Flow123d  release_3.0.0-695-g67d21c4
mesh.cc
Go to the documentation of this file.
1 /*!
2  *
3  * Copyright (C) 2015 Technical University of Liberec. All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify it under
6  * the terms of the GNU General Public License version 3 as published by the
7  * Free Software Foundation. (http://www.gnu.org/licenses/gpl-3.0.en.html)
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
11  * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
12  *
13  *
14  * @file mesh.cc
15  * @ingroup mesh
16  * @brief Mesh construction
17  */
18 
19 #include <unistd.h>
20 #include <set>
21 
22 
23 #include "system/system.hh"
24 #include "system/exceptions.hh"
26 #include "input/input_type.hh"
27 #include "input/accessors.hh"
28 #include "system/sys_profiler.hh"
29 #include "la/distribution.hh"
30 
31 #include "mesh/side_impl.hh"
32 #include "mesh/long_idx.hh"
33 #include "mesh/mesh.h"
34 #include "mesh/bc_mesh.hh"
35 #include "mesh/ref_element.hh"
36 #include "mesh/region_set.hh"
37 #include "mesh/range_wrapper.hh"
38 
39 // think about following dependencies
40 #include "mesh/boundaries.h"
41 #include "mesh/accessors.hh"
42 #include "mesh/node_accessor.hh"
43 #include "mesh/partitioning.hh"
44 #include "mesh/neighbours.h"
45 #include "mesh/sides.h"
46 
47 
48 #include "mesh/bih_tree.hh"
49 #include "mesh/duplicate_nodes.h"
50 
52 
53 
54 //TODO: sources, concentrations, initial condition and similarly boundary conditions should be
55 // instances of a Element valued field
56 // concentrations is in fact reimplemented in transport REMOVE it HERE
57 
58 // After removing non-geometrical things from mesh, this should be part of mash initializing.
59 #include "mesh/region.hh"
60 
61 #define NDEF -1
62 
63 namespace IT = Input::Type;
64 
66  return Input::Type::Selection("Types of search algorithm for finding intersection candidates.")
67  .add_value(Mesh::BIHsearch, "BIHsearch",
68  "Use BIH for finding initial candidates, then continue by prolongation.")
69  .add_value(Mesh::BIHonly, "BIHonly",
70  "Use BIH for finding all candidates.")
71  .add_value(Mesh::BBsearch, "BBsearch",
72  "Use bounding boxes for finding initial candidates, then continue by prolongation.")
73  .close();
74 }
75 
77  return IT::Record("Mesh","Record with mesh related data." )
78  .allow_auto_conversion("mesh_file")
80  "Input file with mesh description.")
82  "List of additional region and region set definitions not contained in the mesh. "
83  "There are three region sets implicitly defined:\n\n"
84  "- ALL (all regions of the mesh)\n"
85  "- .BOUNDARY (all boundary regions)\n"
86  "- BULK (all bulk regions)")
87  .declare_key("partitioning", Partitioning::get_input_type(), IT::Default("\"any_neighboring\""), "Parameters of mesh partitioning algorithms.\n" )
88  .declare_key("print_regions", IT::Bool(), IT::Default("true"), "If true, print table of all used regions.")
89  .declare_key("intersection_search", Mesh::get_input_intersection_variant(),
90  IT::Default("\"BIHsearch\""), "Search algorithm for element intersections.")
91  .declare_key("global_snap_radius", IT::Double(0.0), IT::Default("1E-3"),
92  "Maximal snapping distance from Mesh in various search operations. In particular is used "
93  "in ObservePoint to find closest mesh element and in FieldFormula to find closest surface "
94  "element in plan view (Z projection).")
96  "Output file with neighboring data from mesh.")
97  .close();
98 }
99 
100 const unsigned int Mesh::undef_idx;
101 
103 : row_4_el(nullptr),
104  el_4_loc(nullptr),
105  el_ds(nullptr),
106  bc_mesh_(nullptr),
107  tree(nullptr)
108 {}
109 
110 
111 
113 : in_record_(in_record),
114  comm_(com),
115  row_4_el(nullptr),
116  el_4_loc(nullptr),
117  el_ds(nullptr),
118  bc_mesh_(nullptr),
119  tree(nullptr)
120 {
121  // set in_record_, if input accessor is empty
122  if (in_record_.is_empty()) {
123  istringstream is("{mesh_file=\"\"}");
124  Input::ReaderToStorage reader;
125  IT::Record &in_rec = const_cast<IT::Record &>(Mesh::get_input_type());
126  in_rec.finish();
127  reader.read_stream(is, in_rec, Input::FileFormat::format_JSON);
129  }
130 
131  int rank;
133  if (rank == 0) {
134  // optionally open raw output file
135  FilePath raw_output_file_path;
136  if (in_record_.opt_val("raw_ngh_output", raw_output_file_path)) {
137  MessageOut() << "Opening raw ngh output: " << raw_output_file_path << "\n";
138  try {
139  raw_output_file_path.open_stream(raw_ngh_output_file);
140  } INPUT_CATCH(FilePath::ExcFileOpen, FilePath::EI_Address_String, (in_record_))
141  }
142 
143  }
145 }
146 
148 {
149  return in_record_.val<Mesh::IntersectionSearch>("intersection_search");
150 }
151 
152 
154 {
155 
156  n_insides = NDEF;
157  n_exsides = NDEF;
158  n_sides_ = NDEF;
159 
160  // number of element of particular dimension
161  n_lines = 0;
162  n_triangles = 0;
163  n_tetrahedras = 0;
164 
165  for (int d=0; d<3; d++) max_edge_sides_[d] = 0;
166 
167  // Initialize numbering of nodes on sides.
168  // This is temporary solution, until class Element is templated
169  // by dimension. Then we can replace Mesh::side_nodes by
170  // RefElement<dim>::side_nodes.
171 
172  // indices of side nodes in element node array
173  // Currently this is made ad libitum
174  // with some ordering here we can get sides with correct orientation.
175  // This speedup normal calculation.
176 
177  side_nodes.resize(3); // three side dimensions
178  for(int i=0; i < 3; i++) {
179  side_nodes[i].resize(i+2); // number of sides
180  for(int j=0; j < i+2; j++)
181  side_nodes[i][j].resize(i+1);
182  }
183 
184  for (unsigned int sid=0; sid<RefElement<1>::n_sides; sid++)
185  for (unsigned int nid=0; nid<RefElement<1>::n_nodes_per_side; nid++)
186  side_nodes[0][sid][nid] = RefElement<1>::interact(Interaction<0,0>(sid))[nid];
187 
188  for (unsigned int sid=0; sid<RefElement<2>::n_sides; sid++)
189  for (unsigned int nid=0; nid<RefElement<2>::n_nodes_per_side; nid++)
190  side_nodes[1][sid][nid] = RefElement<2>::interact(Interaction<0,1>(sid))[nid];
191 
192  for (unsigned int sid=0; sid<RefElement<3>::n_sides; sid++)
193  for (unsigned int nid=0; nid<RefElement<3>::n_nodes_per_side; nid++)
194  side_nodes[2][sid][nid] = RefElement<3>::interact(Interaction<0,2>(sid))[nid];
195 }
196 
197 
199  for(Edge &edg : this->edges)
200  if (edg.side_) delete[] edg.side_;
201 
202  for (unsigned int idx=0; idx < bulk_size_; idx++) {
203  Element *ele=&(element_vec_[idx]);
204  if (ele->boundary_idx_) delete[] ele->boundary_idx_;
205  if (ele->neigh_vb) delete[] ele->neigh_vb;
206  }
207 
208  for(unsigned int idx=bulk_size_; idx < element_vec_.size(); idx++) {
209  Element *ele=&(element_vec_[idx]);
210  if (ele->boundary_idx_) delete[] ele->boundary_idx_;
211  }
212 
213  if (row_4_el != nullptr) delete[] row_4_el;
214  if (el_4_loc != nullptr) delete[] el_4_loc;
215  if (el_ds != nullptr) delete el_ds;
216  if (bc_mesh_ != nullptr) delete bc_mesh_;
217  if (tree != nullptr) delete tree;
218 }
219 
220 
221 unsigned int Mesh::n_sides() const
222 {
223  if (n_sides_ == NDEF) {
224  n_sides_=0;
225  for (auto ele : this->elements_range()) n_sides_ += ele->n_sides();
226  }
227  return n_sides_;
228 }
229 
230 unsigned int Mesh::n_vb_neighbours() const {
231  return vb_neighbours_.size();
232  }
233 
234 
235 unsigned int Mesh::n_corners() {
236  unsigned int li, count = 0;
237  for (auto ele : this->elements_range()) {
238  for (li=0; li<ele->n_nodes(); li++) {
239  count++;
240  }
241  }
242  return count;
243 }
244 
246  return part_.get();
247 }
248 
250  return (LongIdx*)this->get_part()->get_loc_part();
251 }
252 
253 
254 //=============================================================================
255 // COUNT ELEMENT TYPES
256 //=============================================================================
257 
259  for (auto elm : this->elements_range())
260  switch (elm->dim()) {
261  case 1:
262  n_lines++;
263  break;
264  case 2:
265  n_triangles++;
266  break;
267  case 3:
268  n_tetrahedras++;
269  break;
270  }
271 }
272 
273 
274 
276  for (auto elem_to_region : map) {
277  Element &ele = element_vec_[ elem_index(elem_to_region.first) ];
278  ele.region_idx_ = region_db_.get_region( elem_to_region.second, ele.dim() );
280  }
281 }
282 
283 
284 
286  START_TIMER("MESH - setup topology");
287 
289 
290  // check mesh quality
291  for (auto ele : this->elements_range())
292  if (ele.quality_measure_smooth(ele.side(0)) < 0.001) WarningOut().fmt("Bad quality (<0.001) of the element {}.\n", ele.idx());
293 
298 
299  tree = new DuplicateNodes(this);
300 
301  part_ = std::make_shared<Partitioning>(this, in_record_.val<Input::Record>("partitioning") );
302 
303  // create parallel distribution and numbering of elements
304  LongIdx *id_4_old = new LongIdx[n_elements()];
305  int i = 0;
306  for (auto ele : this->elements_range())
307  id_4_old[i++] = ele.idx();
308  part_->id_maps(n_elements(), id_4_old, el_ds, el_4_loc, row_4_el);
309 
310  delete[] id_4_old;
311 
313 }
314 
315 
316 //
318 {
319 
320  n_insides = 0;
321  n_exsides = 0;
322  for (auto ele : this->elements_range())
323  for(SideIter sde = ele.side(0); sde->side_idx() < ele->n_sides(); ++sde) {
324  if (sde->is_external()) n_exsides++;
325  else n_insides++;
326  }
327 }
328 
329 
330 
332  // for each node we make a list of elements that use this node
333  node_elements_.resize( this->n_nodes() );
334 
335  for (auto ele : this->elements_range())
336  for (unsigned int n=0; n<ele->n_nodes(); n++)
337  node_elements_[ele.node_accessor(n).idx()].push_back(ele.idx());
338 
339  for (vector<vector<unsigned int> >::iterator n=node_elements_.begin(); n!=node_elements_.end(); n++)
340  stable_sort(n->begin(), n->end());
341 }
342 
343 
344 void Mesh::intersect_element_lists(vector<unsigned int> const &nodes_list, vector<unsigned int> &intersection_element_list)
345 {
346  if (node_elements_.size() == 0) {
348  }
349 
350  if (nodes_list.size() == 0) {
351  intersection_element_list.clear();
352  } else if (nodes_list.size() == 1) {
353  intersection_element_list = node_elements_[ nodes_list[0] ];
354  } else {
355  vector<unsigned int>::const_iterator it1=nodes_list.begin();
357  intersection_element_list.resize( node_elements_[*it1].size() ); // make enough space
358 
359  it1=set_intersection(
360  node_elements_[*it1].begin(), node_elements_[*it1].end(),
361  node_elements_[*it2].begin(), node_elements_[*it2].end(),
362  intersection_element_list.begin());
363  intersection_element_list.resize(it1-intersection_element_list.begin()); // resize to true size
364 
365  for(;it2<nodes_list.end();++it2) {
366  it1=set_intersection(
367  intersection_element_list.begin(), intersection_element_list.end(),
368  node_elements_[*it2].begin(), node_elements_[*it2].end(),
369  intersection_element_list.begin());
370  intersection_element_list.resize(it1-intersection_element_list.begin()); // resize to true size
371  }
372  }
373 }
374 
375 
376 bool Mesh::find_lower_dim_element( vector<unsigned int> &element_list, unsigned int dim, unsigned int &element_idx) {
377  bool is_neighbour = false;
378 
379  vector<unsigned int>::iterator e_dest=element_list.begin();
380  for( vector<unsigned int>::iterator ele = element_list.begin(); ele!=element_list.end(); ++ele) {
381  if (element_vec_[*ele].dim() == dim) { // keep only indexes of elements of same dimension
382  *e_dest=*ele;
383  ++e_dest;
384  } else if (element_vec_[*ele].dim() == dim-1) { // get only first element of lower dimension
385  if (is_neighbour) xprintf(UsrErr, "Too matching elements id: %d and id: %d in the same mesh.\n",
386  this->elem_index(*ele), this->elem_index(element_idx) );
387 
388  is_neighbour = true;
389  element_idx = *ele;
390  }
391  }
392  element_list.resize( e_dest - element_list.begin());
393  return is_neighbour;
394 }
395 
397  // check if nodes lists match (this is slow and will be faster only when we convert whole mesh into hierarchical design like in deal.ii)
398  unsigned int ni=0;
399  while ( ni < si->n_nodes()
400  && find(side_nodes.begin(), side_nodes.end(), si->node(ni).idx() ) != side_nodes.end() ) ni++;
401  return ( ni == si->n_nodes() );
402 }
403 
404 /**
405  * TODO:
406  * - use std::is_any for setting is_neigbour
407  * - possibly make appropriate constructors for Edge and Neighbour
408  * - check side!=-1 when searching neigbouring element
409  * - process boundary elements first, there should be no Neigh, but check it
410  * set Edge and boundary there
411  */
412 
414 {
415  ASSERT(bc_element_tmp_.size()==0)
416  .error("Temporary structure of boundary element data is not empty. Did you call create_boundary_elements?");
417 
418  Neighbour neighbour;
419  Edge *edg;
420  unsigned int ngh_element_idx, last_edge_idx;
421 
422  neighbour.mesh_ = this;
423 
425 
426  // pointers to created edges
427  //vector<Edge *> tmp_edges;
428  edges.resize(0); // be sure that edges are empty
429 
431  vector<unsigned int> intersection_list; // list of elements in intersection of node element lists
432 
433  for( unsigned int i=bulk_size_; i<element_vec_.size(); ++i) {
434  ElementAccessor<3> bc_ele = this->element_accessor(i);
435  // Find all elements that share this side.
436  side_nodes.resize(bc_ele->n_nodes());
437  for (unsigned n=0; n<bc_ele->n_nodes(); n++) side_nodes[n] = bc_ele->node_idx(n);
438  intersect_element_lists(side_nodes, intersection_list);
439  bool is_neighbour = find_lower_dim_element(intersection_list, bc_ele->dim() +1, ngh_element_idx);
440  if (is_neighbour) {
441  xprintf(UsrErr, "Boundary element (id: %d) match a regular element (id: %d) of lower dimension.\n",
442  bc_ele.idx(), this->elem_index(ngh_element_idx));
443  } else {
444  if (intersection_list.size() == 0) {
445  // no matching dim+1 element found
446  WarningOut().fmt("Lonely boundary element, id: {}, region: {}, dimension {}.\n",
447  bc_ele.idx(), bc_ele.region().id(), bc_ele->dim());
448  continue; // skip the boundary element
449  }
450  last_edge_idx=edges.size();
451  edges.resize(last_edge_idx+1);
452  edg = &( edges.back() );
453  edg->n_sides = 0;
454  edg->side_ = new struct SideIter[ intersection_list.size() ];
455 
456  // common boundary object
457  unsigned int bdr_idx=boundary_.size();
458  boundary_.resize(bdr_idx+1);
459  Boundary &bdr=boundary_.back();
460  bdr.bc_ele_idx_ = i;
461  bdr.edge_idx_ = last_edge_idx;
462  bdr.mesh_=this;
463 
464  // for 1d boundaries there can be more then one 1d elements connected to the boundary element
465  // we do not detect this case later in the main search over bulk elements
466  for( vector<unsigned int>::iterator isect = intersection_list.begin(); isect!=intersection_list.end(); ++isect) {
467  ElementAccessor<3> elem = this->element_accessor(*isect);
468  for (unsigned int ecs=0; ecs<elem->n_sides(); ecs++) {
469  SideIter si = elem.side(ecs);
470  if ( same_sides( si, side_nodes) ) {
471  if (elem->edge_idx(ecs) != Mesh::undef_idx) {
472  OLD_ASSERT(elem->boundary_idx_!=nullptr, "Null boundary idx array.\n");
473  int last_bc_ele_idx=this->boundary_[elem->boundary_idx_[ecs]].bc_ele_idx_;
474  int new_bc_ele_idx=i;
475  THROW( ExcDuplicateBoundary()
476  << EI_ElemLast(this->elem_index(last_bc_ele_idx))
477  << EI_RegLast(this->element_accessor(last_bc_ele_idx).region().label())
478  << EI_ElemNew(this->elem_index(new_bc_ele_idx))
479  << EI_RegNew(this->element_accessor(new_bc_ele_idx).region().label())
480  );
481  }
482  element_vec_[*isect].edge_idx_[ecs] = last_edge_idx;
483  edg->side_[ edg->n_sides++ ] = si;
484 
485  if (elem->boundary_idx_ == NULL) {
486  Element *el = &(element_vec_[*isect]);
487  el->boundary_idx_ = new unsigned int [ el->n_sides() ];
488  std::fill( el->boundary_idx_, el->boundary_idx_ + el->n_sides(), Mesh::undef_idx);
489  }
490  elem->boundary_idx_[ecs] = bdr_idx;
491  break; // next element in intersection list
492  }
493  }
494  }
495 
496  }
497 
498  }
499  // Now we go through all element sides and create edges and neighbours
500  for (auto e : this->elements_range()) {
501  for (unsigned int s=0; s<e->n_sides(); s++)
502  {
503  // skip sides that were already found
504  if (e->edge_idx(s) != Mesh::undef_idx) continue;
505 
506 
507  // Find all elements that share this side.
508  side_nodes.resize(e.side(s)->n_nodes());
509  for (unsigned n=0; n<e.side(s)->n_nodes(); n++) side_nodes[n] = e.side(s)->node(n).idx();
510  intersect_element_lists(side_nodes, intersection_list);
511 
512  bool is_neighbour = find_lower_dim_element(intersection_list, e->dim(), ngh_element_idx);
513 
514  if (is_neighbour) { // edge connects elements of different dimensions
515  neighbour.elem_idx_ = ngh_element_idx;
516  } else { // edge connects only elements of the same dimension
517  // Allocate the array of sides.
518  last_edge_idx=edges.size();
519  edges.resize(last_edge_idx+1);
520  edg = &( edges.back() );
521  edg->n_sides = 0;
522  edg->side_ = new struct SideIter[ intersection_list.size() ];
523  if (intersection_list.size() > max_edge_sides_[e->dim()-1])
524  max_edge_sides_[e->dim()-1] = intersection_list.size();
525 
526  if (intersection_list.size() == 1) { // outer edge, create boundary object as well
527  Element &elm = element_vec_[e.idx()];
528  edg->n_sides=1;
529  edg->side_[0] = e.side(s);
530  element_vec_[e.idx()].edge_idx_[s] = last_edge_idx;
531 
532  if (e->boundary_idx_ == NULL) {
533  elm.boundary_idx_ = new unsigned int [ e->n_sides() ];
534  std::fill( elm.boundary_idx_, elm.boundary_idx_ + e->n_sides(), Mesh::undef_idx);
535  }
536 
537  unsigned int bdr_idx=boundary_.size()+1; // need for VTK mesh that has no boundary elements
538  // and bulk elements are indexed from 0
539  boundary_.resize(bdr_idx+1);
540  Boundary &bdr=boundary_.back();
541  elm.boundary_idx_[s] = bdr_idx;
542 
543  // fill boundary element
544  Element * bc_ele = add_element_to_vector(-bdr_idx, true);
545  bc_ele->init(e->dim()-1, region_db_.implicit_boundary_region() );
547  for(unsigned int ni = 0; ni< side_nodes.size(); ni++) bc_ele->nodes_[ni] = side_nodes[ni];
548 
549  // fill Boundary object
550  bdr.edge_idx_ = last_edge_idx;
551  bdr.bc_ele_idx_ = elem_index(-bdr_idx);
552  bdr.mesh_=this;
553 
554  continue; // next side of element e
555  }
556  }
557 
558  // go through the elements connected to the edge or neighbour
559  for( vector<unsigned int>::iterator isect = intersection_list.begin(); isect!=intersection_list.end(); ++isect) {
560  ElementAccessor<3> elem = this->element_accessor(*isect);
561  for (unsigned int ecs=0; ecs<elem->n_sides(); ecs++) {
562  if (elem->edge_idx(ecs) != Mesh::undef_idx) continue;
563  SideIter si = elem.side(ecs);
564  if ( same_sides( si, side_nodes) ) {
565  if (is_neighbour) {
566  // create a new edge and neighbour for this side, and element to the edge
567  last_edge_idx=edges.size();
568  edges.resize(last_edge_idx+1);
569  edg = &( edges.back() );
570  edg->n_sides = 1;
571  edg->side_ = new struct SideIter[1];
572  edg->side_[0] = si;
573  element_vec_[elem.idx()].edge_idx_[ecs] = last_edge_idx;
574 
575  neighbour.edge_idx_ = last_edge_idx;
576 
577  vb_neighbours_.push_back(neighbour); // copy neighbour with this edge setting
578  } else {
579  // connect the side to the edge, and side to the edge
580  edg->side_[ edg->n_sides++ ] = si;
581  element_vec_[elem.idx()].edge_idx_[ecs] = last_edge_idx;
582  }
583  break; // next element from intersection list
584  }
585  } // search for side of other connected element
586  } // connected elements
587  OLD_ASSERT( is_neighbour || ( (unsigned int) edg->n_sides ) == intersection_list.size(), "Some connected sides were not found.\n");
588  } // for element sides
589  } // for elements
590 
591  MessageOut().fmt( "Created {} edges and {} neighbours.\n", edges.size(), vb_neighbours_.size() );
592 }
593 
594 
595 
597 {
598  for (std::vector<Edge>::iterator edg=edges.begin(); edg!=edges.end(); edg++)
599  {
600  // side 0 is reference, so its permutation is 0
601  edg->side(0)->element()->permutation_idx_[edg->side(0)->side_idx()] = 0;
602 
603  if (edg->n_sides > 1)
604  {
605  map<unsigned int,unsigned int> node_numbers;
606  unsigned int permutation[edg->side(0)->n_nodes()];
607 
608  for (unsigned int i=0; i<edg->side(0)->n_nodes(); i++)
609  node_numbers[edg->side(0)->node(i).idx()] = i;
610  //node_numbers[edg->side(0)->node(i).node()] = i;
611 
612  for (int sid=1; sid<edg->n_sides; sid++)
613  {
614  for (unsigned int i=0; i<edg->side(0)->n_nodes(); i++)
615  permutation[node_numbers[edg->side(sid)->node(i).idx()]] = i;
616  //permutation[node_numbers[edg->side(sid)->node(i).node()]] = i;
617 
618  switch (edg->side(0)->dim())
619  {
620  case 0:
621  edg->side(sid)->element()->permutation_idx_[edg->side(sid)->side_idx()] = RefElement<1>::permutation_index(permutation);
622  break;
623  case 1:
624  edg->side(sid)->element()->permutation_idx_[edg->side(sid)->side_idx()] = RefElement<2>::permutation_index(permutation);
625  break;
626  case 2:
627  edg->side(sid)->element()->permutation_idx_[edg->side(sid)->side_idx()] = RefElement<3>::permutation_index(permutation);
628  break;
629  }
630  }
631  }
632  }
633 
634  for (vector<Neighbour>::iterator nb=vb_neighbours_.begin(); nb!=vb_neighbours_.end(); nb++)
635  {
636  map<const Node*,unsigned int> node_numbers;
637  unsigned int permutation[nb->element()->n_nodes()];
638 
639  // element of lower dimension is reference, so
640  // we calculate permutation for the adjacent side
641  for (unsigned int i=0; i<nb->element()->n_nodes(); i++)
642  node_numbers[nb->element().node(i)] = i;
643 
644  for (unsigned int i=0; i<nb->side()->n_nodes(); i++)
645  permutation[node_numbers[nb->side()->node(i).node()]] = i;
646 
647  switch (nb->side()->dim())
648  {
649  case 0:
650  nb->side()->element()->permutation_idx_[nb->side()->side_idx()] = RefElement<1>::permutation_index(permutation);
651  break;
652  case 1:
653  nb->side()->element()->permutation_idx_[nb->side()->side_idx()] = RefElement<2>::permutation_index(permutation);
654  break;
655  case 2:
656  nb->side()->element()->permutation_idx_[nb->side()->side_idx()] = RefElement<3>::permutation_index(permutation);
657  break;
658  }
659  }
660 }
661 
662 
663 
664 
665 
666 //=============================================================================
667 //
668 //=============================================================================
670 {
671 
672  //MessageOut() << "Element to neighbours of vb2 type... "/*orig verb 5*/;
673 
674  for (vector<Element>::iterator ele = element_vec_.begin(); ele!= element_vec_.begin()+bulk_size_; ++ele)
675  ele->n_neighs_vb_ =0;
676 
677  // count vb neighs per element
678  for (auto & ngh : this->vb_neighbours_) ngh.element()->n_neighs_vb_++;
679 
680  // Allocation of the array per element
681  for (vector<Element>::iterator ele = element_vec_.begin(); ele!= element_vec_.begin()+bulk_size_; ++ele)
682  if( ele->n_neighs_vb() > 0 ) {
683  ele->neigh_vb = new struct Neighbour* [ele->n_neighs_vb()];
684  ele->n_neighs_vb_=0;
685  }
686 
687  // fill
688  ElementAccessor<3> ele;
689  for (auto & ngh : this->vb_neighbours_) {
690  ele = ngh.element();
691  ele->neigh_vb[ ele->n_neighs_vb_++ ] = &ngh;
692  }
693 
694  //MessageOut() << "... O.K.\n"/*orig verb 6*/;
695 }
696 
697 
698 
699 
700 
701 
703  /* Algorithm:
704  *
705  * 1) create BIH tree
706  * 2) for every 1D, find list of candidates
707  * 3) compute intersections for 1d, store it to master_elements
708  *
709  */
710  if (! intersections) {
711  intersections = std::make_shared<MixedMeshIntersections>(this);
712  intersections->compute_intersections();
713  }
714  return *intersections;
715 }
716 
717 
718 
720  return ElementAccessor<3>(this, idx);
721 }
722 
723 
724 
725 NodeAccessor<3> Mesh::node_accessor(unsigned int idx) const {
726  return NodeAccessor<3>(this, idx);
727 }
728 
729 
730 
731 void Mesh::elements_id_maps( vector<LongIdx> & bulk_elements_id, vector<LongIdx> & boundary_elements_id) const
732 {
733  if (bulk_elements_id.size() ==0) {
735  LongIdx last_id;
736 
737  bulk_elements_id.resize(n_elements());
738  map_it = bulk_elements_id.begin();
739  last_id = -1;
740  for(unsigned int idx=0; idx < n_elements(); idx++, ++map_it) {
741  LongIdx id = this->find_elem_id(idx);
742  if (last_id >= id) xprintf(UsrErr, "Element IDs in non-increasing order, ID: %d\n", id);
743  last_id=*map_it = id;
744  }
745 
746  boundary_elements_id.resize(n_elements(true));
747  map_it = boundary_elements_id.begin();
748  last_id = -1;
749  for(unsigned int idx=bulk_size_; idx<element_vec_.size(); idx++, ++map_it) {
750  LongIdx id = this->find_elem_id(idx);
751  // We set ID for boundary elements created by the mesh itself to "-1"
752  // this force gmsh reader to skip all remaining entries in boundary_elements_id
753  // and thus report error for any remaining data lines
754  if (id < 0) last_id=*map_it=-1;
755  else {
756  if (last_id >= id) xprintf(UsrErr, "Element IDs in non-increasing order, ID: %d\n", id);
757  last_id=*map_it = id;
758  }
759  }
760  }
761 }
762 
763 
764 bool compare_points(const arma::vec3 &p1, const arma::vec3 &p2) {
765  static const double point_tolerance = 1E-10;
766  return fabs(p1[0]-p2[0]) < point_tolerance
767  && fabs(p1[1]-p2[1]) < point_tolerance
768  && fabs(p1[2]-p2[2]) < point_tolerance;
769 }
770 
771 
772 bool Mesh::check_compatible_mesh( Mesh & mesh, vector<LongIdx> & bulk_elements_id, vector<LongIdx> & boundary_elements_id )
773 {
774  std::vector<unsigned int> node_ids; // allow mapping ids of nodes from source mesh to target mesh
775  std::vector<unsigned int> node_list;
776  std::vector<unsigned int> candidate_list; // returned by intersect_element_lists
777  std::vector<unsigned int> result_list; // list of elements with same dimension as vtk element
778  unsigned int i; // counter over vectors
779 
780  {
781  // iterates over node vector of \p this object
782  // to each node must be found just only one node in target \p mesh
783  // store orders (mapping between source and target meshes) into node_ids vector
784  std::vector<unsigned int> searched_elements; // for BIH tree
785  unsigned int i_node, i_elm_node;
786  const BIHTree &bih_tree=mesh.get_bih_tree();
787 
788  // create nodes of mesh
789  node_ids.resize( this->n_nodes() );
790  i=0;
791  for (auto nod : this->node_range()) {
792  arma::vec3 point = nod->point();
793  int found_i_node = -1;
794  bih_tree.find_point(point, searched_elements);
795 
796  for (std::vector<unsigned int>::iterator it = searched_elements.begin(); it!=searched_elements.end(); it++) {
797  ElementAccessor<3> ele = mesh.element_accessor( *it );
798  for (i_node=0; i_node<ele->n_nodes(); i_node++)
799  {
800  if ( compare_points(ele.node(i_node)->point(), point) ) {
801  i_elm_node = ele.node_accessor(i_node).idx();
802  if (found_i_node == -1) found_i_node = i_elm_node;
803  else if (found_i_node != i_elm_node) {
804  // duplicate nodes in target mesh
805  this->elements_id_maps(bulk_elements_id, boundary_elements_id);
806  return false;
807  }
808  }
809  }
810  }
811  if (found_i_node == -1) {
812  // no node found in target mesh
813  this->elements_id_maps(bulk_elements_id, boundary_elements_id);
814  return false;
815  }
816  node_ids[i] = (unsigned int)found_i_node;
817  searched_elements.clear();
818  i++;
819  }
820  }
821 
822  {
823  // iterates over bulk elements of \p this object
824  // elements in both meshes must be in ratio 1:1
825  // store orders (mapping between both mesh files) into bulk_elements_id vector
826  bulk_elements_id.clear();
827  bulk_elements_id.resize(this->n_elements());
828  // iterate trough bulk part of element vector, to each element in source mesh must exist only one element in target mesh
829  // fill bulk_elements_id vector
830  i=0;
831  for (auto elm : this->elements_range()) {
832  for (unsigned int j=0; j<elm->n_nodes(); j++) { // iterate trough all nodes of any element
833  node_list.push_back( node_ids[ elm->node_idx(j) ] );
834  }
835  mesh.intersect_element_lists(node_list, candidate_list);
836  for (auto i_elm : candidate_list) {
837  if ( mesh.element_accessor(i_elm)->dim() == elm.dim() ) result_list.push_back( elm.index() );
838  }
839  if (result_list.size() != 1) {
840  // intersect_element_lists must produce one element
841  this->elements_id_maps(bulk_elements_id, boundary_elements_id);
842  return false;
843  }
844  bulk_elements_id[i] = (LongIdx)result_list[0];
845  node_list.clear();
846  result_list.clear();
847  i++;
848  }
849  }
850 
851  {
852  // iterates over boundary elements of \p this object
853  // elements in both meshes must be in ratio 1:1
854  // store orders (mapping between both mesh files) into boundary_elements_id vector
855  auto bc_mesh = this->get_bc_mesh();
856  boundary_elements_id.clear();
857  boundary_elements_id.resize(bc_mesh->n_elements());
858  // iterate trough boundary part of element vector, to each element in source mesh must exist only one element in target mesh
859  // fill boundary_elements_id vector
860  i=0;
861  for (auto elm : bc_mesh->elements_range()) {
862  for (unsigned int j=0; j<elm->n_nodes(); j++) { // iterate trough all nodes of any element
863  node_list.push_back( node_ids[ elm->node_idx(j) ] );
864  }
865  mesh.get_bc_mesh()->intersect_element_lists(node_list, candidate_list);
866  for (auto i_elm : candidate_list) {
867  if ( mesh.get_bc_mesh()->element_accessor(i_elm)->dim() == elm.dim() ) result_list.push_back( elm.index() );
868  }
869  if (result_list.size() != 1) {
870  // intersect_element_lists must produce one element
871  this->elements_id_maps(bulk_elements_id, boundary_elements_id);
872  return false;
873  }
874  boundary_elements_id[i] = (LongIdx)result_list[0];
875  node_list.clear();
876  result_list.clear();
877  i++;
878  }
879  }
880 
881  return true;
882 }
883 
885 {
887  it != region_list.end();
888  ++it) {
889  // constructor has side effect in the mesh - create new region or set and store them to Mesh::region_db_
890  (*it).factory< RegionSetBase, const Input::Record &, Mesh * >(*it, this);
891  }
892 }
893 
895 {
897  region_db_.el_to_reg_map_.clear();
898  region_db_.close();
900 
901  if ( in_record_.val<bool>("print_regions") ) {
902  stringstream ss;
904  MessageOut() << ss.str();
905  }
906 }
907 
908 
910  START_TIMER("Mesh::compute_element_boxes");
912 
913  // make element boxes
914  unsigned int i=0;
915  boxes.resize(this->n_elements());
916  for (auto element : this->elements_range()) {
917  boxes[i] = element.bounding_box();
918  i++;
919  }
920 
921  return boxes;
922 }
923 
925  if (! this->bih_tree_) {
926  bih_tree_ = std::make_shared<BIHTree>();
927  bih_tree_->add_boxes( this->get_element_boxes() );
928  bih_tree_->construct();
929  }
930  return *bih_tree_;
931 }
932 
933 double Mesh::global_snap_radius() const {
934  return in_record_.val<double>("global_snap_radius");
935 }
936 
937 void Mesh::add_physical_name(unsigned int dim, unsigned int id, std::string name) {
938  region_db_.add_region(id, name, dim, "$PhysicalNames");
939 }
940 
941 
942 void Mesh::add_node(unsigned int node_id, arma::vec3 coords) {
943  node_vec_.push_back( Node() );
944  Node &node = node_vec_[node_vec_.size()-1];
945  node.point() = coords;
946  node_ids_.add_item(node_id);
947 }
948 
949 
950 void Mesh::add_element(unsigned int elm_id, unsigned int dim, unsigned int region_id, unsigned int partition_id,
951  std::vector<unsigned int> node_ids) {
952  RegionIdx region_idx = region_db_.get_region( region_id, dim );
953  if ( !region_idx.is_valid() ) {
954  region_idx = region_db_.add_region( region_id, region_db_.create_label_from_id(region_id), dim, "$Element" );
955  }
956  region_db_.mark_used_region(region_idx.idx());
957 
958  if (region_idx.is_boundary()) {
959  bc_element_tmp_.push_back( ElementTmpData(elm_id, dim, region_idx, partition_id, node_ids) );
960  } else {
961  if(dim == 0 ) {
962  WarningOut().fmt("Bulk elements of zero size(dim=0) are not supported. Element ID: {}.\n", elm_id);
963  }
964  else {
965  Element *ele = add_element_to_vector(elm_id);
966  this->init_element(ele, elm_id, dim, region_idx, partition_id, node_ids);
967  }
968  }
969 }
970 
971 
972 void Mesh::init_element(Element *ele, unsigned int elm_id, unsigned int dim, RegionIdx region_idx, unsigned int partition_id,
973  std::vector<unsigned int> node_ids) {
974  ele->init(dim, region_idx);
975  ele->pid_ = partition_id;
976 
977  for (unsigned int ni=0; ni<ele->n_nodes(); ni++) {
978  ele->nodes_[ni] = this->node_index(node_ids[ni]);
979  }
980 
981  // check that tetrahedron element is numbered correctly and is not degenerated
982  if(ele->dim() == 3)
983  {
984  double jac = this->element_accessor( this->elem_index(elm_id) ).tetrahedron_jacobian();
985  if( ! (jac > 0) )
986  WarningOut().fmt("Tetrahedron element with id {} has wrong numbering or is degenerated (Jacobian = {}).",elm_id,jac);
987  }
988 }
989 
990 
992  if (node_elements_.size() == 0) {
994  }
995  return node_elements_;
996 }
997 
998 
999 void Mesh::init_element_vector(unsigned int size) {
1000  element_vec_.clear();
1001  element_vec_.resize(size);
1002  element_ids_.reinit(size);
1003  bc_element_tmp_.clear();
1004  bc_element_tmp_.reserve(size);
1005  bulk_size_ = 0;
1007 }
1008 
1009 
1010 void Mesh::init_node_vector(unsigned int size) {
1011  node_vec_.clear();
1012  node_vec_.reserve(size);
1013  node_ids_.reinit(0);
1014 }
1015 
1016 
1017 Element * Mesh::add_element_to_vector(int id, bool boundary) {
1018  Element * elem=nullptr;
1019  if (boundary) {
1020  ASSERT_DBG(id<0)(id).error("Add boundary element from mesh file trough temporary structure!");
1021  element_vec_.push_back( Element() );
1022  elem = &element_vec_[element_vec_.size()-1];
1023  element_ids_.add_item(id);
1024  } else {
1025  elem = &element_vec_[bulk_size_];
1027  bulk_size_++;
1028  }
1029 
1030  return elem;
1031 }
1032 
1034  auto bgn_it = make_iter<ElementAccessor<3>>( ElementAccessor<3>(this, 0) );
1035  auto end_it = make_iter<ElementAccessor<3>>( ElementAccessor<3>(this, bulk_size_) );
1036  return Range<ElementAccessor<3>>(bgn_it, end_it);
1037 }
1038 
1040  auto bgn_it = make_iter<NodeAccessor<3>>( NodeAccessor<3>(this, 0) );
1041  auto end_it = make_iter<NodeAccessor<3>>( NodeAccessor<3>(this, node_vec_.size()) );
1042  return Range<NodeAccessor<3>>(bgn_it, end_it);
1043 }
1044 
1045 inline void Mesh::check_element_size(unsigned int elem_idx) const
1046 {
1047  ASSERT(elem_idx < element_vec_.size())(elem_idx)(element_vec_.size()).error("Index of element is out of bound of element vector!");
1048 }
1049 
1050 /*
1051  * Output of internal flow data.
1052  */
1054 {
1055  START_TIMER("Mesh::output_internal_ngh_data");
1056 
1057  if (! raw_ngh_output_file.is_open()) return;
1058 
1059  // header
1060  raw_ngh_output_file << "// fields:\n//ele_id n_sides ns_side_neighbors[n] neighbors[n*ns] n_vb_neighbors vb_neighbors[n_vb]\n";
1062 
1063  int cit = 0;
1064 
1065  // map from higher dim elements to its lower dim neighbors, using gmsh IDs: ele->id()
1066  unsigned int undefined_ele_id = -1;
1068  for (auto ele : this->elements_range()) {
1069  if(ele->n_neighs_vb() > 0){
1070  for (unsigned int i = 0; i < ele->n_neighs_vb(); i++){
1071  ElementAccessor<3> higher_ele = ele->neigh_vb[i]->side()->element();
1072 
1073  auto search = neigh_vb_map.find(higher_ele.idx());
1074  if(search != neigh_vb_map.end()){
1075  // if found, add id to correct local side idx
1076  search->second[ele->neigh_vb[i]->side()->side_idx()] = ele.idx();
1077  }
1078  else{
1079  // if not found, create new vector, each side can have one vb neighbour
1080  std::vector<unsigned int> higher_ele_side_ngh(higher_ele->n_sides(), undefined_ele_id);
1081  higher_ele_side_ngh[ele->neigh_vb[i]->side()->side_idx()] = ele.idx();
1082  neigh_vb_map[higher_ele.idx()] = higher_ele_side_ngh;
1083  }
1084  }
1085  }
1086  }
1087 
1088  for (auto ele : this->elements_range()) {
1089  raw_ngh_output_file << ele.idx() << " ";
1090  raw_ngh_output_file << ele->n_sides() << " ";
1091 
1092  auto search_neigh = neigh_vb_map.end();
1093  for (unsigned int i = 0; i < ele->n_sides(); i++) {
1094  unsigned int n_side_neighs = ele.side(i)->edge()->n_sides-1; //n_sides - the current one
1095  // check vb neighbors (lower dimension)
1096  if(n_side_neighs == 0){
1097  //update search
1098  if(search_neigh == neigh_vb_map.end())
1099  search_neigh = neigh_vb_map.find(ele.idx());
1100 
1101  if(search_neigh != neigh_vb_map.end())
1102  if(search_neigh->second[i] != undefined_ele_id)
1103  n_side_neighs = 1;
1104  }
1105  raw_ngh_output_file << n_side_neighs << " ";
1106  }
1107 
1108  for (unsigned int i = 0; i < ele->n_sides(); i++) {
1109  const Edge* edge = ele.side(i)->edge();
1110  if(ele.side(i)->edge()->n_sides > 1){
1111  for (int j = 0; j < edge->n_sides; j++) {
1112  if(edge->side(j) != ele.side(i))
1113  raw_ngh_output_file << edge->side(j)->element().idx() << " ";
1114  }
1115  }
1116  //check vb neighbour
1117  else if(search_neigh != neigh_vb_map.end()
1118  && search_neigh->second[i] != undefined_ele_id){
1119  raw_ngh_output_file << search_neigh->second[i] << " ";
1120  }
1121  }
1122 
1123  // list higher dim neighbours
1124  raw_ngh_output_file << ele->n_neighs_vb() << " ";
1125  for (unsigned int i = 0; i < ele->n_neighs_vb(); i++)
1126  raw_ngh_output_file << ele->neigh_vb[i]->side()->element().idx() << " ";
1127 
1128  raw_ngh_output_file << endl;
1129  cit ++;
1130  }
1131  raw_ngh_output_file << "$EndFlowField\n" << endl;
1132 }
1133 
1134 
1136  unsigned int i, pos;
1138  for (i=0, pos=bulk_size_; i<bc_element_tmp_.size(); ++i, ++pos) {
1139  Element *ele = &element_vec_[pos];
1140  element_ids_.set_item(bc_element_tmp_[i].elm_id, pos);
1141  this->init_element(ele, bc_element_tmp_[i].elm_id, bc_element_tmp_[i].dim, bc_element_tmp_[i].region_idx,
1142  bc_element_tmp_[i].partition_id, bc_element_tmp_[i].node_ids);
1143 
1144  }
1145 
1146  element_vec_.resize(pos); // remove empty element (count is equal with zero-dimensional bulk elements)
1147  bc_element_tmp_.clear();
1148  bc_element_tmp_.reserve(0);
1149 }
1150 
1151 
1152 void Mesh::permute_tetrahedron(unsigned int elm_idx, std::vector<unsigned int> permutation_vec)
1153 {
1154  ASSERT_LT_DBG(elm_idx, element_vec_.size());
1155  ASSERT_EQ_DBG(permutation_vec.size(), 4);
1156 
1157  std::array<unsigned int, 4> tmp_nodes;
1158  Element &elem = element_vec_[elm_idx];
1159  ASSERT_EQ_DBG(elem.dim(), 3);
1160 
1161  for(unsigned int i=0; i<elem.n_nodes(); i++)
1162  {
1163  tmp_nodes[i] = elem.nodes_[permutation_vec[i]];
1164  }
1165  elem.nodes_ = tmp_nodes;
1166 }
1167 
1168 
1169 void Mesh::permute_triangle(unsigned int elm_idx, std::vector<unsigned int> permutation_vec)
1170 {
1171  ASSERT_LT_DBG(elm_idx, element_vec_.size());
1172  ASSERT_EQ_DBG(permutation_vec.size(), 3);
1173 
1174  std::array<unsigned int, 4> tmp_nodes;
1175  Element &elem = element_vec_[elm_idx];
1176  ASSERT_EQ_DBG(elem.dim(), 2);
1177 
1178  for(unsigned int i=0; i<elem.n_nodes(); i++)
1179  {
1180  tmp_nodes[i] = elem.nodes_[permutation_vec[i]];
1181  }
1182  elem.nodes_ = tmp_nodes;
1183 }
1184 
1185 
1187  if (bc_mesh_ == nullptr) bc_mesh_ = new BCMesh(this);
1188  return bc_mesh_;
1189 }
1190 
1191 //-----------------------------------------------------------------------------
1192 // vim: set cindent:
int n_triangles
Definition: mesh.h:280
Distribution * el_ds
Parallel distribution of elements.
Definition: mesh.h:550
int LongIdx
Define type that represents indices of large arrays (elements, nodes, dofs etc.)
Definition: long_idx.hh:22
const Edge * edge() const
Definition: side_impl.hh:66
Class for the mesh partitioning. This should provide:
Definition: partitioning.hh:52
Iterator< ValueType > begin() const
void read_stream(istream &in, const Type::TypeBase &root_type, FileFormat format)
This method actually reads the given stream in.
void output_internal_ngh_data()
Output of neighboring data into raw output.
Definition: mesh.cc:1053
const Element * element() const
Definition: accessors.hh:90
unsigned int n_nodes() const
Definition: elements.h:129
std::array< unsigned int, 4 > nodes_
indices to element&#39;s nodes
Definition: elements.h:114
vector< Element > element_vec_
Definition: mesh.h:508
BidirectionalMap< int > node_ids_
Maps node ids to indexes into vector node_vec_.
Definition: mesh.h:528
vector< vector< unsigned int > > const & node_elements()
Definition: mesh.cc:991
#define ASSERT_EQ_DBG(a, b)
Definition of comparative assert macro (EQual) only for debug mode.
Definition: asserts.hh:331
Accessor to input data conforming to declared Array.
Definition: accessors.hh:567
unsigned int * boundary_idx_
Definition: elements.h:83
void permute_tetrahedron(unsigned int elm_idx, std::vector< unsigned int > permutation_vec)
Permute nodes of 3D elements of given elm_idx.
Definition: mesh.cc:1152
bool is_boundary() const
Returns true if it is a Boundary region and false if it is a Bulk region.
Definition: region.hh:74
friend class Element
Definition: mesh.h:534
void count_side_types()
Definition: mesh.cc:317
NodeAccessor< 3 > node_accessor(unsigned int ni) const
Definition: accessors.hh:149
int MPI_Comm
Definition: mpi.h:141
BCMesh * bc_mesh_
Boundary mesh, object is created only if it&#39;s necessary.
Definition: mesh.h:552
Definition: nodes.hh:31
unsigned int side_idx() const
Definition: side_impl.hh:82
void check_and_finish()
Definition: mesh.cc:894
MapElementIDToRegionID el_to_reg_map_
Definition: region.hh:571
Reader for (slightly) modified input files.
void init_element_vector(unsigned int size)
Initialize element_vec_, set size and reset counters of boundary and bulk elements.
Definition: mesh.cc:999
virtual const LongIdx * get_local_part()
Definition: mesh.cc:249
MixedMeshIntersections & mixed_intersections()
Definition: mesh.cc:702
Class Input::Type::Default specifies default value of keys of a Input::Type::Record.
Definition: type_record.hh:61
BidirectionalMap< int > element_ids_
Maps element ids to indexes into vector element_vec_.
Definition: mesh.h:520
Class for declaration of the input of type Bool.
Definition: type_base.hh:459
void add_node(unsigned int node_id, arma::vec3 coords)
Add new node of given id and coordinates to mesh.
Definition: mesh.cc:942
#define MessageOut()
Macro defining &#39;message&#39; record of log.
Definition: logger.hh:243
DuplicateNodes * tree
Definition: mesh.h:268
unsigned int elem_idx_
Index of element in Mesh::element_vec_.
Definition: neighbours.h:139
int n_lines
Definition: mesh.h:279
static const Input::Type::Record & get_input_type()
Definition: partitioning.cc:50
ElementAccessor< 3 > element_accessor(unsigned int idx) const override
Overwrite Mesh::element_accessor()
Definition: bc_mesh.cc:89
static const unsigned int undef_idx
Definition: mesh.h:106
std::vector< BoundingBox > get_element_boxes()
Compute bounding boxes of elements contained in mesh.
Definition: mesh.cc:909
ofstream raw_ngh_output_file
Definition: mesh.h:554
std::string format(CStringRef format_str, ArgList args)
Definition: format.h:3141
NodeAccessor< 3 > node_accessor(unsigned int idx) const
Create and return NodeAccessor to node of given idx.
Definition: mesh.cc:725
#define INPUT_CATCH(ExceptionType, AddressEITag, input_accessor)
Definition: accessors.hh:64
Range helper class.
Definition: mesh.h:52
void create_node_element_lists()
Definition: mesh.cc:331
static unsigned int permutation_index(unsigned int p[n_nodes_per_side])
Definition: ref_element.cc:533
BCMesh * get_bc_mesh()
Create boundary mesh if doesn&#39;t exist and return it.
Definition: mesh.cc:1186
static const Input::Type::Record & get_input_type()
Definition: mesh.cc:76
int elem_index(int elem_id) const
For element of given elem_id returns index in element_vec_ or (-1) if element doesn&#39;t exist...
Definition: mesh.h:355
static Default obligatory()
The factory function to make an empty default value which is obligatory.
Definition: type_record.hh:110
std::shared_ptr< MixedMeshIntersections > intersections
Definition: mesh.h:260
Edge * edge()
Definition: neighbours.h:158
double global_snap_radius() const
Maximal distance of observe point from Mesh relative to its size.
Definition: mesh.cc:933
unsigned int max_edge_sides_[3]
Maximal number of sides per one edge in the actual mesh (set in make_neighbours_and_edges()).
Definition: mesh.h:472
Definition: mesh.h:80
Input::Record in_record_
Definition: mesh.h:496
std::string create_label_from_id(unsigned int id) const
Definition: region.cc:338
int n_sides
Definition: edges.h:36
vector< vector< vector< unsigned int > > > side_nodes
Definition: mesh.h:292
Definition: edges.h:26
SideIter side(const unsigned int loc_index)
Definition: accessors.hh:137
int n_tetrahedras
Definition: mesh.h:281
#define ASSERT(expr)
Allow use shorter versions of macro names if these names is not used with external library...
Definition: asserts.hh:346
virtual unsigned int n_nodes() const
Definition: mesh.h:133
void add_physical_name(unsigned int dim, unsigned int id, std::string name)
Add new node of given id and coordinates to mesh.
Definition: mesh.cc:937
vector< Boundary > boundary_
Definition: mesh.h:249
int node_index(int node_id) const
For node of given node_id returns index in element_vec_ or (-1) if node doesn&#39;t exist.
Definition: mesh.h:367
ElementAccessor< 3 > element() const
Definition: side_impl.hh:53
virtual Partitioning * get_part()
Definition: mesh.cc:245
Record & close() const
Close the Record for further declarations of keys.
Definition: type_record.cc:303
Class for declaration of inputs sequences.
Definition: type_base.hh:346
virtual ElementAccessor< 3 > element_accessor(unsigned int idx) const
Create and return ElementAccessor to element of given idx.
Definition: mesh.cc:719
int n_exsides
Definition: mesh.h:276
void init(unsigned int dim, RegionIdx reg)
Definition: elements.cc:53
IteratorBase end() const
Region get_region(unsigned int id, unsigned int dim)
Definition: region.cc:151
unsigned int dim() const
Definition: elements.h:124
static Default optional()
The factory function to make an empty default value which is optional.
Definition: type_record.hh:124
#define OLD_ASSERT(...)
Definition: global_defs.h:131
unsigned int n_vb_neighbours() const
Definition: mesh.cc:230
ElementAccessor< 3 > element()
Definition: neighbours.h:163
void open_stream(Stream &stream) const
Definition: file_path.cc:211
virtual bool check_compatible_mesh(Mesh &mesh, vector< LongIdx > &bulk_elements_id, vector< LongIdx > &boundary_elements_id)
Definition: mesh.cc:772
bool opt_val(const string &key, Ret &value) const
unsigned int edge_idx_
Index of Edge in Mesh.
Definition: neighbours.h:140
void read_regions_from_input(Input::Array region_list)
Definition: mesh.cc:884
unsigned int boundary_loaded_size_
Count of boundary elements loaded from mesh file.
Definition: mesh.h:517
virtual Record & allow_auto_conversion(const string &from_key)
Allows shorter input of the Record providing only value of the from_key given as the parameter...
Definition: type_record.cc:132
bool same_sides(const SideIter &si, vector< unsigned int > &side_nodes)
Definition: mesh.cc:396
Class for declaration of the input data that are floating point numbers.
Definition: type_base.hh:541
int find_elem_id(unsigned int pos) const
Return element id (in GMSH file) of element of given position in element vector.
Definition: mesh.h:361
unsigned int add_item(T val)
Add new item at the end position of map.
unsigned int node_idx(unsigned int ni) const
Return index (in Mesh::node_vec) of ni-th node.
Definition: elements.h:75
void check_element_size(unsigned int elem_idx) const
Check if given index is in element_vec_.
Definition: mesh.cc:1045
void setup_topology()
Definition: mesh.cc:285
IntersectionSearch get_intersection_search()
Getter for input type selection for intersection search algorithm.
Definition: mesh.cc:147
Neighbour ** neigh_vb
Definition: elements.h:87
LongIdx * el_4_loc
Index set assigning to local element index its global index.
Definition: mesh.h:548
friend class BCMesh
Definition: mesh.h:537
T get_root_interface() const
Returns the root accessor.
unsigned int edge_idx(unsigned int edg_idx) const
Return edge_idx of given index.
Definition: elements.h:139
friend class RegionSetBase
Definition: mesh.h:533
static const Input::Type::Selection & get_input_intersection_variant()
The definition of input record for selection of variant of file format.
Definition: mesh.cc:65
static FileName input()
The factory function for declaring type FileName for input files.
Definition: type_base.cc:526
SideIter side()
Definition: neighbours.h:147
Accessor to the data with type Type::Record.
Definition: accessors.hh:292
#define NDEF
Definition: mesh.cc:61
const Ret val(const string &key) const
unsigned int n_sides() const
Definition: elements.h:135
#define xprintf(...)
Definition: system.hh:92
#define START_TIMER(tag)
Starts a timer with specified tag.
Class for O(log N) lookup for intersections with a set of bounding boxes.
Definition: bih_tree.hh:38
Selection & add_value(const int value, const std::string &key, const std::string &description="", TypeBase::attribute_map attributes=TypeBase::attribute_map())
Adds one new value with name given by key to the Selection.
unsigned int n_corners()
Definition: mesh.cc:235
void set_item(T val, unsigned int pos)
LongIdx * row_4_el
Index set assigning to global element index the local index used in parallel vectors.
Definition: mesh.h:546
BoundingBox bounding_box() const
Definition: accessors.hh:157
Record & declare_key(const string &key, std::shared_ptr< TypeBase > type, const Default &default_value, const string &description, TypeBase::attribute_map key_attributes=TypeBase::attribute_map())
Declares a new key of the Record.
Definition: type_record.cc:501
void close()
Definition: region.cc:250
bool is_empty() const
Definition: accessors.hh:366
vector< Node > node_vec_
Definition: mesh.h:525
Region implicit_boundary_region()
Definition: region.cc:76
virtual Range< ElementAccessor< 3 > > elements_range() const
Returns range of bulk elements.
Definition: mesh.cc:1033
unsigned int n_sides() const
Definition: mesh.cc:221
std::shared_ptr< BIHTree > bih_tree_
Definition: mesh.h:490
Element * add_element_to_vector(int id, bool boundary=false)
Adds element to mesh data structures (element_vec_, element_ids_), returns pointer to this element...
Definition: mesh.cc:1017
vector< vector< unsigned int > > node_elements_
For each node the vector contains a list of elements that use this node.
Definition: mesh.h:352
void reinit(unsigned int init_size=0)
Reset data of map, allow reserve size.
unsigned int edge_idx_
Definition: boundaries.h:78
NodeAccessor< 3 > node(unsigned int i) const
Definition: side_impl.hh:47
Accessor to the polymorphic input data of a type given by an AbstracRecord object.
Definition: accessors.hh:459
Region region() const
Definition: accessors.hh:95
void elements_id_maps(vector< LongIdx > &bulk_elements_id, vector< LongIdx > &boundary_elements_id) const
Definition: mesh.cc:731
unsigned int bc_ele_idx_
Definition: boundaries.h:79
void count_element_types()
Definition: mesh.cc:258
bool compare_points(const arma::vec3 &p1, const arma::vec3 &p2)
Definition: mesh.cc:764
const BIHTree & get_bih_tree()
Getter for BIH. Creates and compute BIH at first call.
Definition: mesh.cc:924
void create_boundary_elements()
Create boundary elements from data of temporary structure, this method MUST be call after read mesh f...
Definition: mesh.cc:1135
#define MPI_Comm_rank
Definition: mpi.h:236
void check_regions()
Definition: region.cc:462
Dedicated class for storing path to input and output files.
Definition: file_path.hh:54
Definition: system.hh:64
void mark_used_region(unsigned int idx)
Definition: region.cc:236
Support classes for parallel programing.
Region add_region(unsigned int id, const std::string &label, unsigned int dim, const std::string &address="implicit")
Definition: region.cc:86
vector< Neighbour > vb_neighbours_
Definition: mesh.h:273
FinishStatus finish(FinishStatus finish_type=FinishStatus::regular_) override
Finish declaration of the Record type.
Definition: type_record.cc:242
virtual unsigned int n_elements(bool boundary=false) const
Returns count of boundary or bulk elements.
Definition: mesh.h:346
void find_point(const Space< 3 >::Point &point, std::vector< unsigned int > &result_list, bool full_list=false) const
Definition: bih_tree.cc:287
int n_sides_
Definition: mesh.h:277
RegionIdx region_idx_
Definition: elements.h:110
Class represents boundary part of mesh.
Definition: bc_mesh.hh:35
const Selection & close() const
Close the Selection, no more values can be added.
RegionDB region_db_
Definition: mesh.h:481
std::vector< Edge > edges
Vector of MH edges, this should not be part of the geometrical mesh.
Definition: mesh.h:252
MPI_Comm comm_
Definition: mesh.h:501
#define ASSERT_DBG(expr)
Definition: asserts.hh:349
bool find_lower_dim_element(vector< unsigned int > &element_list, unsigned int dim, unsigned int &element_idx)
Definition: mesh.cc:376
int pid_
Id # of mesh partition.
Definition: elements.h:92
int n_insides
Definition: mesh.h:275
void print_region_table(std::ostream &stream) const
Definition: region.cc:410
void intersect_element_lists(vector< unsigned int > const &nodes_list, vector< unsigned int > &intersection_element_list)
Definition: mesh.cc:344
void modify_element_ids(const RegionDB::MapElementIDToRegionID &map)
Definition: mesh.cc:275
#define WarningOut()
Macro defining &#39;warning&#39; record of log.
Definition: logger.hh:246
#define MPI_COMM_WORLD
Definition: mpi.h:123
void make_edge_permutations()
Definition: mesh.cc:596
double tetrahedron_jacobian() const
Definition: accessors.hh:179
Class RefElement defines numbering of vertices, sides, calculation of normal vectors etc...
static Input::Type::Abstract & get_input_type()
Definition: region_set.cc:25
Range< NodeAccessor< 3 > > node_range() const
Returns range of nodes.
Definition: mesh.cc:1039
Mesh * mesh_
Definition: boundaries.h:80
const LongIdx * get_loc_part() const
Definition: partitioning.cc:86
void add_element(unsigned int elm_id, unsigned int dim, unsigned int region_id, unsigned int partition_id, std::vector< unsigned int > node_ids)
Add new element of given id to mesh.
Definition: mesh.cc:950
Record type proxy class.
Definition: type_record.hh:182
bool is_valid() const
Returns false if the region has undefined/invalid value.
Definition: region.hh:78
IntersectionSearch
Types of search algorithm for finding intersection candidates.
Definition: mesh.h:95
SideIter * side_
Definition: edges.h:37
void element_to_neigh_vb()
Definition: mesh.cc:669
void init_element(Element *ele, unsigned int elm_id, unsigned int dim, RegionIdx region_idx, unsigned int partition_id, std::vector< unsigned int > node_ids)
Initialize element.
Definition: mesh.cc:972
Mesh()
Definition: mesh.cc:102
arma::vec3 & point()
Definition: nodes.hh:67
static FileName output()
The factory function for declaring type FileName for input files.
Definition: type_base.cc:533
unsigned int n_neighs_vb_
of neighbours, V-B type (comp.)
Definition: elements.h:94
void reinit(Input::Record in_record)
Definition: mesh.cc:153
void permute_triangle(unsigned int elm_idx, std::vector< unsigned int > permutation_vec)
Permute nodes of 2D elements of given elm_idx.
Definition: mesh.cc:1169
unsigned int idx() const
Return local idx of element in boundary / bulk part of element vector.
Definition: accessors.hh:111
#define THROW(whole_exception_expr)
Wrapper for throw. Saves the throwing point.
Definition: exceptions.hh:53
SideIter side(const unsigned int i) const
Definition: edges.h:31
Template for classes storing finite set of named values.
Implementation of range helper class.
unsigned int bulk_size_
Count of bulk elements.
Definition: mesh.h:514
std::shared_ptr< Partitioning > part_
Definition: mesh.h:485
void make_neighbours_and_edges()
Definition: mesh.cc:413
vector< ElementTmpData > bc_element_tmp_
Hold data of boundary elements during reading mesh (allow to preserve correct order during reading of...
Definition: mesh.h:511
Mesh * mesh_
Pointer to Mesh to which belonged.
Definition: neighbours.h:138
void init_node_vector(unsigned int size)
Initialize node_vec_, set size.
Definition: mesh.cc:1010
unsigned int id() const
Returns id of the region (using RegionDB)
Definition: region.cc:39
Main class for computation of intersection of meshes of combined dimensions.
unsigned int n_nodes() const
Definition: side_impl.hh:34
virtual ~Mesh()
Destructor.
Definition: mesh.cc:198
unsigned int idx() const
Returns a global index of the region.
Definition: region.hh:82
#define ASSERT_LT_DBG(a, b)
Definition of comparative assert macro (Less Than) only for debug mode.
Definition: asserts.hh:299
const Node * node(unsigned int ni) const
Definition: accessors.hh:145