get_dof_indices(side_dof_indices[sid]);
947  fe_values[sid]->reinit(cell, edg->side(sid)->side_idx());
948  fsv_rt.reinit(cell, edg->side(sid)->side_idx());
949  calculate_velocity(cell, side_velocity[sid], fsv_rt);
950  Model::compute_advection_diffusion_coefficients(fe_values[sid]->point_list(), side_velocity[sid], cell, ad_coef_edg[sid], dif_coef_edg[sid]);
951  dg_penalty[sid].resize(Model::n_substances());
952  for (unsigned int sbi=0; sbi<Model::n_substances(); sbi++)
953  dg_penalty[sid][sbi] = data_.dg_penalty[sbi].value(cell.centre(), cell);
954  }
955 
956  // fluxes and penalty
957  for (unsigned int sbi=0; sbi<Model::n_substances(); sbi++)
958  {
959  vector<double> fluxes(edg->n_sides);
960  for (int sid=0; sid<edg->n_sides; sid++)
961  {
962  fluxes[sid] = 0;
963  for (unsigned int k=0; k<qsize; k++)
964  fluxes[sid] += arma::dot(ad_coef_edg[sid][sbi][k], fe_values[sid]->normal_vector(k))*fe_values[sid]->JxW(k);
965  fluxes[sid] /= edg->side(sid)->measure();
966  }
967 
968  for (int s1=0; s1<edg->n_sides; s1++)
969  {
970  for (int s2=s1+1; s2<edg->n_sides; s2++)
971  {
972  OLD_ASSERT(edg->side(s1)->valid(), "Invalid side of edge.");
973  if (!feo->dh()->el_is_local( edg->side(s1)->element().idx() )
974  && !feo->dh()->el_is_local( edg->side(s2)->element().idx() )) continue;
975 
976  arma::vec3 nv = fe_values[s1]->normal_vector(0);
977 
978  // set up the parameters for DG method
979  set_DG_parameters_edge(*edg, s1, s2, qsize, dif_coef_edg[s1][sbi], dif_coef_edg[s2][sbi], fluxes, fe_values[0]->normal_vector(0), dg_penalty[s1][sbi], dg_penalty[s2][sbi], gamma_l, omega, transport_flux);
980 
981  int sd[2];
982  sd[0] = s1;
983  sd[1] = s2;
984 
985 #define AVERAGE(i,k,side_id) (fe_values[sd[side_id]]->shape_value(i,k)*0.5)
986 #define WAVERAGE(i,k,side_id) (arma::dot(dif_coef_edg[sd[side_id]][sbi][k]*fe_values[sd[side_id]]->shape_grad(i,k),nv)*omega[side_id])
987 #define JUMP(i,k,side_id) ((side_id==0?1:-1)*fe_values[sd[side_id]]->shape_value(i,k))
988 
989  // For selected pair of elements:
990  for (int n=0; n<2; n++)
991  {
992  if (!feo->dh()->el_is_local( edg->side(sd[n])->element().idx() )) continue;
993 
994  for (int m=0; m<2; m++)
995  {
996  for (unsigned int i=0; i<fe_values[sd[n]]->n_dofs(); i++)
997  for (unsigned int j=0; j<fe_values[sd[m]]->n_dofs(); j++)
998  local_matrix[i*fe_values[sd[m]]->n_dofs()+j] = 0;
999 
1000  for (unsigned int k=0; k<qsize; k++)
1001  {
1002  double flux_times_JxW = transport_flux*fe_values[0]->JxW(k);
1003  double gamma_times_JxW = gamma_l*fe_values[0]->JxW(k);
1004 
1005  for (unsigned int i=0; i<fe_values[sd[n]]->n_dofs(); i++)
1006  {
1007  double flux_JxW_jump_i = flux_times_JxW*JUMP(i,k,n);
1008  double gamma_JxW_jump_i = gamma_times_JxW*JUMP(i,k,n);
1009  double JxW_jump_i = fe_values[0]->JxW(k)*JUMP(i,k,n);
1010  double JxW_var_wavg_i = fe_values[0]->JxW(k)*WAVERAGE(i,k,n)*dg_variant;
1011 
1012  for (unsigned int j=0; j<fe_values[sd[m]]->n_dofs(); j++)
1013  {
1014  int index = i*fe_values[sd[m]]->n_dofs()+j;
1015 
1016  // flux due to transport (applied on interior edges) (average times jump)
1017  local_matrix[index] += flux_JxW_jump_i*AVERAGE(j,k,m);
1018 
1019  // penalty enforcing continuity across edges (applied on interior and Dirichlet edges) (jump times jump)
1020  local_matrix[index] += gamma_JxW_jump_i*JUMP(j,k,m);
1021 
1022  // terms due to diffusion
1023  local_matrix[index] -= WAVERAGE(j,k,m)*JxW_jump_i;
1024  local_matrix[index] -= JUMP(j,k,m)*JxW_var_wavg_i;
1025  }
1026  }
1027  }
1028  ls[sbi]->mat_set_values(fe_values[sd[n]]->n_dofs(), &(side_dof_indices[sd[n]][0]), fe_values[sd[m]]->n_dofs(), &(side_dof_indices[sd[m]][0]), local_matrix);
1029  }
1030  }
1031 #undef AVERAGE
1032 #undef WAVERAGE
1033 #undef JUMP
1034  }
1035  }
1036  }
1037  }
1038 
1039  for (unsigned int i=0; i<n_max_sides; i++)
1040  {
1041  delete fe_values[i];
1042  }
1043 }
1044 
1045 
1046 template<class Model>
1047 template<unsigned int dim>
1049 {
1050  FESideValues<dim,3> fe_values_side(*feo->mapping<dim>(), *feo->q<dim-1>(), *feo->fe<dim>(),
1052  FESideValues<dim,3> fsv_rt(*feo->mapping<dim>(), *feo->q<dim-1>(), *feo->fe_rt<dim>(),
1053  update_values);
1054  const unsigned int ndofs = feo->fe<dim>()->n_dofs(), qsize = feo->q<dim-1>()->size();
1055  std::vector<LongIdx> side_dof_indices(ndofs);
1056  PetscScalar local_matrix[ndofs*ndofs];
1057  vector<arma::vec3> side_velocity;
1058  vector<double> robin_sigma(qsize);
1059  vector<double> csection(qsize);
1060  double gamma_l;
1061 
1062  // assemble boundary integral
1063  for (unsigned int iedg=0; iedg<feo->dh()->n_loc_edges(); iedg++)
1064  {
1065  Edge *edg = &Model::mesh_->edges[feo->dh()->edge_index(iedg)];
1066  if (edg->n_sides > 1) continue;
1067  // check spatial dimension
1068  if (edg->side(0)->dim() != dim-1) continue;
1069  // skip edges lying not on the boundary
1070  if (edg->side(0)->cond() == NULL) continue;
1071 
1072  SideIter side = edg->side(0);
1073  auto cell = feo->dh()->cell_accessor_from_element( side->element().idx() );
1074  ElementAccessor<3> elm_acc = cell.elm();
1075  cell.get_dof_indices(side_dof_indices);
1076  fe_values_side.reinit(elm_acc, side->side_idx());
1077  fsv_rt.reinit(elm_acc, side->side_idx());
1078 
1079  calculate_velocity(elm_acc, side_velocity, fsv_rt);
1080  Model::compute_advection_diffusion_coefficients(fe_values_side.point_list(), side_velocity, elm_acc, ad_coef, dif_coef);
1081  arma::uvec bc_type;
1082  Model::get_bc_type(side->cond()->element_accessor(), bc_type);
1083  data_.cross_section.value_list(fe_values_side.point_list(), elm_acc, csection);
1084 
1085  for (unsigned int sbi=0; sbi<Model::n_substances(); sbi++)
1086  {
1087  for (unsigned int i=0; i<ndofs; i++)
1088  for (unsigned int j=0; j<ndofs; j++)
1089  local_matrix[i*ndofs+j] = 0;
1090 
1091  // On Neumann boundaries we have only term from integrating by parts the advective term,
1092  // on Dirichlet boundaries we additionally apply the penalty which enforces the prescribed value.
1093  double side_flux = 0;
1094  for (unsigned int k=0; k<qsize; k++)
1095  side_flux += arma::dot(ad_coef[sbi][k], fe_values_side.normal_vector(k))*fe_values_side.JxW(k);
1096  double transport_flux = side_flux/side->measure();
1097 
1098  if (bc_type[sbi] == AdvectionDiffusionModel::abc_dirichlet)
1099  {
1100  // set up the parameters for DG method
1101  set_DG_parameters_boundary(side, qsize, dif_coef[sbi], transport_flux, fe_values_side.normal_vector(0), data_.dg_penalty[sbi].value(elm_acc.centre(), elm_acc), gamma_l);
1102  gamma[sbi][side->cond_idx()] = gamma_l;
1103  transport_flux += gamma_l;
1104  }
1105 
1106  // fluxes and penalty
1107  for (unsigned int k=0; k<qsize; k++)
1108  {
1109  double flux_times_JxW;
1110  if (bc_type[sbi] == AdvectionDiffusionModel::abc_total_flux)
1111  {
1112  Model::get_flux_bc_sigma(sbi, fe_values_side.point_list(), side->cond()->element_accessor(), robin_sigma);
1113  flux_times_JxW = csection[k]*robin_sigma[k]*fe_values_side.JxW(k);
1114  }
1115  else if (bc_type[sbi] == AdvectionDiffusionModel::abc_diffusive_flux)
1116  {
1117  Model::get_flux_bc_sigma(sbi, fe_values_side.point_list(), side->cond()->element_accessor(), robin_sigma);
1118  flux_times_JxW = (transport_flux + csection[k]*robin_sigma[k])*fe_values_side.JxW(k);
1119  }
1120  else if (bc_type[sbi] == AdvectionDiffusionModel::abc_inflow && side_flux < 0)
1121  flux_times_JxW = 0;
1122  else
1123  flux_times_JxW = transport_flux*fe_values_side.JxW(k);
1124 
1125  for (unsigned int i=0; i<ndofs; i++)
1126  {
1127  for (unsigned int j=0; j<ndofs; j++)
1128  {
1129  // flux due to advection and penalty
1130  local_matrix[i*ndofs+j] += flux_times_JxW*fe_values_side.shape_value(i,k)*fe_values_side.shape_value(j,k);
1131 
1132  // flux due to diffusion (only on dirichlet and inflow boundary)
1133  if (bc_type[sbi] == AdvectionDiffusionModel::abc_dirichlet)
1134  local_matrix[i*ndofs+j] -= (arma::dot(dif_coef[sbi][k]*fe_values_side.shape_grad(j,k),fe_values_side.normal_vector(k))*fe_values_side.shape_value(i,k)
1135  + arma::dot(dif_coef[sbi][k]*fe_values_side.shape_grad(i,k),fe_values_side.normal_vector(k))*fe_values_side.shape_value(j,k)*dg_variant
1136  )*fe_values_side.JxW(k);
1137  }
1138  }
1139  }
1140 
1141  ls[sbi]->mat_set_values(ndofs, &(side_dof_indices[0]), ndofs, &(side_dof_indices[0]), local_matrix);
1142  }
1143  }
1144 }
1145 
1146 
1147 template<class Model>
1148 template<unsigned int dim>
1150 {
1151 
1152  if (dim == 1) return;
1153  FEValues<dim-1,3> fe_values_vb(*feo->mapping<dim-1>(), *feo->q<dim-1>(), *feo->fe<dim-1>(),
1155  FESideValues<dim,3> fe_values_side(*feo->mapping<dim>(), *feo->q<dim-1>(), *feo->fe<dim>(),
1157  FESideValues<dim,3> fsv_rt(*feo->mapping<dim>(), *feo->q<dim-1>(), *feo->fe_rt<dim>(),
1158  update_values);
1159  FEValues<dim-1,3> fv_rt(*feo->mapping<dim-1>(), *feo->q<dim-1>(), *feo->fe_rt<dim-1>(),
1160  update_values);
1161 
1162  vector<FEValuesSpaceBase<3>*> fv_sb(2);
1163  const unsigned int ndofs = feo->fe<dim>()->n_dofs(); // number of local dofs
1164  const unsigned int qsize = feo->q<dim-1>()->size(); // number of quadrature points
1165  int side_dof_indices[2*ndofs];
1166  vector<LongIdx> indices(ndofs);
1167  unsigned int n_dofs[2], n_indices;
1168  vector<arma::vec3> velocity_higher, velocity_lower;
1169  vector<double> frac_sigma(qsize);
1170  vector<double> csection_lower(qsize), csection_higher(qsize);
1171  PetscScalar local_matrix[4*ndofs*ndofs];
1172  double comm_flux[2][2];
1173 
1174  // index 0 = element with lower dimension,
1175  // index 1 = side of element with higher dimension
1176  fv_sb[0] = &fe_values_vb;
1177  fv_sb[1] = &fe_values_side;
1178 
1179  // assemble integral over sides
1180  for (unsigned int inb=0; inb<feo->dh()->n_loc_nb(); inb++)
1181  {
1182  Neighbour *nb = &Model::mesh_->vb_neighbours_[feo->dh()->nb_index(inb)];
1183  // skip neighbours of different dimension
1184  if (nb->element()->dim() != dim-1) continue;
1185 
1186  auto dh_cell_sub = feo->dh()->cell_accessor_from_element( nb->element().idx() );
1187  ElementAccessor<3> cell_sub = dh_cell_sub.elm();
1188  n_indices = dh_cell_sub.get_dof_indices(indices);
1189  for(unsigned int i=0; i<n_indices; ++i) {
1190  side_dof_indices[i] = indices[i];
1191  }
1192  fe_values_vb.reinit(cell_sub);
1193  n_dofs[0] = fv_sb[0]->n_dofs();
1194 
1195  auto dh_cell = feo->dh()->cell_accessor_from_element( nb->side()->element().idx() );
1196  ElementAccessor<3> cell = dh_cell.elm();
1197  n_indices = dh_cell.get_dof_indices(indices);
1198  for(unsigned int i=0; i<n_indices; ++i) {
1199  side_dof_indices[i+n_dofs[0]] = indices[i];
1200  }
1201  fe_values_side.reinit(cell, nb->side()->side_idx());
1202  n_dofs[1] = fv_sb[1]->n_dofs();
1203 
1204  // Element id's for testing if they belong to local partition.
1205  int element_id[2];
1206  element_id[0] = cell_sub.idx();
1207  element_id[1] = cell.idx();
1208 
1209  fsv_rt.reinit(cell, nb->side()->side_idx());
1210  fv_rt.reinit(cell_sub);
1211  calculate_velocity(cell, velocity_higher, fsv_rt);
1212  calculate_velocity(cell_sub, velocity_lower, fv_rt);
1213  Model::compute_advection_diffusion_coefficients(fe_values_vb.point_list(), velocity_lower, cell_sub, ad_coef_edg[0], dif_coef_edg[0]);
1214  Model::compute_advection_diffusion_coefficients(fe_values_vb.point_list(), velocity_higher, cell, ad_coef_edg[1], dif_coef_edg[1]);
1215  data_.cross_section.value_list(fe_values_vb.point_list(), cell_sub, csection_lower);
1216  data_.cross_section.value_list(fe_values_vb.point_list(), cell, csection_higher);
1217 
1218  for (unsigned int sbi=0; sbi<Model::n_substances(); sbi++) // Optimize: SWAP LOOPS
1219  {
1220  for (unsigned int i=0; i<n_dofs[0]+n_dofs[1]; i++)
1221  for (unsigned int j=0; j<n_dofs[0]+n_dofs[1]; j++)
1222  local_matrix[i*(n_dofs[0]+n_dofs[1])+j] = 0;
1223 
1224  data_.fracture_sigma[sbi].value_list(fe_values_vb.point_list(), cell_sub, frac_sigma);
1225 
1226  // set transmission conditions
1227  for (unsigned int k=0; k<qsize; k++)
1228  {
1229  /* The communication flux has two parts:
1230  * - "diffusive" term containing sigma
1231  * - "advective" term representing usual upwind
1232  *
1233  * The calculation differs from the reference manual, since ad_coef and dif_coef have different meaning
1234  * than b and A in the manual.
1235  * In calculation of sigma there appears one more csection_lower in the denominator.
1236  */
1237  double sigma = frac_sigma[k]*arma::dot(dif_coef_edg[0][sbi][k]*fe_values_side.normal_vector(k),fe_values_side.normal_vector(k))*
1238  2*csection_higher[k]*csection_higher[k]/(csection_lower[k]*csection_lower[k]);
1239 
1240  double transport_flux = arma::dot(ad_coef_edg[1][sbi][k], fe_values_side.normal_vector(k));
1241 
1242  comm_flux[0][0] = (sigma-min(0.,transport_flux))*fv_sb[0]->JxW(k);
1243  comm_flux[0][1] = -(sigma-min(0.,transport_flux))*fv_sb[0]->JxW(k);
1244  comm_flux[1][0] = -(sigma+max(0.,transport_flux))*fv_sb[0]->JxW(k);
1245  comm_flux[1][1] = (sigma+max(0.,transport_flux))*fv_sb[0]->JxW(k);
1246 
1247  for (int n=0; n<2; n++)
1248  {
1249  if (!feo->dh()->el_is_local(element_id[n])) continue;
1250 
1251  for (unsigned int i=0; i<n_dofs[n]; i++)
1252  for (int m=0; m<2; m++)
1253  for (unsigned int j=0; j<n_dofs[m]; j++)
1254  local_matrix[(i+n*n_dofs[0])*(n_dofs[0]+n_dofs[1]) + m*n_dofs[0] + j] +=
1255  comm_flux[m][n]*fv_sb[m]->shape_value(j,k)*fv_sb[n]->shape_value(i,k);
1256  }
1257  }
1258  ls[sbi]->mat_set_values(n_dofs[0]+n_dofs[1], side_dof_indices, n_dofs[0]+n_dofs[1], side_dof_indices, local_matrix);
1259  }
1260  }
1261 
1262 }
1263 
1264 
1265 
1266 
1267 
1268 
1269 template<class Model>
1271 {
1272  START_TIMER("assemble_bc");
1273  Model::balance_->start_flux_assembly(Model::subst_idx);
1274  set_boundary_conditions<1>();
1275  set_boundary_conditions<2>();
1276  set_boundary_conditions<3>();
1277  Model::balance_->finish_flux_assembly(Model::subst_idx);
1278  END_TIMER("assemble_bc");
1279 }
1280 
1281 
1282 template<class Model>
1283 template<unsigned int dim>
1285 {
1286  FESideValues<dim,3> fe_values_side(*feo->mapping<dim>(), *feo->q<dim-1>(), *feo->fe<dim>(),
1288  FESideValues<dim,3> fsv_rt(*feo->mapping<dim>(), *feo->q<dim-1>(), *feo->fe_rt<dim>(),
1289  update_values);
1290  const unsigned int ndofs = feo->fe<dim>()->n_dofs(), qsize = feo->q<dim-1>()->size();
1291  vector<LongIdx> side_dof_indices(ndofs);
1292  unsigned int loc_b=0;
1293  double local_rhs[ndofs];
1294  vector<PetscScalar> local_flux_balance_vector(ndofs);
1295  PetscScalar local_flux_balance_rhs;
1296  vector<double> bc_values(qsize);
1297  vector<double> bc_fluxes(qsize),
1298  bc_sigma(qsize),
1299  bc_ref_values(qsize);
1300  vector<double> csection(qsize);
1301  vector<arma::vec3> velocity;
1302 
1303  for (auto cell : feo->dh()->own_range() )
1304  {
1305  if (cell.elm()->boundary_idx_ == nullptr) continue;
1306 
1307  for (unsigned int si=0; si<cell.elm()->n_sides(); si++)
1308  {
1309  const Edge *edg = cell.elm().side(si)->edge();
1310  if (edg->n_sides > 1) continue;
1311  // skip edges lying not on the boundary
1312  if (edg->side(0)->cond() == NULL) continue;
1313 
1314  if (edg->side(0)->dim() != dim-1)
1315  {
1316  if (edg->side(0)->cond() != nullptr) ++loc_b;
1317  continue;
1318  }
1319 
1320  SideIter side = edg->side(0);
1321  ElementAccessor<3> elm = Model::mesh_->element_accessor( side->element().idx() );
1322  ElementAccessor<3> ele_acc = side->cond()->element_accessor();
1323 
1324  arma::uvec bc_type;
1325  Model::get_bc_type(ele_acc, bc_type);
1326 
1327  fe_values_side.reinit(elm, side->side_idx());
1328  fsv_rt.reinit(elm, side->side_idx());
1329  calculate_velocity(elm, velocity, fsv_rt);
1330 
1331  Model::compute_advection_diffusion_coefficients(fe_values_side.point_list(), velocity, side->element(), ad_coef, dif_coef);
1332  data_.cross_section.value_list(fe_values_side.point_list(), side->element(), csection);
1333 
1334  auto dh_cell = feo->dh()->cell_accessor_from_element( side->element().idx() );
1335  dh_cell.get_dof_indices(side_dof_indices);
1336 
1337  for (unsigned int sbi=0; sbi<Model::n_substances(); sbi++)
1338  {
1339  fill_n(local_rhs, ndofs, 0);
1340  local_flux_balance_vector.assign(ndofs, 0);
1341  local_flux_balance_rhs = 0;
1342 
1343  // The b.c. data are fetched for all possible b.c. types since we allow
1344  // different bc_type for each substance.
1345  data_.bc_dirichlet_value[sbi].value_list(fe_values_side.point_list(), ele_acc, bc_values);
1346 
1347  double side_flux = 0;
1348  for (unsigned int k=0; k<qsize; k++)
1349  side_flux += arma::dot(ad_coef[sbi][k], fe_values_side.normal_vector(k))*fe_values_side.JxW(k);
1350  double transport_flux = side_flux/side->measure();
1351 
1352  if (bc_type[sbi] == AdvectionDiffusionModel::abc_inflow && side_flux < 0)
1353  {
1354  for (unsigned int k=0; k<qsize; k++)
1355  {
1356  double bc_term = -transport_flux*bc_values[k]*fe_values_side.JxW(k);
1357  for (unsigned int i=0; i<ndofs; i++)
1358  local_rhs[i] += bc_term*fe_values_side.shape_value(i,k);
1359  }
1360  for (unsigned int i=0; i<ndofs; i++)
1361  local_flux_balance_rhs -= local_rhs[i];
1362  }
1363  else if (bc_type[sbi] == AdvectionDiffusionModel::abc_dirichlet)
1364  {
1365  for (unsigned int k=0; k<qsize; k++)
1366  {
1367  double bc_term = gamma[sbi][side->cond_idx()]*bc_values[k]*fe_values_side.JxW(k);
1368  arma::vec3 bc_grad = -bc_values[k]*fe_values_side.JxW(k)*dg_variant*(arma::trans(dif_coef[sbi][k])*fe_values_side.normal_vector(k));
1369  for (unsigned int i=0; i<ndofs; i++)
1370  local_rhs[i] += bc_term*fe_values_side.shape_value(i,k)
1371  + arma::dot(bc_grad,fe_values_side.shape_grad(i,k));
1372  }
1373  for (unsigned int k=0; k<qsize; k++)
1374  {
1375  for (unsigned int i=0; i<ndofs; i++)
1376  {
1377  local_flux_balance_vector[i] += (arma::dot(ad_coef[sbi][k], fe_values_side.normal_vector(k))*fe_values_side.shape_value(i,k)
1378  - arma::dot(dif_coef[sbi][k]*fe_values_side.shape_grad(i,k),fe_values_side.normal_vector(k))
1379  + gamma[sbi][side->cond_idx()]*fe_values_side.shape_value(i,k))*fe_values_side.JxW(k);
1380  }
1381  }
1382  if (Model::time_->tlevel() > 0)
1383  for (unsigned int i=0; i<ndofs; i++)
1384  local_flux_balance_rhs -= local_rhs[i];
1385  }
1386  else if (bc_type[sbi] == AdvectionDiffusionModel::abc_total_flux)
1387  {
1388  Model::get_flux_bc_data(sbi, fe_values_side.point_list(), ele_acc, bc_fluxes, bc_sigma, bc_ref_values);
1389  for (unsigned int k=0; k<qsize; k++)
1390  {
1391  double bc_term = csection[k]*(bc_sigma[k]*bc_ref_values[k]+bc_fluxes[k])*fe_values_side.JxW(k);
1392  for (unsigned int i=0; i<ndofs; i++)
1393  local_rhs[i] += bc_term*fe_values_side.shape_value(i,k);
1394  }
1395 
1396  for (unsigned int i=0; i<ndofs; i++)
1397  {
1398  for (unsigned int k=0; k<qsize; k++)
1399  local_flux_balance_vector[i] += csection[k]*bc_sigma[k]*fe_values_side.JxW(k)*fe_values_side.shape_value(i,k);
1400  local_flux_balance_rhs -= local_rhs[i];
1401  }
1402  }
1403  else if (bc_type[sbi] == AdvectionDiffusionModel::abc_diffusive_flux)
1404  {
1405  Model::get_flux_bc_data(sbi, fe_values_side.point_list(), ele_acc, bc_fluxes, bc_sigma, bc_ref_values);
1406  for (unsigned int k=0; k<qsize; k++)
1407  {
1408  double bc_term = csection[k]*(bc_sigma[k]*bc_ref_values[k]+bc_fluxes[k])*fe_values_side.JxW(k);
1409  for (unsigned int i=0; i<ndofs; i++)
1410  local_rhs[i] += bc_term*fe_values_side.shape_value(i,k);
1411  }
1412 
1413  for (unsigned int i=0; i<ndofs; i++)
1414  {
1415  for (unsigned int k=0; k<qsize; k++)
1416  local_flux_balance_vector[i] += csection[k]*(arma::dot(ad_coef[sbi][k], fe_values_side.normal_vector(k)) + bc_sigma[k])*fe_values_side.JxW(k)*fe_values_side.shape_value(i,k);
1417  local_flux_balance_rhs -= local_rhs[i];
1418  }
1419  }
1420  else if (bc_type[sbi] == AdvectionDiffusionModel::abc_inflow && side_flux >= 0)
1421  {
1422  for (unsigned int k=0; k<qsize; k++)
1423  {
1424  for (unsigned int i=0; i<ndofs; i++)
1425  local_flux_balance_vector[i] += arma::dot(ad_coef[sbi][k], fe_values_side.normal_vector(k))*fe_values_side.JxW(k)*fe_values_side.shape_value(i,k);
1426  }
1427  }
1428  ls[sbi]->rhs_set_values(ndofs, &(side_dof_indices[0]), local_rhs);
1429 
1430  Model::balance_->add_flux_matrix_values(Model::subst_idx[sbi], loc_b, side_dof_indices, local_flux_balance_vector);
1431  Model::balance_->add_flux_vec_value(Model::subst_idx[sbi], loc_b, local_flux_balance_rhs);
1432  }
1433  ++loc_b;
1434  }
1435  }
1436 }
1437 
1438 
1439 
1440 template<class Model>
1441 template<unsigned int dim>
1443  vector<arma::vec3> &velocity,
1444  FEValuesBase<dim,3> &fv)
1445 {
1446  OLD_ASSERT(cell->dim() == dim, "Element dimension mismatch!");
1447 
1448  velocity.resize(fv.n_points());
1449 
1450  for (unsigned int k=0; k<fv.n_points(); k++)
1451  {
1452  velocity[k].zeros();
1453  for (unsigned int sid=0; sid<cell->n_sides(); sid++)
1454  for (unsigned int c=0; c<3; ++c)
1455  velocity[k][c] += fv.shape_value_component(sid,k,c) * Model::mh_dh->side_flux( *(cell.side(sid)) );
1456  }
1457 }
1458 
1459 
1460 // return the ratio of longest and shortest edge
1462 {
1463  double h_max = 0, h_min = numeric_limits<double>::infinity();
1464  for (unsigned int i=0; i<e->n_nodes(); i++)
1465  for (unsigned int j=i+1; j<e->n_nodes(); j++)
1466  {
1467  h_max = max(h_max, e.node(i)->distance(*e.node(j)));
1468  h_min = min(h_min, e.node(i)->distance(*e.node(j)));
1469  }
1470  return h_max/h_min;
1471 }
1472 
1473 
1474 
1475 template<class Model>
1477  const int s1,
1478  const int s2,
1479  const int K_size,
1480  const vector<arma::mat33> &K1,
1481  const vector<arma::mat33> &K2,
1482  const vector<double> &fluxes,
1483  const arma::vec3 &normal_vector,
1484  const double alpha1,
1485  const double alpha2,
1486  double &gamma,
1487  double *omega,
1488  double &transport_flux)
1489 {
1490  double delta[2];
1491  double h = 0;
1492  double local_alpha = 0;
1493 
1494  OLD_ASSERT(edg.side(s1)->valid(), "Invalid side of an edge.");
1495  SideIter s = edg.side(s1);
1496 
1497  // calculate the side diameter
1498  if (s->dim() == 0)
1499  {
1500  h = 1;
1501  }
1502  else
1503  {
1504  for (unsigned int i=0; i<s->n_nodes(); i++)
1505  for (unsigned int j=i+1; j<s->n_nodes(); j++)
1506  h = max(h, s->node(i)->distance(*s->node(j).node()));
1507  }
1508 
1509  double aniso1 = elem_anisotropy(edg.side(s1)->element());
1510  double aniso2 = elem_anisotropy(edg.side(s2)->element());
1511 
1512 
1513  // calculate the total in- and out-flux through the edge
1514  double pflux = 0, nflux = 0;
1515  for (int i=0; i<edg.n_sides; i++)
1516  {
1517  if (fluxes[i] > 0)
1518  pflux += fluxes[i];
1519  else
1520  nflux += fluxes[i];
1521  }
1522 
1523  // calculate the flux from s1 to s2
1524  if (fluxes[s2] > 0 && fluxes[s1] < 0 && s1 < s2)
1525  transport_flux = fluxes[s1]*fabs(fluxes[s2]/pflux);
1526  else if (fluxes[s2] < 0 && fluxes[s1] > 0 && s1 < s2)
1527  transport_flux = fluxes[s1]*fabs(fluxes[s2]/nflux);
1528  else if (s1==s2)
1529  transport_flux = fluxes[s1];
1530  else
1531  transport_flux = 0;
1532 
1533  gamma = 0.5*fabs(transport_flux);
1534 
1535 
1536  // determine local DG penalty
1537  local_alpha = max(alpha1, alpha2);
1538 
1539  if (s1 == s2)
1540  {
1541  omega[0] = 1;
1542 
1543  // delta is set to the average value of Kn.n on the side
1544  delta[0] = 0;
1545  for (int k=0; k<K_size; k++)
1546  delta[0] += dot(K1[k]*normal_vector,normal_vector);
1547  delta[0] /= K_size;
1548 
1549  gamma += local_alpha/h*aniso1*aniso2*delta[0];
1550  }
1551  else
1552  {
1553  delta[0] = 0;
1554  delta[1] = 0;
1555  for (int k=0; k<K_size; k++)
1556  {
1557  delta[0] += dot(K1[k]*normal_vector,normal_vector);
1558  delta[1] += dot(K2[k]*normal_vector,normal_vector);
1559  }
1560  delta[0] /= K_size;
1561  delta[1] /= K_size;
1562 
1563  double delta_sum = delta[0] + delta[1];
1564 
1565 // if (delta_sum > numeric_limits<double>::epsilon())
1566  if (fabs(delta_sum) > 0)
1567  {
1568  omega[0] = delta[1]/delta_sum;
1569  omega[1] = delta[0]/delta_sum;
1570  gamma += local_alpha/h*aniso1*aniso2*(delta[0]*delta[1]/delta_sum);
1571  }
1572  else
1573  for (int i=0; i<2; i++) omega[i] = 0;
1574  }
1575 }
1576 
1577 
1578 
1579 
1580 
1581 
1582 template<class Model>
1584  const int K_size,
1585  const vector<arma::mat33> &K,
1586  const double flux,
1587  const arma::vec3 &normal_vector,
1588  const double alpha,
1589  double &gamma)
1590 {
1591  double delta = 0, h = 0;
1592 
1593  // calculate the side diameter
1594  if (side->dim() == 0)
1595  {
1596  h = 1;
1597  }
1598  else
1599  {
1600  for (unsigned int i=0; i<side->n_nodes(); i++)
1601  for (unsigned int j=i+1; j<side->n_nodes(); j++)
1602  h = max(h, side->node(i)->distance( *side->node(j).node() ));
1603  }
1604 
1605  // delta is set to the average value of Kn.n on the side
1606  for (int k=0; k<K_size; k++)
1607  delta += dot(K[k]*normal_vector,normal_vector);
1608  delta /= K_size;
1609 
1610  gamma = 0.5*fabs(flux) + alpha/h*delta*elem_anisotropy(side->element());
1611 }
1612 
1613 
1614 
1615 
1616 
1617 template<class Model>
1619 {
1620  START_TIMER("set_init_cond");
1621  for (unsigned int sbi=0; sbi<Model::n_substances(); sbi++)
1622  ls[sbi]->start_allocation();
1623  prepare_initial_condition<1>();
1624  prepare_initial_condition<2>();
1625  prepare_initial_condition<3>();
1626 
1627  for (unsigned int sbi=0; sbi<Model::n_substances(); sbi++)
1628  ls[sbi]->start_add_assembly();
1629  prepare_initial_condition<1>();
1630  prepare_initial_condition<2>();
1631  prepare_initial_condition<3>();
1632 
1633  for (unsigned int sbi=0; sbi<Model::n_substances(); sbi++)
1634  {
1635  ls[sbi]->finish_assembly();
1636  ls[sbi]->solve();
1637  }
1638  END_TIMER("set_init_cond");
1639 }
1640 
1641 template<class Model>
1642 template<unsigned int dim>
1644 {
1645  FEValues<dim,3> fe_values(*feo->mapping<dim>(), *feo->q<dim>(), *feo->fe<dim>(),
1647  const unsigned int ndofs = feo->fe<dim>()->n_dofs(), qsize = feo->q<dim>()->size();
1648  std::vector<LongIdx> dof_indices(ndofs);
1649  double matrix[ndofs*ndofs], rhs[ndofs];
1650  std::vector<std::vector<double> > init_values(Model::n_substances());
1651 
1652  for (unsigned int sbi=0; sbi<Model::n_substances(); sbi++) // Optimize: SWAP LOOPS
1653  init_values[sbi].resize(qsize);
1654 
1655  for (auto cell : feo->dh()->own_range() )
1656  {
1657  if (cell.dim() != dim) continue;
1658  ElementAccessor<3> elem = cell.elm();
1659 
1660  cell.get_dof_indices(dof_indices);
1661  fe_values.reinit(elem);
1662 
1663  Model::compute_init_cond(fe_values.point_list(), elem, init_values);
1664 
1665  for (unsigned int sbi=0; sbi<Model::n_substances(); sbi++)
1666  {
1667  for (unsigned int i=0; i<ndofs; i++)
1668  {
1669  rhs[i] = 0;
1670  for (unsigned int j=0; j<ndofs; j++)
1671  matrix[i*ndofs+j] = 0;
1672  }
1673 
1674  for (unsigned int k=0; k<qsize; k++)
1675  {
1676  double rhs_term = init_values[sbi][k]*fe_values.JxW(k);
1677 
1678  for (unsigned int i=0; i<ndofs; i++)
1679  {
1680  for (unsigned int j=0; j<ndofs; j++)
1681  matrix[i*ndofs+j] += fe_values.shape_value(i,k)*fe_values.shape_value(j,k)*fe_values.JxW(k);
1682 
1683  rhs[i] += fe_values.shape_value(i,k)*rhs_term;
1684  }
1685  }
1686  ls[sbi]->set_values(ndofs, &(dof_indices[0]), ndofs, &(dof_indices[0]), matrix, rhs);
1687  }
1688  }
1689 }
1690 
1691 
1692 template<class Model>
1694 {
1695  el_4_loc = Model::mesh_->get_el_4_loc();
1696  el_ds = Model::mesh_->get_el_ds();
1697 }
1698 
1699 
1700 template<class Model>
1702 {
1703  if (solution_changed)
1704  {
1705  unsigned int i_cell=0;
1706  for (auto cell : feo->dh()->own_range() )
1707  {
1708 
1709  unsigned int n_dofs;
1710  switch (cell.dim())
1711  {
1712  case 1:
1713  n_dofs = feo->fe<1>()->n_dofs();
1714  break;
1715  case 2:
1716  n_dofs = feo->fe<2>()->n_dofs();
1717  break;
1718  case 3:
1719  n_dofs = feo->fe<3>()->n_dofs();
1720  break;
1721  }
1722 
1723  std::vector<LongIdx> dof_indices(n_dofs);
1724  cell.get_dof_indices(dof_indices);
1725 
1726  for (unsigned int sbi=0; sbi<Model::n_substances(); ++sbi)
1727  {
1728  double old_average = 0;
1729  for (unsigned int j=0; j<n_dofs; ++j)
1730  old_average += ls[sbi]->get_solution_array()[dof_indices[j]-feo->dh()->distr()->begin()];
1731  old_average /= n_dofs;
1732 
1733  for (unsigned int j=0; j<n_dofs; ++j)
1734  ls[sbi]->get_solution_array()[dof_indices[j]-feo->dh()->distr()->begin()] += solution_elem_[sbi][i_cell] - old_average;
1735  }
1736  ++i_cell;
1737  }
1738  }
1739  // update mass_vec for the case that mass matrix changes in next time step
1740  for (unsigned int sbi=0; sbi<Model::n_substances(); ++sbi)
1741  MatMult(*(ls_dt[sbi]->get_matrix()), ls[sbi]->get_solution(), mass_vec[sbi]);
1742 }
1743 
1744 template<class Model>
1746 {
1747  return Model::mesh_->get_row_4_el();
1748 }
1749 
1750 
1751 
1752 
1753 
1754 
1755 
1756 
1758 template class TransportDG<HeatTransferModel>;
1759 
1760 
1761 
1762 
TimeGovernor & time()
Definition: equation.hh:148
int LongIdx
Define type that represents indices of large arrays (elements, nodes, dofs etc.)
Definition: long_idx.hh:22
const Edge * edge() const
Definition: side_impl.hh:66
Input::Record input_rec
Record with input specification.
Class MappingP1 implements the affine transformation of the unit cell onto the actual cell...
Shape function values.
Definition: update_flags.hh:87
FieldSet * eq_data_
Definition: equation.hh:232
double JxW(const unsigned int point_no)
Return the product of Jacobian determinant and the quadrature weight at given quadrature point...
Definition: fe_values.hh:336
static auto subdomain(Mesh &mesh) -> IndexField
void assemble_fluxes_element_element()
Assembles the fluxes between elements of the same dimension.
void set_sources()
Assembles the right hand side due to volume sources.
FiniteElement< dim > * fe()
void set_boundary_conditions()
Assembles the r.h.s. components corresponding to the Dirichlet boundary conditions.
void get_par_info(LongIdx *&el_4_loc, Distribution *&el_ds)
unsigned int n_nodes() const
Definition: elements.h:129
Transformed quadrature weight for cell sides.
vector< double > mm_coef
Mass matrix coefficients.
Accessor to input data conforming to declared Array.
Definition: accessors.hh:567
void assemble_fluxes_element_side()
Assembles the fluxes between elements of different dimensions.
static constexpr Mask in_main_matrix
A field is part of main "stiffness matrix" of the equation.
Definition: field_flag.hh:49
void reinit(ElementAccessor< 3 > &cell, unsigned int sid)
Update cell-dependent data (gradients, Jacobians etc.)
Definition: fe_values.cc:604
Solver based on the original PETSc solver using MPIAIJ matrix and succesive Schur complement construc...
unsigned int side_idx() const
Definition: side_impl.hh:82
void calculate_concentration_matrix()
Transport with dispersion implemented using discontinuous Galerkin method.
Class Input::Type::Default specifies default value of keys of a Input::Type::Record.
Definition: type_record.hh:61
FieldCommon & flags_add(FieldFlag::Flags::Mask mask)
double distance(const Node &n2) const
Definition: nodes.hh:85
void set_from_input(const Input::Record in_rec) override
virtual void start_add_assembly()
Definition: linsys.hh:322
void assemble_mass_matrix()
Assembles the mass matrix.
void output(TimeStep step)
Boundary * cond() const
Definition: side_impl.hh:71
virtual PetscErrorCode mat_zero_entries()
Definition: linsys.hh:264
vector< VectorMPI > output_vec
Array for storing the output solution data.
virtual void rhs_set_values(int nrow, int *rows, double *vals)=0
void update_solution() override
Computes the solution in one time instant.
static Default obligatory()
The factory function to make an empty default value which is obligatory.
Definition: type_record.hh:110
int dg_variant
DG variant ((non-)symmetric/incomplete.
void prepare_initial_condition()
Assembles the auxiliary linear system to calculate the initial solution as L^2-projection of the pres...
Definition: mesh.h:80
Fields computed from the mesh data.
virtual void start_allocation()
Definition: linsys.hh:314
void set_initial_condition()
Sets the initial condition.
Class FEValues calculates finite element data on the actual cells such as shape function values...
void chkerr(unsigned int ierr)
Replacement of new/delete operator in the spirit of xmalloc.
Definition: system.hh:147
virtual void finish_assembly()=0
int n_sides
Definition: edges.h:36
vector< vector< arma::vec3 > > ad_coef
Advection coefficients.
Definition: edges.h:26
bool valid() const
Definition: side_impl.hh:92
SideIter side(const unsigned int loc_index)
Definition: accessors.hh:137
#define AVERAGE(i, k, side_id)
std::shared_ptr< DOFHandlerMultiDim > dh()
void assemble_stiffness_matrix()
Assembles the stiffness matrix.
vector< vector< vector< arma::mat33 > > > dif_coef_edg
Diffusion coefficients on edges.
Discontinuous Galerkin method for equation of transport with dispersion.
Class for declaration of the integral input data.
Definition: type_base.hh:490
const Vec & get_solution(unsigned int sbi)
FieldCommon & units(const UnitSI &units)
Set basic units of the field.
ElementAccessor< 3 > element() const
Definition: side_impl.hh:53
vector< double > ret_sources_prev
MultiField< 3, FieldValue< 3 >::Scalar > dg_penalty
Penalty enforcing inter-element continuity of solution (for each substance).
static const Input::Type::Selection & get_dg_variant_selection_input_type()
Input type for the DG variant selection.
Definition: transport_dg.cc:53
unsigned int n_points()
Returns the number of quadrature points.
Definition: fe_values.hh:407
Class for declaration of inputs sequences.
Definition: type_base.hh:346
EquationOutput output_fields
std::vector< Mat > mass_matrix
The mass matrix.
void calculate_cumulative_balance()
void assemble_fluxes_boundary()
Assembles the fluxes on the boundary.
static constexpr bool value
Definition: json.hpp:87
Symmetric Gauss-Legendre quadrature formulae on simplices.
#define WAVERAGE(i, k, side_id)
TransportDG(Mesh &init_mesh, const Input::Record in_rec)
Constructor.
vector< vector< double > > ret_coef
Retardation coefficient due to sorption.
arma::vec::fixed< spacedim > centre() const
Computes the barycenter.
Definition: accessors.hh:285
unsigned int dim() const
Definition: elements.h:124
arma::vec::fixed< spacedim > normal_vector(unsigned int point_no)
Returns the normal vector to a side at given quadrature point.
Definition: fe_values.hh:368
#define OLD_ASSERT(...)
Definition: global_defs.h:131
ElementAccessor< 3 > element()
Definition: neighbours.h:163
LongIdx * get_row_4_el()
void initialize() override
vector< vector< vector< arma::vec3 > > > ad_coef_edg
Advection coefficients on edges.
Transformed quadrature points.
void output_data()
Postprocesses the solution and writes to output file.
virtual PetscErrorCode set_rhs(Vec &rhs)
Definition: linsys.hh:255
MultiField< 3, FieldValue< 3 >::Scalar > fracture_sigma
Transition parameter for diffusive transfer on fractures (for each substance).
void preallocate()
unsigned int dim() const
Definition: side_impl.hh:38
vector< vector< arma::mat33 > > dif_coef
Diffusion coefficients.
FEObjects * feo
Finite element objects.
static constexpr Mask in_time_term
A field is part of time term of the equation.
Definition: field_flag.hh:47
FieldCommon & input_default(const string &input_default)
const Vec & get_solution()
Definition: linsys.hh:282
Raviart-Thomas element of order 0.
Definition: fe_rt.hh:60
Definitions of basic Lagrangean finite elements with polynomial shape functions.
static constexpr Mask equation_external_output
Match an output field, that can be also copy of other field.
Definition: field_flag.hh:58
SideIter side()
Definition: neighbours.h:147
Field< 3, FieldValue< 3 >::Scalar > subdomain
Accessor to the data with type Type::Record.
Definition: accessors.hh:292
const Ret val(const string &key) const
unsigned int n_sides() const
Definition: elements.h:135
static auto region_id(Mesh &mesh) -> IndexField
#define START_TIMER(tag)
Starts a timer with specified tag.
std::vector< Vec > rhs
Vector of right hand side.
Mesh * mesh_
Definition: equation.hh:223
Selection & add_value(const int value, const std::string &key, const std::string &description="", TypeBase::attribute_map attributes=TypeBase::attribute_map())
Adds one new value with name given by key to the Selection.
Record & declare_key(const string &key, std::shared_ptr< TypeBase > type, const Default &default_value, const string &description, TypeBase::attribute_map key_attributes=TypeBase::attribute_map())
Declares a new key of the Record.
Definition: type_record.cc:501
Field< 3, FieldValue< 3 >::Scalar > region_id
double elem_anisotropy(ElementAccessor< 3 > e)
unsigned int dg_order
Polynomial order of finite elements.
void output_vector_gather()
static constexpr Mask in_rhs
A field is part of the right hand side of the equation.
Definition: field_flag.hh:51
Shape function gradients.
Definition: update_flags.hh:95
FLOW123D_FORCE_LINK_IN_CHILD(concentrationTransportModel)
void set_solution(double *sol_array)
Definition: linsys.hh:290
NodeAccessor< 3 > node(unsigned int i) const
Definition: side_impl.hh:47
double measure() const
Definition: sides.cc:30
double shape_value(const unsigned int function_no, const unsigned int point_no)
Return the value of the function_no-th shape function at the point_no-th quadrature point...
Definition: fe_values.cc:224
Region region() const
Definition: accessors.hh:95
Normal vectors.
virtual PetscErrorCode rhs_zero_entries()
Definition: linsys.hh:273
Discontinuous Galerkin method for equation of transport with dispersion.
double ** solution_elem_
Element averages of solution (the array is passed to reactions in operator splitting).
#define MPI_Comm_rank
Definition: mpi.h:236
std::vector< Mat > stiffness_matrix
The stiffness matrix.
FieldCommon & description(const string &description)
void set_values(int nrow, int *rows, int ncol, int *cols, PetscScalar *mat_vals, PetscScalar *rhs_vals)
Set values in the system matrix and values in the right-hand side vector on corresponding rows...
Definition: linsys.hh:367
EqData data_
Field data for model parameters.
bool allocation_done
Indicates whether matrices have been preallocated.
unsigned int cond_idx() const
Definition: side_impl.hh:76
std::vector< std::vector< double > > gamma
Penalty parameters.
static const Input::Type::Record & get_input_type()
Declare input record type for the equation TransportDG.
Definition: transport_dg.cc:79
void initialize(std::shared_ptr< OutputTime > stream, Mesh *mesh, Input::Record in_rec, const TimeGovernor &tg)
Discontinuous Galerkin method for equation of transport with dispersion.
const Selection & close() const
Close the Selection, no more values can be added.
void update_after_reactions(bool solution_changed)
MappingP1< dim, 3 > * mapping()
std::vector< Vec > ret_vec
Auxiliary vectors for calculation of sources in balance due to retardation (e.g. sorption).
double shape_value_component(const unsigned int function_no, const unsigned int point_no, const unsigned int comp) const
Return the value of the function_no-th shape function at the point_no-th quadrature point...
Definition: fe_values.cc:242
vector< double > ret_sources
Temporary values of increments due to retardation (e.g. sorption)
bool set_time(const TimeStep &time, LimitSide limit_side)
Definition: field_set.cc:157
arma::vec::fixed< spacedim > shape_grad(const unsigned int function_no, const unsigned int point_no)
Return the gradient of the function_no-th shape function at the point_no-th quadrature point...
Definition: fe_values.cc:233
unsigned int bulk_idx() const
Returns index of the region in the bulk set.
Definition: region.hh:91
Definitions of particular quadrature rules on simplices.
#define WarningOut()
Macro defining &#39;warning&#39; record of log.
Definition: logger.hh:246
FieldCommon & name(const string &name)
virtual SolveInfo solve()=0
#define END_TIMER(tag)
Ends a timer with specified tag.
Discontinuous Galerkin method for equation of transport with dispersion.
void calculate_velocity(const ElementAccessor< 3 > &cell, std::vector< arma::vec3 > &velocity, FEValuesBase< dim, 3 > &fv)
Calculates the velocity field on a given dim dimensional cell.
vector< arma::vec::fixed< spacedim > > & point_list()
Return coordinates of all quadrature points in the actual cell system.
Definition: fe_values.hh:357
Quadrature< dim > * q()
static const Input::Type::Record & get_input_type()
Definition: linsys_PETSC.cc:32
virtual PetscErrorCode set_matrix(Mat &matrix, MatStructure str)
Definition: linsys.hh:246
std::vector< Vec > mass_vec
Mass from previous time instant (necessary when coefficients of mass matrix change in time)...
Record type proxy class.
Definition: type_record.hh:182
void assemble_volume_integrals()
Assembles the volume integrals into the stiffness matrix.
virtual void mat_set_values(int nrow, int *rows, int ncol, int *cols, double *vals)=0
FieldCommon & flags(FieldFlag::Flags::Mask mask)
Base class for FEValues and FESideValues.
Definition: fe_values.hh:37
static UnitSI & dimensionless()
Returns dimensionless unit.
Definition: unit_si.cc:55
static bool print_message_table(ostream &stream, std::string equation_name)
Definition: field_common.cc:96
~TransportDG()
Destructor.
unsigned int idx() const
Return local idx of element in boundary / bulk part of element vector.
Definition: accessors.hh:111
LinSys ** ls
Linear algebra system for the transport equation.
FiniteElement< dim > * fe_rt()
void set_DG_parameters_edge(const Edge &edg, const int s1, const int s2, const int K_size, const std::vector< arma::mat33 > &K1, const std::vector< arma::mat33 > &K2, const std::vector< double > &fluxes, const arma::vec3 &normal_vector, const double alpha1, const double alpha2, double &gamma, double *omega, double &transport_flux)
Calculates the dispersivity (diffusivity) tensor from the velocity field.
SideIter side(const unsigned int i) const
Definition: edges.h:31
LinSys ** ls_dt
Linear algebra system for the time derivative (actually it is used only for handling the matrix struc...
#define JUMP(i, k, side_id)
Template for classes storing finite set of named values.
void set_DG_parameters_boundary(const SideIter side, const int K_size, const std::vector< arma::mat33 > &K, const double flux, const arma::vec3 &normal_vector, const double alpha, double &gamma)
Sets up parameters of the DG method on a given boundary edge.
Definitions of Raviart-Thomas finite elements.
ElementAccessor< 3 > element_accessor()
Definition: boundaries.cc:48
void zero_time_step() override
Initialize solution in the zero time.
FEObjects(Mesh *mesh_, unsigned int fe_order)
Definition: field.hh:56
void reinit(ElementAccessor< 3 > &cell)
Update cell-dependent data (gradients, Jacobians etc.)
Definition: fe_values.cc:528
unsigned int n_nodes() const
Definition: side_impl.hh:34
Transformed quadrature weights.
Calculates finite element data on a side.
Definition: fe_values.hh:577
const Node * node(unsigned int ni) const
Definition: accessors.hh:145