Flow123d  JS_before_hm-1003-g4e68d2c
fe_p.cc
Go to the documentation of this file.
1 /*!
2  *
3  * Copyright (C) 2015 Technical University of Liberec. All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify it under
6  * the terms of the GNU General Public License version 3 as published by the
7  * Free Software Foundation. (http://www.gnu.org/licenses/gpl-3.0.en.html)
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
11  * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
12  *
13  *
14  * @file fe_p.cc
15  * @brief
16  */
17 
18 // !! implementation of specializations has to be i *.cc file to avoid multiple definition error during linking
19 #include "fe_p.hh"
20 #include "mesh/ref_element.hh"
21 
22 
23 
24 
25 PolynomialSpace::PolynomialSpace(unsigned int degree, unsigned int dim)
26  : FunctionSpace(dim, 1),
27  degree_(degree)
28 {
29 // computes powers of all monomials up to given @p degree
30 // the order is: 1,x,x^2, y, yx,y^2
31 //
32 // TODO: - check and possibly rewrite to be more clear (use sum_degree temporary
33 // - change order of monomials: 1, x, y, xy, x^2 , y^2 (increasing order)
34 // - allow Q polynomials: 1,x, y, xy
35 // - can use tensor products
36 
37  arma::uvec pows(dim);
38  pows.zeros();
39 
40  unsigned int degree_sum=0;
41  unsigned int i_dim;
42 
43  while (true) {
44  powers.push_back(pows);
45 
46  // increment pows
47  for(i_dim=0; i_dim < dim; i_dim++) {
48  if (degree_sum < degree) {
49  pows[i_dim]++;
50  degree_sum++;
51  break;
52  } else { // if degree_sum == degree, we find first non empty power, free it, and raise the next one
53  degree_sum-=pows[i_dim];
54  pows[i_dim]=0;
55  }
56  }
57  if (i_dim == dim) break; // just after pow == (0, 0, .., degree)
58  }
59 }
60 
61 
62 double PolynomialSpace::basis_value(unsigned int i,
63  const arma::vec &point,
64  unsigned int comp_index
65  ) const
66 {
67  ASSERT_EQ_DBG(comp_index, 0);
68  ASSERT_LE_DBG(i, powers.size());
69  ASSERT_EQ_DBG(point.size(), space_dim_);
70 
71  double v = 1;
72  for (unsigned int j=0; j<this->space_dim_; j++)
73  v *= pow(point[j], (int) powers[i][j]);
74  return v;
75 }
76 
77 
79  const arma::vec &p,
80  unsigned int comp_index
81  ) const
82 {
83  ASSERT_EQ_DBG(comp_index, 0);
84  ASSERT_LE_DBG(i, powers.size());
85 
86  arma::vec grad(this->space_dim_);
87 
88  for (unsigned int j=0; j<this->space_dim_; j++)
89  {
90  grad[j] = powers[i][j];
91  if (powers[i][j] == 0) continue;
92 
93  for (unsigned int k=0; k<this->space_dim_; k++)
94  {
95  grad[j] *= pow(p[k], (int) (k==j?powers[i][k]-1:powers[i][k]));
96  }
97  }
98  return grad;
99 }
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 template<unsigned int dim>
113 {
114  if (degree_ == 0 || dim == 0)
115  {
116  // we define nodal dof:
117  // coords = barycentric coordinates of the support point,
118  // coefs = 1 (dof value = function value at the point)
119  arma::vec coords = arma::ones<arma::vec>(dim+1)/(dim+1);
120  this->dofs_.push_back(Dof(dim, 0, coords, { 1 }, Value));
121  }
122  else
123  {
124  // Create vector of barycentric coordinates.
125  // First we make vector uvbc which contains barycentric coordinates
126  // multiplied by degree_, so that its values are unsigned ints.
127  // Then by counting the nonzero barycentric coordinates we can decide
128  // whether the dof lies on node, line, triangle or tetrahedron.
130  arma::uvec ubc = arma::zeros<arma::uvec>(dim+1);
131  ubc[0] = degree_;
132  bool finish = false;
133  do {
134  uvbc.push_back(ubc);
135  if (ubc[0] > 0)
136  {
137  // by default increment the first coordinate
138  ubc[1] += 1;
139  ubc[0] -= 1;
140  }
141  else
142  {
143  // if sum of coordinates is maximal (0-th coordinate is zero)
144  // then find first nonzero coordinate,
145  // set it to zero, and increment the following coordinate.
146  unsigned int c = 1;
147  while (ubc[c] == 0) c++;
148  // if the first nonzero coordinate is the last but one, we reach the end
149  if (c == dim) finish = true;
150  else {
151  ubc[0] = ubc[c]-1;
152  ubc[c] = 0;
153  ubc[c+1] += 1;
154  }
155  }
156  } while (!finish);
157 
158  // define dofs
159  for (auto ubc : uvbc)
160  {
161  // we define nodal dof:
162  // coords = barycentric coordinates of the support point,
163  // coefs = 1 (dof value = function value at the point)
164 
165  // count nonzero coordinates in ubc: 1=>nodal dof, 2=>dof on line etc.
166  arma::uvec nonzeros = find(ubc);
167  // convert "unsigned barycentric coordinates" to real ones
168  arma::vec coords = arma::conv_to<arma::vec>::from(ubc);
169  coords /= degree_;
170 
171  // find index of n-face
172  std::pair<unsigned int, unsigned int> zeros = RefElement<dim>::zeros_positions(coords);
173  unsigned int n_face_idx = -1;
174  switch (dim-zeros.first) {
175  case 0:
176  n_face_idx = RefElement<dim>::template topology_idx<0>(zeros.second);
177  break;
178  case 1:
179  n_face_idx = RefElement<dim>::template topology_idx<1>(zeros.second);
180  break;
181  case 2:
182  n_face_idx = RefElement<dim>::template topology_idx<2>(zeros.second);
183  break;
184  case 3:
185  n_face_idx = RefElement<dim>::template topology_idx<3>(zeros.second);
186  break;
187  }
188  this->dofs_.push_back(Dof(nonzeros.size()-1, n_face_idx, coords, { 1 }, Value));
189  }
190  }
191 }
192 
193 
194 
195 
196 template<unsigned int dim>
197 FE_P<dim>::FE_P(unsigned int degree)
198  : FiniteElement<dim>(),
199  degree_(degree)
200 {
201  this->function_space_ = std::make_shared<PolynomialSpace>(degree,dim);
202 
203  init_dofs();
204 
205  this->setup_components();
206 
207  this->compute_node_matrix();
208 }
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 template<unsigned int dim>
225 FE_P_disc<dim>::FE_P_disc(unsigned int degree)
226  : FE_P<dim>(degree)
227 {
228  // all dofs are "inside" the cell (not shared with neighbours)
229  for (unsigned int i=0; i<this->dofs_.size(); i++)
230  this->dofs_[i].dim = dim;
231 
232  this->setup_components();
233 
234  this->compute_node_matrix();
235 }
236 
237 
238 
239 
240 
241 
242 template<unsigned int dim>
244 : FiniteElement<dim>()
245 {
246  this->function_space_ = std::make_shared<PolynomialSpace>(1,dim);
247 
248  if (dim == 0)
249  {
250  this->dofs_.push_back(Dof(0, 0, { 1 }, { 1 }, Value));
251  }
252  else
253  {
254  arma::vec::fixed<dim> sp; // support point
255  for (unsigned int sid=0; sid<RefElement<dim>::n_sides; ++sid)
256  {
257  sp.fill(0);
258  for (unsigned int i=0; i<RefElement<dim>::n_nodes_per_side; ++i)
261  // barycentric coordinates
262  arma::vec::fixed<dim+1> bsp;
263  bsp.subvec(1,dim) = sp;
264  bsp[0] = 1. - arma::sum(sp);
265  this->dofs_.push_back(Dof(dim-1, sid, bsp, { 1 }, Value));
266  }
267  }
268 
269  this->setup_components();
270  this->compute_node_matrix();
271 }
272 
273 
274 
275 
276 template<unsigned int dim>
278 : FiniteElement<dim>()
279 {
280  this->function_space_ = std::make_shared<PolynomialSpace>(1,dim);
281 
282  if (dim == 0)
283  {
284  this->dofs_.push_back(Dof(0, 0, { 1 }, { 1 }, Value));
285  }
286  else
287  {
288  arma::vec::fixed<dim> sp; // support point
289  for (unsigned int sid=0; sid<RefElement<dim>::n_sides; ++sid)
290  {
291  sp.fill(0);
292  for (unsigned int i=0; i<RefElement<dim>::n_nodes_per_side; ++i)
295  // barycentric coordinates
296  arma::vec::fixed<dim+1> bsp;
297  bsp.subvec(1,dim) = sp;
298  bsp[0] = 1. - arma::sum(sp);
299  this->dofs_.push_back(Dof(dim, 0, bsp, { 1 }, Value));
300  }
301  }
302 
303  this->setup_components();
304  this->compute_node_matrix();
305 }
306 
307 
308 
309 
310 
311 template class FE_P<0>;
312 template class FE_P<1>;
313 template class FE_P<2>;
314 template class FE_P<3>;
315 
316 
317 template class FE_P_disc<0>;
318 template class FE_P_disc<1>;
319 template class FE_P_disc<2>;
320 template class FE_P_disc<3>;
321 
322 
323 template class FE_CR<0>;
324 template class FE_CR<1>;
325 template class FE_CR<2>;
326 template class FE_CR<3>;
327 
328 
329 template class FE_CR_disc<0>;
330 template class FE_CR_disc<1>;
331 template class FE_CR_disc<2>;
332 template class FE_CR_disc<3>;
333 
const arma::vec basis_grad(unsigned int basis_index, const arma::vec &point, unsigned int comp_index=0) const override
Gradient of the i th basis function at point point.
Definition: fe_p.cc:78
PolynomialSpace(unsigned int degree, unsigned int dim)
Constructor.
Definition: fe_p.cc:25
#define ASSERT_EQ_DBG(a, b)
Definition of comparative assert macro (EQual) only for debug mode.
Definition: asserts.hh:332
ArmaVec< double, N > vec
Definition: armor.hh:861
Discontinuos Crouzeix-Raviart finite element on dim dimensional simplex.
Definition: fe_p.hh:138
FE_P_disc(unsigned int degree)
Constructor.
Definition: fe_p.cc:225
static std::pair< unsigned int, unsigned int > zeros_positions(const BaryPoint &barycentric, double tolerance=std::numeric_limits< double >::epsilon()*2)
Definition: ref_element.cc:412
std::vector< arma::uvec > powers
Coefficients of basis functions.
Definition: fe_p.hh:71
FE_CR()
Definition: fe_p.cc:243
Discontinuous Lagrangean finite element on dim dimensional simplex.
Definition: fe_p.hh:108
std::vector< Dof > dofs_
Set of degrees of freedom (functionals) defining the FE.
Definitions of basic Lagrangean finite elements with polynomial shape functions.
unsigned int dim() const override
Dimension of function space (number of basis functions).
Definition: fe_p.hh:58
double basis_value(unsigned int basis_index, const arma::vec &point, unsigned int comp_index=0) const override
Value of the i th basis function at point point.
Definition: fe_p.cc:62
FE_P(unsigned int degree)
Constructor.
Definition: fe_p.cc:197
void init_dofs()
Definition: fe_p.cc:112
virtual void compute_node_matrix()
Initializes the node_matrix for computing the coefficients of the shape functions in the raw basis of...
#define ASSERT_LE_DBG(a, b)
Definition of comparative assert macro (Less or Equal) only for debug mode.
Definition: asserts.hh:308
std::shared_ptr< FunctionSpace > function_space_
Function space defining the FE.
void setup_components()
Initialize vectors with information about components of basis functions.
Conforming Lagrangean finite element on dim dimensional simplex.
Definition: fe_p.hh:86
Class RefElement defines numbering of vertices, sides, calculation of normal vectors etc...
unsigned int space_dim_
Space dimension of function arguments (i.e. 1, 2 or 3).
Abstract class for the description of a general finite element on a reference simplex in dim dimensio...
Crouzeix-Raviart finite element on dim dimensional simplex.
Definition: fe_p.hh:124
FE_CR_disc()
Definition: fe_p.cc:277
const unsigned int degree_
Max. degree of polynomials.
Definition: fe_p.hh:63