Flow123d  JS_before_hm-2072-g4aad0192b
darcy_flow_mh.cc
Go to the documentation of this file.
1 /*!
2  *
3  * Copyright (C) 2015 Technical University of Liberec. All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify it under
6  * the terms of the GNU General Public License version 3 as published by the
7  * Free Software Foundation. (http://www.gnu.org/licenses/gpl-3.0.en.html)
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
11  * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
12  *
13  *
14  * @file darcy_flow_mh.cc
15  * @ingroup flow
16  * @brief Setup and solve linear system of mixed-hybrid discretization of the linear
17  * porous media flow with possible preferential flow in fractures and chanels.
18  */
19 
20 //#include <limits>
21 #include <vector>
22 //#include <iostream>
23 //#include <iterator>
24 //#include <algorithm>
25 #include <armadillo>
26 
27 #include "petscmat.h"
28 #include "petscviewer.h"
29 #include "petscerror.h"
30 #include "mpi.h"
31 
32 #include "system/system.hh"
33 #include "system/sys_profiler.hh"
34 #include "system/index_types.hh"
35 #include "input/factory.hh"
36 
37 #include "mesh/mesh.h"
38 #include "mesh/bc_mesh.hh"
39 #include "mesh/partitioning.hh"
40 #include "mesh/accessors.hh"
41 #include "mesh/range_wrapper.hh"
42 #include "la/distribution.hh"
43 #include "la/linsys.hh"
44 #include "la/linsys_PETSC.hh"
45 #include "la/linsys_BDDC.hh"
46 #include "la/schur.hh"
47 //#include "la/sparse_graph.hh"
49 #include "la/vector_mpi.hh"
50 
51 #include "flow/assembly_mh.hh"
52 #include "flow/darcy_flow_mh.hh"
54 #include "flow/assembly_models.hh"
55 
56 #include "tools/time_governor.hh"
58 #include "fields/field.hh"
59 #include "fields/field_values.hh"
61 #include "fields/field_fe.hh"
62 #include "fields/field_model.hh"
63 #include "fields/field_constant.hh"
64 
65 #include "coupling/balance.hh"
66 
69 
70 #include "fem/fe_p.hh"
71 
72 
73 FLOW123D_FORCE_LINK_IN_CHILD(darcy_flow_mh)
74 
75 
76 
77 
78 
79 
80 namespace it = Input::Type;
81 
83  return it::Selection("MH_MortarMethod")
84  .add_value(NoMortar, "None", "No Mortar method is applied.")
85  .add_value(MortarP0, "P0", "Mortar space: P0 on elements of lower dimension.")
86  .add_value(MortarP1, "P1", "Mortar space: P1 on intersections, using non-conforming pressures.")
87  .close();
88 }
89 
90 
92  return it::Selection("Flow_Darcy_BC_Type")
93  .add_value(none, "none",
94  "Homogeneous Neumann boundary condition\n(zero normal flux over the boundary).")
95  .add_value(dirichlet, "dirichlet",
96  "Dirichlet boundary condition. "
97  "Specify the pressure head through the ``bc_pressure`` field "
98  "or the piezometric head through the ``bc_piezo_head`` field.")
99  .add_value(total_flux, "total_flux", "Flux boundary condition (combines Neumann and Robin type). "
100  "Water inflow equal to (($ \\delta_d(q_d^N + \\sigma_d (h_d^R - h_d) )$)). "
101  "Specify the water inflow by the ``bc_flux`` field, the transition coefficient by ``bc_robin_sigma`` "
102  "and the reference pressure head or piezometric head through ``bc_pressure`` or ``bc_piezo_head`` respectively.")
103  .add_value(seepage, "seepage",
104  "Seepage face boundary condition. Pressure and inflow bounded from above. Boundary with potential seepage flow "
105  "is described by the pair of inequalities: "
106  "(($h_d \\le h_d^D$)) and (($ -\\boldsymbol q_d\\cdot\\boldsymbol n \\le \\delta q_d^N$)), where the equality holds in at least one of them. "
107  "Caution: setting (($q_d^N$)) strictly negative "
108  "may lead to an ill posed problem since a positive outflow is enforced. "
109  "Parameters (($h_d^D$)) and (($q_d^N$)) are given by the fields ``bc_switch_pressure`` (or ``bc_switch_piezo_head``) and ``bc_flux`` respectively."
110  )
111  .add_value(river, "river",
112  "River boundary condition. For the water level above the bedrock, (($H_d > H_d^S$)), the Robin boundary condition is used with the inflow given by: "
113  "(( $ \\delta_d(q_d^N + \\sigma_d(H_d^D - H_d) )$)). For the water level under the bedrock, constant infiltration is used: "
114  "(( $ \\delta_d(q_d^N + \\sigma_d(H_d^D - H_d^S) )$)). Parameters: ``bc_pressure``, ``bc_switch_pressure``, "
115  " ``bc_sigma``, ``bc_flux``."
116  )
117  .close();
118 }
119 
121 
122  const it::Record &field_descriptor =
123  it::Record("Flow_Darcy_MH_Data",FieldCommon::field_descriptor_record_description("Flow_Darcy_MH_Data") )
124  .copy_keys( DarcyMH::EqData().make_field_descriptor_type("Flow_Darcy_MH_Data_aux") )
125  .declare_key("bc_piezo_head", FieldAlgorithmBase< 3, FieldValue<3>::Scalar >::get_input_type_instance(),
126  "Boundary piezometric head for BC types: dirichlet, robin, and river." )
127  .declare_key("bc_switch_piezo_head", FieldAlgorithmBase< 3, FieldValue<3>::Scalar >::get_input_type_instance(),
128  "Boundary switch piezometric head for BC types: seepage, river." )
129  .declare_key("init_piezo_head", FieldAlgorithmBase< 3, FieldValue<3>::Scalar >::get_input_type_instance(),
130  "Initial condition for the pressure given as the piezometric head." )
131  .close();
132  return field_descriptor;
133 }
134 
136 
137  it::Record ns_rec = Input::Type::Record("NonlinearSolver", "Non-linear solver settings.")
138  .declare_key("linear_solver", LinSys::get_input_type(), it::Default("{}"),
139  "Linear solver for MH problem.")
140  .declare_key("tolerance", it::Double(0.0), it::Default("1E-6"),
141  "Residual tolerance.")
142  .declare_key("min_it", it::Integer(0), it::Default("1"),
143  "Minimum number of iterations (linear solutions) to use.\nThis is usefull if the convergence criteria "
144  "does not characterize your goal well enough so it converges prematurely, possibly even without a single linear solution."
145  "If greater then 'max_it' the value is set to 'max_it'.")
146  .declare_key("max_it", it::Integer(0), it::Default("100"),
147  "Maximum number of iterations (linear solutions) of the non-linear solver.")
148  .declare_key("converge_on_stagnation", it::Bool(), it::Default("false"),
149  "If a stagnation of the nonlinear solver is detected the solver stops. "
150  "A divergence is reported by default, forcing the end of the simulation. By setting this flag to 'true', the solver "
151  "ends with convergence success on stagnation, but it reports warning about it.")
152  .close();
153 
154  DarcyMH::EqData eq_data;
155 
156  return it::Record("Flow_Darcy_MH", "Mixed-Hybrid solver for saturated Darcy flow.")
159  .declare_key("gravity", it::Array(it::Double(), 3,3), it::Default("[ 0, 0, -1]"),
160  "Vector of the gravity force. Dimensionless.")
162  "Input data for Darcy flow model.")
163  .declare_key("nonlinear_solver", ns_rec, it::Default("{}"),
164  "Non-linear solver for MH problem.")
165  .declare_key("output_stream", OutputTime::get_input_type(), it::Default("{}"),
166  "Output stream settings.\n Specify file format, precision etc.")
167 
168  .declare_key("output", DarcyFlowMHOutput::get_input_type(eq_data, "Flow_Darcy_MH"),
169  IT::Default("{ \"fields\": [ \"pressure_p0\", \"velocity_p0\" ] }"),
170  "Specification of output fields and output times.")
172  "Output settings specific to Darcy flow model.\n"
173  "Includes raw output and some experimental functionality.")
174  .declare_key("balance", Balance::get_input_type(), it::Default("{}"),
175  "Settings for computing mass balance.")
176  .declare_key("n_schurs", it::Integer(0,2), it::Default("2"),
177  "Number of Schur complements to perform when solving MH system.")
178  .declare_key("mortar_method", get_mh_mortar_selection(), it::Default("\"None\""),
179  "Method for coupling Darcy flow between dimensions on incompatible meshes. [Experimental]" )
180  .close();
181 }
182 
183 
184 const int DarcyMH::registrar =
185  Input::register_class< DarcyMH, Mesh &, const Input::Record >("Flow_Darcy_MH") +
187 
188 
189 
191 {
192  mortar_method_=NoMortar;
193 
194  *this += field_ele_pressure.name("pressure_p0")
195  .units(UnitSI().m())
197  .description("Pressure solution - P0 interpolation.");
198 
199  *this += field_edge_pressure.name("pressure_edge")
200  .units(UnitSI().m())
201  .flags(FieldFlag::input_copy)
202  .description("Pressure solution - Crouzeix-Raviart interpolation.");
203 
204  *this += field_ele_piezo_head.name("piezo_head_p0")
205  .units(UnitSI().m())
207  .description("Piezo head solution - P0 interpolation.");
208 
209  *this += field_ele_velocity.name("velocity_p0")
210  .units(UnitSI().m().s(-1))
212  .description("Velocity solution - P0 interpolation.");
213 
214  *this += flux.name("flux")
215  .units(UnitSI().m().s(-1))
217  .description("Darcy flow flux.");
218 
219  *this += anisotropy.name("anisotropy")
220  .description("Anisotropy of the conductivity tensor.")
221  .input_default("1.0")
222  .units( UnitSI::dimensionless() );
223 
224  *this += cross_section.name("cross_section")
225  .description("Complement dimension parameter (cross section for 1D, thickness for 2D).")
226  .input_default("1.0")
227  .units( UnitSI().m(3).md() );
228 
229  *this += conductivity.name("conductivity")
230  .description("Isotropic conductivity scalar.")
231  .input_default("1.0")
232  .units( UnitSI().m().s(-1) )
233  .set_limits(0.0);
234 
235  *this += sigma.name("sigma")
236  .description("Transition coefficient between dimensions.")
237  .input_default("1.0")
238  .units( UnitSI::dimensionless() );
239 
240  *this += water_source_density.name("water_source_density")
241  .description("Water source density.")
242  .input_default("0.0")
243  .units( UnitSI().s(-1) );
244 
245  *this += bc_type.name("bc_type")
246  .description("Boundary condition type.")
247  .input_selection( get_bc_type_selection() )
248  .input_default("\"none\"")
249  .units( UnitSI::dimensionless() );
250 
251  *this += bc_pressure
252  .disable_where(bc_type, {none, seepage} )
253  .name("bc_pressure")
254  .description("Prescribed pressure value on the boundary. Used for all values of ``bc_type`` except ``none`` and ``seepage``. "
255  "See documentation of ``bc_type`` for exact meaning of ``bc_pressure`` in individual boundary condition types.")
256  .input_default("0.0")
257  .units( UnitSI().m() );
258 
259  *this += bc_flux
260  .disable_where(bc_type, {none, dirichlet} )
261  .name("bc_flux")
262  .description("Incoming water boundary flux. Used for bc_types : ``total_flux``, ``seepage``, ``river``.")
263  .input_default("0.0")
264  .units( UnitSI().m().s(-1) );
265 
266  *this += bc_robin_sigma
267  .disable_where(bc_type, {none, dirichlet, seepage} )
268  .name("bc_robin_sigma")
269  .description("Conductivity coefficient in the ``total_flux`` or the ``river`` boundary condition type.")
270  .input_default("0.0")
271  .units( UnitSI().s(-1) );
272 
273  *this += bc_switch_pressure
274  .disable_where(bc_type, {none, dirichlet, total_flux} )
275  .name("bc_switch_pressure")
276  .description("Critical switch pressure for ``seepage`` and ``river`` boundary conditions.")
277  .input_default("0.0")
278  .units( UnitSI().m() );
279 
280 
281  //these are for unsteady
282  *this += init_pressure.name("init_pressure")
283  .description("Initial condition for pressure in time dependent problems.")
284  .input_default("0.0")
285  .units( UnitSI().m() );
286 
287  *this += storativity.name("storativity")
288  .description("Storativity (in time dependent problems).")
289  .input_default("0.0")
290  .units( UnitSI().m(-1) );
291 
292  *this += extra_storativity.name("extra_storativity")
293  .description("Storativity added from upstream equation.")
294  .units( UnitSI().m(-1) )
295  .input_default("0.0")
296  .flags( input_copy );
297 
298  *this += extra_source.name("extra_water_source_density")
299  .description("Water source density added from upstream equation.")
300  .input_default("0.0")
301  .units( UnitSI().s(-1) )
302  .flags( input_copy );
303 
304  *this += gravity_field.name("gravity")
305  .description("Gravity vector.")
306  .input_default("0.0")
307  .units( UnitSI::dimensionless() );
308 
309  //time_term_fields = this->subset({"storativity"});
310  //main_matrix_fields = this->subset({"anisotropy", "conductivity", "cross_section", "sigma", "bc_type", "bc_robin_sigma"});
311  //rhs_fields = this->subset({"water_source_density", "bc_pressure", "bc_flux"});
312 }
313 
314 
315 
316 //=============================================================================
317 // CREATE AND FILL GLOBAL MH MATRIX OF THE WATER MODEL
318 // - do it in parallel:
319 // - initial distribution of elements, edges
320 //
321 /*! @brief CREATE AND FILL GLOBAL MH MATRIX OF THE WATER MODEL
322  *
323  * Parameters {Solver,NSchurs} number of performed Schur
324  * complements (0,1,2) for water flow MH-system
325  *
326  */
327 //=============================================================================
328 DarcyMH::DarcyMH(Mesh &mesh_in, const Input::Record in_rec, TimeGovernor *tm)
329 : DarcyFlowInterface(mesh_in, in_rec),
330  output_object(nullptr),
331  data_changed_(false),
332  schur0(nullptr),
333  steady_diagonal(nullptr),
334  steady_rhs(nullptr),
335  new_diagonal(nullptr),
336  previous_solution(nullptr)
337 {
338 
339  START_TIMER("Darcy constructor");
340  {
341  auto time_rec = in_rec.val<Input::Record>("time");
342  if (tm == nullptr)
343  {
344  time_ = new TimeGovernor(time_rec);
345  }
346  else
347  {
348  TimeGovernor tm_from_rec(time_rec);
349  if (!tm_from_rec.is_default()) // is_default() == false when time record is present in input file
350  {
351  MessageOut() << "Duplicate key 'time', time in flow equation is already initialized from parent class!";
352  ASSERT(false);
353  }
354  time_ = tm;
355  }
356  }
357 
358  data_ = make_shared<EqData>();
360 
361  data_->is_linear=true;
362 
363  size = mesh_->n_elements() + mesh_->n_sides() + mesh_->n_edges();
364  n_schur_compls = in_rec.val<int>("n_schurs");
365  data_->mortar_method_= in_rec.val<MortarMethod>("mortar_method");
366  if (data_->mortar_method_ != NoMortar) {
368  }
369 
370 
371 
372  //side_ds->view( std::cout );
373  //el_ds->view( std::cout );
374  //edge_ds->view( std::cout );
375  //rows_ds->view( std::cout );
376 
377 }
378 
379 
380 
382 //connecting data fields with mesh
383 {
384 
385  START_TIMER("data init");
386  data_->mesh = mesh_;
387  data_->set_mesh(*mesh_);
388 
389  auto gravity_array = input_record_.val<Input::Array>("gravity");
390  std::vector<double> gvec;
391  gravity_array.copy_to(gvec);
392  gvec.push_back(0.0); // zero pressure shift
393  data_->gravity_ = arma::vec(gvec);
394  data_->gravity_vec_ = data_->gravity_.subvec(0,2);
395 
396  FieldValue<3>::VectorFixed gvalue(data_->gravity_vec_);
397  auto field_algo=std::make_shared<FieldConstant<3, FieldValue<3>::VectorFixed>>();
398  field_algo->set_value(gvalue);
399  data_->gravity_field.set(field_algo, 0.0);
400 
401  data_->bc_pressure.add_factory(
402  std::make_shared<FieldAddPotential<3, FieldValue<3>::Scalar>::FieldFactory>
403  (data_->gravity_, "bc_piezo_head") );
404  data_->bc_switch_pressure.add_factory(
405  std::make_shared<FieldAddPotential<3, FieldValue<3>::Scalar>::FieldFactory>
406  (data_->gravity_, "bc_switch_piezo_head") );
407  data_->init_pressure.add_factory(
408  std::make_shared<FieldAddPotential<3, FieldValue<3>::Scalar>::FieldFactory>
409  (data_->gravity_, "init_piezo_head") );
410 
411 
412  data_->set_input_list( this->input_record_.val<Input::Array>("input_fields"), *time_ );
413  // Check that the time step was set for the transient simulation.
414  if (! zero_time_term(true) && time_->is_default() ) {
415  //THROW(ExcAssertMsg());
416  //THROW(ExcMissingTimeGovernor() << input_record_.ei_address());
417  MessageOut() << "Missing the key 'time', obligatory for the transient problems." << endl;
418  ASSERT(false);
419  }
420 
421  data_->mark_input_times(*time_);
422 }
423 
424 
425 
427 
428  { // init DOF handler for pressure fields
429 // std::shared_ptr< FiniteElement<0> > fe0_rt = std::make_shared<FE_RT0_disc<0>>();
430  std::shared_ptr< FiniteElement<1> > fe1_rt = std::make_shared<FE_RT0_disc<1>>();
431  std::shared_ptr< FiniteElement<2> > fe2_rt = std::make_shared<FE_RT0_disc<2>>();
432  std::shared_ptr< FiniteElement<3> > fe3_rt = std::make_shared<FE_RT0_disc<3>>();
433  std::shared_ptr< FiniteElement<0> > fe0_disc = std::make_shared<FE_P_disc<0>>(0);
434  std::shared_ptr< FiniteElement<1> > fe1_disc = std::make_shared<FE_P_disc<1>>(0);
435  std::shared_ptr< FiniteElement<2> > fe2_disc = std::make_shared<FE_P_disc<2>>(0);
436  std::shared_ptr< FiniteElement<3> > fe3_disc = std::make_shared<FE_P_disc<3>>(0);
437  std::shared_ptr< FiniteElement<0> > fe0_cr = std::make_shared<FE_CR<0>>();
438  std::shared_ptr< FiniteElement<1> > fe1_cr = std::make_shared<FE_CR<1>>();
439  std::shared_ptr< FiniteElement<2> > fe2_cr = std::make_shared<FE_CR<2>>();
440  std::shared_ptr< FiniteElement<3> > fe3_cr = std::make_shared<FE_CR<3>>();
441 // static FiniteElement<0> fe0_sys = FE_P_disc<0>(0); //TODO fix and use solution with FESystem<0>( {fe0_rt, fe0_disc, fe0_cr} )
442  FESystem<0> fe0_sys( {fe0_disc, fe0_disc, fe0_cr} );
443  FESystem<1> fe1_sys( {fe1_rt, fe1_disc, fe1_cr} );
444  FESystem<2> fe2_sys( {fe2_rt, fe2_disc, fe2_cr} );
445  FESystem<3> fe3_sys( {fe3_rt, fe3_disc, fe3_cr} );
446  MixedPtr<FESystem> fe_sys( std::make_shared<FESystem<0>>(fe0_sys), std::make_shared<FESystem<1>>(fe1_sys),
447  std::make_shared<FESystem<2>>(fe2_sys), std::make_shared<FESystem<3>>(fe3_sys) );
448  std::shared_ptr<DiscreteSpace> ds = std::make_shared<EqualOrderDiscreteSpace>( mesh_, fe_sys);
449  data_->dh_ = std::make_shared<DOFHandlerMultiDim>(*mesh_);
450  data_->dh_->distribute_dofs(ds);
451  }
452 
453  init_eq_data();
454  this->data_->multidim_assembler = AssemblyBase::create< AssemblyMH >(data_);
456 
457  data_->add_coords_field();
458 
459  { // construct pressure, velocity and piezo head fields
460  uint rt_component = 0;
461  data_->full_solution = data_->dh_->create_vector();
462  auto ele_flux_ptr = create_field_fe<3, FieldValue<3>::VectorFixed>(data_->dh_, &data_->full_solution, rt_component);
463  data_->flux.set(ele_flux_ptr, 0.0);
464 
465  data_->field_ele_velocity.set(Model<3, FieldValue<3>::VectorFixed>::create(fn_mh_velocity(), data_->flux, data_->cross_section), 0.0);
466 
467  uint p_ele_component = 1;
468  auto ele_pressure_ptr = create_field_fe<3, FieldValue<3>::Scalar>(data_->dh_, &data_->full_solution, p_ele_component);
469  data_->field_ele_pressure.set(ele_pressure_ptr, 0.0);
470 
471  uint p_edge_component = 2;
472  auto edge_pressure_ptr = create_field_fe<3, FieldValue<3>::Scalar>(data_->dh_, &data_->full_solution, p_edge_component);
473  data_->field_edge_pressure.set(edge_pressure_ptr, 0.0);
474 
475  data_->field_ele_piezo_head.set(
476  Model<3, FieldValue<3>::Scalar>::create(fn_mh_piezohead(), data_->gravity_field, data_->X(), data_->field_ele_pressure),
477  0.0
478  );
479  }
480 
481  { // init DOF handlers represents edge DOFs
482  uint p_edge_component = 2;
483  data_->dh_cr_ = std::make_shared<SubDOFHandlerMultiDim>(data_->dh_,p_edge_component);
484  }
485 
486  { // init DOF handlers represents side DOFs
487  MixedPtr<FE_CR_disc> fe_cr_disc;
488  std::shared_ptr<DiscreteSpace> ds_cr_disc = std::make_shared<EqualOrderDiscreteSpace>( mesh_, fe_cr_disc);
489  data_->dh_cr_disc_ = std::make_shared<DOFHandlerMultiDim>(*mesh_);
490  data_->dh_cr_disc_->distribute_dofs(ds_cr_disc);
491  }
492 
493  // Initialize bc_switch_dirichlet to size of global boundary.
494  data_->bc_switch_dirichlet.resize(mesh_->n_elements()+mesh_->bc_mesh()->n_elements(), 1);
495 
496 
499  .val<Input::Record>("nonlinear_solver")
500  .val<Input::AbstractRecord>("linear_solver");
501 
502  // auxiliary set_time call since allocation assembly evaluates fields as well
505 
506 
507 
508  // allocate time term vectors
509  VecDuplicate(schur0->get_solution(), &previous_solution);
510  VecCreateMPI(PETSC_COMM_WORLD, data_->dh_->distr()->lsize(),PETSC_DETERMINE,&(steady_diagonal));
511  VecDuplicate(steady_diagonal,& new_diagonal);
512  VecZeroEntries(new_diagonal);
513  VecDuplicate(steady_diagonal, &steady_rhs);
514 
515 
516  // initialization of balance object
517  balance_ = std::make_shared<Balance>("water", mesh_);
518  balance_->init_from_input(input_record_.val<Input::Record>("balance"), time());
519  data_->water_balance_idx = balance_->add_quantity("water_volume");
520  balance_->allocate(data_->dh_->distr()->lsize(), 1);
521  balance_->units(UnitSI().m(3));
522 
523 
524  data_->balance = balance_;
525  data_->lin_sys = schur0;
526 
527 
529 }
530 
532 {}
533 
535 {
536 
537  /* TODO:
538  * - Allow solution reconstruction (pressure and velocity) from initial condition on user request.
539  * - Steady solution as an intitial condition may be forced by setting inti_time =-1, and set data for the steady solver in that time.
540  * Solver should be able to switch from and to steady case depending on the zero time term.
541  */
542 
544 
545  // zero_time_term means steady case
546  bool zero_time_term_from_right = zero_time_term();
547 
548 
549  if (zero_time_term_from_right) {
550  // steady case
551  VecZeroEntries(schur0->get_solution());
552  //read_initial_condition(); // Possible solution guess for steady case.
553  use_steady_assembly_ = true;
554  solve_nonlinear(); // with right limit data
555  } else {
556  VecZeroEntries(schur0->get_solution());
557  VecZeroEntries(previous_solution);
559  assembly_linear_system(); // in particular due to balance
560 // print_matlab_matrix("matrix_zero");
561  // TODO: reconstruction of solution in zero time.
562  }
563  //solution_output(T,right_limit); // data for time T in any case
564  output_data();
565 }
566 
567 //=============================================================================
568 // COMPOSE and SOLVE WATER MH System possibly through Schur complements
569 //=============================================================================
571 {
572  START_TIMER("Solving MH system");
573 
574  time_->next_time();
575 
576  time_->view("DARCY"); //time governor information output
577 
578  solve_time_step();
579 
580  data_->full_solution.local_to_ghost_begin();
581  data_->full_solution.local_to_ghost_end();
582 }
583 
584 
585 void DarcyMH::solve_time_step(bool output)
586 {
588 
589  bool zero_time_term_from_left=zero_time_term();
590 
591  bool jump_time = data_->storativity.is_jump_time();
592  if (! zero_time_term_from_left) {
593  // time term not treated as zero
594  // Unsteady solution up to the T.
595 
596  // this flag is necesssary for switching BC to avoid setting zero neumann on the whole boundary in the steady case
597  use_steady_assembly_ = false;
598 
600  solve_nonlinear(); // with left limit data
601  if (jump_time) {
602  WarningOut() << "Output of solution discontinuous in time not supported yet.\n";
603  //solution_output(T, left_limit); // output use time T- delta*dt
604  //output_data();
605  }
606  }
607 
608  if (time_->is_end()) {
609  // output for unsteady case, end_time should not be the jump time
610  // but rether check that
611  if (! zero_time_term_from_left && ! jump_time && output) output_data();
612  return;
613  }
614 
616  bool zero_time_term_from_right=zero_time_term();
617  if (zero_time_term_from_right) {
618  // this flag is necesssary for switching BC to avoid setting zero neumann on the whole boundary in the steady case
619  use_steady_assembly_ = true;
620  solve_nonlinear(); // with right limit data
621 
622  } else if (! zero_time_term_from_left && jump_time) {
623  WarningOut() << "Discontinuous time term not supported yet.\n";
624  //solution_transfer(); // internally call set_time(T, left) and set_time(T,right) again
625  //solve_nonlinear(); // with right limit data
626  }
627 
628  //solution_output(T,right_limit); // data for time T in any case
629  if (output) output_data();
630 }
631 
632 
633 bool DarcyMH::zero_time_term(bool time_global) {
634  if (time_global) {
635  return (data_->storativity.input_list_size() == 0);
636  } else {
637  return data_->storativity.field_result(mesh_->region_db().get_region_set("BULK")) == result_zeros;
638  }
639 }
640 
641 
643 {
644 
646  double residual_norm = schur0->compute_residual();
648  MessageOut().fmt("[nonlinear solver] norm of initial residual: {}\n", residual_norm);
649 
650  // Reduce is_linear flag.
651  int is_linear_common;
652  MPI_Allreduce(&(data_->is_linear), &is_linear_common,1, MPI_INT ,MPI_MIN,PETSC_COMM_WORLD);
653 
654  Input::Record nl_solver_rec = input_record_.val<Input::Record>("nonlinear_solver");
655  this->tolerance_ = nl_solver_rec.val<double>("tolerance");
656  this->max_n_it_ = nl_solver_rec.val<unsigned int>("max_it");
657  this->min_n_it_ = nl_solver_rec.val<unsigned int>("min_it");
658  if (this->min_n_it_ > this->max_n_it_) this->min_n_it_ = this->max_n_it_;
659 
660  if (! is_linear_common) {
661  // set tolerances of the linear solver unless they are set by user.
662  schur0->set_tolerances(0.1*this->tolerance_, 0.01*this->tolerance_, 100);
663  }
664  vector<double> convergence_history;
665 
666  Vec save_solution;
667  VecDuplicate(schur0->get_solution(), &save_solution);
668  while (nonlinear_iteration_ < this->min_n_it_ ||
669  (residual_norm > this->tolerance_ && nonlinear_iteration_ < this->max_n_it_ )) {
670  OLD_ASSERT_EQUAL( convergence_history.size(), nonlinear_iteration_ );
671  convergence_history.push_back(residual_norm);
672 
673  // stagnation test
674  if (convergence_history.size() >= 5 &&
675  convergence_history[ convergence_history.size() - 1]/convergence_history[ convergence_history.size() - 2] > 0.9 &&
676  convergence_history[ convergence_history.size() - 1]/convergence_history[ convergence_history.size() - 5] > 0.8) {
677  // stagnation
678  if (input_record_.val<Input::Record>("nonlinear_solver").val<bool>("converge_on_stagnation")) {
679  WarningOut().fmt("Accept solution on stagnation. Its: {} Residual: {}\n", nonlinear_iteration_, residual_norm);
680  break;
681  } else {
682  THROW(ExcSolverDiverge() << EI_Reason("Stagnation."));
683  }
684  }
685 
686  if (! is_linear_common)
687  VecCopy( schur0->get_solution(), save_solution);
690 
691  // hack to make BDDC work with empty compute_residual
692  if (is_linear_common){
693  // we want to print this info in linear (and steady) case
694  residual_norm = schur0->compute_residual();
695  MessageOut().fmt("[nonlinear solver] lin. it: {}, reason: {}, residual: {}\n",
696  si.n_iterations, si.converged_reason, residual_norm);
697  break;
698  }
699  data_changed_=true; // force reassembly for non-linear case
700 
701  double alpha = 1; // how much of new solution
702  VecAXPBY(schur0->get_solution(), (1-alpha), alpha, save_solution);
703 
704  //LogOut().fmt("Linear solver ended with reason: {} \n", si.converged_reason );
705  //OLD_ASSERT( si.converged_reason >= 0, "Linear solver failed to converge. Convergence reason %d \n", si.converged_reason );
707 
708  residual_norm = schur0->compute_residual();
709  MessageOut().fmt("[nonlinear solver] it: {} lin. it: {}, reason: {}, residual: {}\n",
710  nonlinear_iteration_, si.n_iterations, si.converged_reason, residual_norm);
711  }
712  chkerr(VecDestroy(&save_solution));
713  this -> postprocess();
714 
715  // adapt timestep
716  if (! this->zero_time_term()) {
717  double mult = 1.0;
718  if (nonlinear_iteration_ < 3) mult = 1.6;
719  if (nonlinear_iteration_ > 7) mult = 0.7;
720  time_->set_upper_constraint(time_->dt() * mult, "Darcy adaptivity.");
721  // int result = time_->set_upper_constraint(time_->dt() * mult, "Darcy adaptivity.");
722  //DebugOut().fmt("time adaptivity, res: {} it: {} m: {} dt: {} edt: {}\n", result, nonlinear_iteration_, mult, time_->dt(), time_->estimate_dt());
723  }
724 }
725 
727 {
729 }
730 
732 {
733  START_TIMER("postprocess");
734 
735  //fix velocity when mortar method is used
736  if(data_->mortar_method_ != MortarMethod::NoMortar){
737  auto multidim_assembler = AssemblyBase::create< AssemblyMH >(data_);
738  for ( DHCellAccessor dh_cell : data_->dh_->own_range() ) {
739  unsigned int dim = dh_cell.dim();
740  multidim_assembler[dim-1]->fix_velocity(dh_cell);
741  }
742  }
743  //ElementAccessor<3> ele;
744 
745  // modify side fluxes in parallel
746  // for every local edge take time term on digonal and add it to the corresponding flux
747  /*
748  for (unsigned int i_loc = 0; i_loc < el_ds->lsize(); i_loc++) {
749  ele = mesh_->element_accessor(el_4_loc[i_loc]);
750  for (unsigned int i=0; i<ele->n_sides(); i++) {
751  side_rows[i] = side_row_4_id[ mh_dh.side_dof( ele_ac.side(i) ) ];
752  values[i] = -1.0 * ele_ac.measure() *
753  data.cross_section.value(ele_ac.centre(), ele_ac.element_accessor()) *
754  data.water_source_density.value(ele_ac.centre(), ele_ac.element_accessor()) /
755  ele_ac.n_sides();
756  }
757  VecSetValues(schur0->get_solution(), ele_ac.n_sides(), side_rows, values, ADD_VALUES);
758  }
759  VecAssemblyBegin(schur0->get_solution());
760  VecAssemblyEnd(schur0->get_solution());
761  */
762 }
763 
764 
766  START_TIMER("Darcy output data");
767 
768  //print_matlab_matrix("matrix_" + std::to_string(time_->step().index()));
769 
770  //time_->view("DARCY"); //time governor information output
771  this->output_object->output();
772 
773 
774  START_TIMER("Darcy balance output");
775  balance_->calculate_cumulative(data_->water_balance_idx, schur0->get_solution());
776  balance_->calculate_instant(data_->water_balance_idx, schur0->get_solution());
777  balance_->output();
778 }
779 
780 
782 {
783  return schur0->get_solution_precision();
784 }
785 
786 
787 // ===========================================================================================
788 //
789 // MATRIX ASSEMBLY - we use abstract assembly routine, where LS Mat/Vec SetValues
790 // are in fact pointers to allocating or filling functions - this is governed by Linsystem roitunes
791 //
792 // =======================================================================================
794 {
795  START_TIMER("DarcyFlowMHy::assembly_mh_matrix");
796 
797  // set auxiliary flag for switchting Dirichlet like BC
798  data_->force_no_neumann_bc = use_steady_assembly_ && (nonlinear_iteration_ == 0);
799  data_->n_schur_compls = n_schur_compls;
800 
801 
802  balance_->start_flux_assembly(data_->water_balance_idx);
803 
804  // TODO: try to move this into balance, or have it in the generic assembler class, that should perform the cell loop
805  // including various pre- and post-actions
806  for ( DHCellAccessor dh_cell : data_->dh_->own_range() ) {
807  unsigned int dim = dh_cell.dim();
808  assembler[dim-1]->assemble(dh_cell);
809  }
810 
811 
812  balance_->finish_flux_assembly(data_->water_balance_idx);
813 
814 }
815 
816 
818 {
819  START_TIMER("DarcyFlowMH::allocate_mh_matrix");
820 
821  // set auxiliary flag for switchting Dirichlet like BC
822  data_->n_schur_compls = n_schur_compls;
823  LinSys *ls = schur0;
824 
825  // to make space for second schur complement, max. 10 neighbour edges of one el.
826  double zeros[100000];
827  for(int i=0; i<100000; i++) zeros[i] = 0.0;
828 
829  std::vector<LongIdx> tmp_rows;
830  tmp_rows.reserve(200);
831 
832  std::vector<LongIdx> dofs, dofs_ngh;
833  dofs.reserve(data_->dh_->max_elem_dofs());
834  dofs_ngh.reserve(data_->dh_->max_elem_dofs());
835 
836  for ( DHCellAccessor dh_cell : data_->dh_->own_range() ) {
837  ElementAccessor<3> ele = dh_cell.elm();
838 
839  const uint ndofs = dh_cell.n_dofs();
840  dofs.resize(ndofs);
841  dh_cell.get_dof_indices(dofs);
842 
843  // whole local MH matrix
844  ls->mat_set_values(ndofs, dofs.data(), ndofs, dofs.data(), zeros);
845 
846  tmp_rows.clear();
847 
848  // compatible neighborings rows
849  unsigned int n_neighs = ele->n_neighs_vb();
850  for ( DHCellSide neighb_side : dh_cell.neighb_sides() ) {
851  // every compatible connection adds a 2x2 matrix involving
852  // current element pressure and a connected edge pressure
853 
854  // read neighbor dofs (dh dofhandler)
855  // neighbor cell owning neighb_side
856  DHCellAccessor dh_neighb_cell = neighb_side.cell();
857 
858  const uint ndofs_ngh = dh_neighb_cell.n_dofs();
859  dofs_ngh.resize(ndofs_ngh);
860  dh_neighb_cell.get_dof_indices(dofs_ngh);
861 
862  // local index of pedge dof on neighboring cell
863  // (dim+1) is number of edges of higher dim element
864  // TODO: replace with DHCell getter when available for FESystem component
865  const unsigned int t = dh_neighb_cell.n_dofs() - (dh_neighb_cell.dim()+1) + neighb_side.side().side_idx();
866  tmp_rows.push_back(dofs_ngh[t]);
867  }
868 
869  const uint nsides = ele->n_sides();
870  LongIdx * edge_rows = dofs.data() + nsides; // pointer to start of ele
871  // allocate always also for schur 2
872  ls->mat_set_values(nsides+1, edge_rows, n_neighs, tmp_rows.data(), zeros); // (edges, ele) x (neigh edges)
873  ls->mat_set_values(n_neighs, tmp_rows.data(), nsides+1, edge_rows, zeros); // (neigh edges) x (edges, ele)
874  ls->mat_set_values(n_neighs, tmp_rows.data(), n_neighs, tmp_rows.data(), zeros); // (neigh edges) x (neigh edges)
875 
876  tmp_rows.clear();
877 
878  if (data_->mortar_method_ != NoMortar) {
879  auto &isec_list = mesh_->mixed_intersections().element_intersections_[ele.idx()];
880  for(auto &isec : isec_list ) {
881  IntersectionLocalBase *local = isec.second;
882  DHCellAccessor dh_cell_slave = data_->dh_->cell_accessor_from_element(local->bulk_ele_idx());
883 
884  const uint ndofs_slave = dh_cell_slave.n_dofs();
885  dofs_ngh.resize(ndofs_slave);
886  dh_cell_slave.get_dof_indices(dofs_ngh);
887 
888  //DebugOut().fmt("Alloc: {} {}", ele.idx(), local->bulk_ele_idx());
889  for(unsigned int i_side=0; i_side < dh_cell_slave.elm()->n_sides(); i_side++) {
890  // TODO: replace with DHCell getter when available for FESystem component
891  tmp_rows.push_back( dofs_ngh[(ndofs_slave+1)/2+i_side] );
892  //DebugOut() << "aedge" << print_var(tmp_rows[tmp_rows.size()-1]);
893  }
894  }
895  }
896  /*
897  for(unsigned int i_side=0; i_side < ele->n_sides(); i_side++) {
898  DebugOut() << "aedge:" << print_var(edge_rows[i_side]);
899  }*/
900 
901  edge_rows = dofs.data() + nsides +1; // pointer to start of edges
902  ls->mat_set_values(nsides, edge_rows, tmp_rows.size(), tmp_rows.data(), zeros); // master edges x neigh edges
903  ls->mat_set_values(tmp_rows.size(), tmp_rows.data(), nsides, edge_rows, zeros); // neigh edges x master edges
904  ls->mat_set_values(tmp_rows.size(), tmp_rows.data(), tmp_rows.size(), tmp_rows.data(), zeros); // neigh edges x neigh edges
905 
906  }
907 /*
908  // alloc edge diagonal entries
909  if(rank == 0)
910  for( vector<Edge>::iterator edg = mesh_->edges.begin(); edg != mesh_->edges.end(); ++edg) {
911  int edg_idx = mh_dh.row_4_edge[edg->side(0)->edge_idx()];
912 
913 // for( vector<Edge>::iterator edg2 = mesh_->edges.begin(); edg2 != mesh_->edges.end(); ++edg2){
914 // int edg_idx2 = mh_dh.row_4_edge[edg2->side(0)->edge_idx()];
915 // if(edg_idx == edg_idx2){
916 // DBGCOUT(<< "P[ " << rank << " ] " << "edg alloc: " << edg_idx << " " << edg_idx2 << "\n");
917  ls->mat_set_value(edg_idx, edg_idx, 0.0);
918 // }
919 // }
920  }
921  */
922  /*
923  if (mortar_method_ == MortarP0) {
924  P0_CouplingAssembler(*this).assembly(*ls);
925  } else if (mortar_method_ == MortarP1) {
926  P1_CouplingAssembler(*this).assembly(*ls);
927  }*/
928 }
929 
931 {
932  START_TIMER("assembly source term");
933  balance_->start_source_assembly(data_->water_balance_idx);
934 
935  std::vector<LongIdx> global_dofs(data_->dh_->max_elem_dofs());
936 
937  for ( DHCellAccessor dh_cell : data_->dh_->own_range() ) {
938  ElementAccessor<3> ele = dh_cell.elm();
939 
940  const uint ndofs = dh_cell.n_dofs();
941  global_dofs.resize(ndofs);
942  dh_cell.get_dof_indices(global_dofs);
943 
944  double cs = data_->cross_section.value(ele.centre(), ele);
945 
946  // set sources
947  double source = ele.measure() * cs *
948  (data_->water_source_density.value(ele.centre(), ele)
949  +data_->extra_source.value(ele.centre(), ele));
950  // TODO: replace with DHCell getter when available for FESystem component
951  schur0->rhs_set_value(global_dofs[ndofs/2], -1.0 * source );
952 
953  balance_->add_source_values(data_->water_balance_idx, ele.region().bulk_idx(),
954  {dh_cell.get_loc_dof_indices()[ndofs/2]}, {0}, {source});
955  }
956 
957  balance_->finish_source_assembly(data_->water_balance_idx);
958 }
959 
960 
961 
962 
963 /*******************************************************************************
964  * COMPOSE WATER MH MATRIX WITHOUT SCHUR COMPLEMENT
965  ******************************************************************************/
966 
968 
969  START_TIMER("preallocation");
970 
971  if (schur0 == NULL) { // create Linear System for MH matrix
972 
973  if (in_rec.type() == LinSys_BDDC::get_input_type()) {
974 #ifdef FLOW123D_HAVE_BDDCML
975  WarningOut() << "For BDDC no Schur complements are used.";
976  n_schur_compls = 0;
977  LinSys_BDDC *ls = new LinSys_BDDC(&(*data_->dh_->distr()),
978  true); // swap signs of matrix and rhs to make the matrix SPD
979  ls->set_from_input(in_rec);
980  ls->set_solution( data_->full_solution.petsc_vec() );
981  // possible initialization particular to BDDC
982  START_TIMER("BDDC set mesh data");
984  schur0=ls;
985  END_TIMER("BDDC set mesh data");
986 #else
987  //Exception
988  THROW( ExcBddcmlNotSupported() );
989 #endif // FLOW123D_HAVE_BDDCML
990  }
991  else if (in_rec.type() == LinSys_PETSC::get_input_type()) {
992  // use PETSC for serial case even when user wants BDDC
993  if (n_schur_compls > 2) {
994  WarningOut() << "Invalid number of Schur Complements. Using 2.";
995  n_schur_compls = 2;
996  }
997 
998  LinSys_PETSC *schur1, *schur2;
999 
1000  if (n_schur_compls == 0) {
1001  LinSys_PETSC *ls = new LinSys_PETSC( &(*data_->dh_->distr()) );
1002 
1003  // temporary solution; we have to set precision also for sequantial case of BDDC
1004  // final solution should be probably call of direct solver for oneproc case
1005  if (in_rec.type() != LinSys_BDDC::get_input_type()) ls->set_from_input(in_rec);
1006  else {
1007  ls->LinSys::set_from_input(in_rec); // get only common options
1008  }
1009 
1010  ls->set_solution( data_->full_solution.petsc_vec() );
1011  schur0=ls;
1012  } else {
1013  IS is;
1014  auto side_dofs_vec = get_component_indices_vec(0);
1015 
1016  ISCreateGeneral(PETSC_COMM_SELF, side_dofs_vec.size(), &(side_dofs_vec[0]), PETSC_COPY_VALUES, &is);
1017  //ISView(is, PETSC_VIEWER_STDOUT_SELF);
1018  //OLD_ASSERT(err == 0,"Error in ISCreateStride.");
1019 
1020  SchurComplement *ls = new SchurComplement(&(*data_->dh_->distr()), is);
1021 
1022  // make schur1
1024  if (n_schur_compls==1) {
1025  schur1 = new LinSys_PETSC(ds);
1026  schur1->set_positive_definite();
1027  } else {
1028  IS is;
1029  auto elem_dofs_vec = get_component_indices_vec(1);
1030 
1031  const PetscInt *b_indices;
1032  ISGetIndices(ls->IsB, &b_indices);
1033  uint b_size = ls->loc_size_B;
1034  for(uint i_b=0, i_bb=0; i_b < b_size && i_bb < elem_dofs_vec.size(); i_b++) {
1035  if (b_indices[i_b] == elem_dofs_vec[i_bb])
1036  elem_dofs_vec[i_bb++] = i_b + ds->begin();
1037  }
1038  ISRestoreIndices(ls->IsB, &b_indices);
1039 
1040 
1041  ISCreateGeneral(PETSC_COMM_SELF, elem_dofs_vec.size(), &(elem_dofs_vec[0]), PETSC_COPY_VALUES, &is);
1042  //ISView(is, PETSC_VIEWER_STDOUT_SELF);
1043  //OLD_ASSERT(err == 0,"Error in ISCreateStride.");
1044  SchurComplement *ls1 = new SchurComplement(ds, is); // is is deallocated by SchurComplement
1045  ls1->set_negative_definite();
1046 
1047  // make schur2
1048  schur2 = new LinSys_PETSC( ls1->make_complement_distribution() );
1049  schur2->set_positive_definite();
1050  ls1->set_complement( schur2 );
1051  schur1 = ls1;
1052  }
1053  ls->set_complement( schur1 );
1054  ls->set_from_input(in_rec);
1055  ls->set_solution( data_->full_solution.petsc_vec() );
1056  schur0=ls;
1057  }
1058 
1059  START_TIMER("PETSC PREALLOCATION");
1060  schur0->set_symmetric();
1062 
1064 
1065  VecZeroEntries(schur0->get_solution());
1066  END_TIMER("PETSC PREALLOCATION");
1067  }
1068  else {
1069  THROW( ExcUnknownSolver() );
1070  }
1071 
1072  END_TIMER("preallocation");
1073  }
1074 
1075 }
1076 
1077 
1078 
1079 
1081  START_TIMER("DarcyFlowMH_Steady::assembly_linear_system");
1082 
1083  data_->is_linear=true;
1084  bool is_steady = zero_time_term();
1085  //DebugOut() << "Assembly linear system\n";
1086  if (data_changed_) {
1087  data_changed_ = false;
1088  //DebugOut() << "Data changed\n";
1089  // currently we have no optimization for cases when just time term data or RHS data are changed
1090  START_TIMER("full assembly");
1091  if (typeid(*schur0) != typeid(LinSys_BDDC)) {
1092  schur0->start_add_assembly(); // finish allocation and create matrix
1093  }
1094 
1097 
1099 
1100 
1101  assembly_mh_matrix( data_->multidim_assembler ); // fill matrix
1102 
1104 // print_matlab_matrix("matrix");
1106  //MatView( *const_cast<Mat*>(schur0->get_matrix()), PETSC_VIEWER_STDOUT_WORLD );
1107  //VecView( *const_cast<Vec*>(schur0->get_rhs()), PETSC_VIEWER_STDOUT_WORLD);
1108 
1109  if (! is_steady) {
1110  START_TIMER("fix time term");
1111  //DebugOut() << "setup time term\n";
1112  // assembly time term and rhs
1113  setup_time_term();
1114  modify_system();
1115  }
1116  else
1117  {
1118  balance_->start_mass_assembly(data_->water_balance_idx);
1119  balance_->finish_mass_assembly(data_->water_balance_idx);
1120  }
1121  END_TIMER("full assembly");
1122  } else {
1123  START_TIMER("modify system");
1124  if (! is_steady) {
1125  modify_system();
1126  } else {
1127  //Should be replaced with exception if error will be switched on.
1128  //ASSERT(false).error("Planned computation time for steady solver, but data are not changed.\n");
1129  }
1130  END_TIMER("modiffy system");
1131  }
1132 
1133 }
1134 
1135 
1136 void DarcyMH::print_matlab_matrix(std::string matlab_file)
1137 {
1138  std::string output_file;
1139 
1140  if ( typeid(*schur0) == typeid(LinSys_BDDC) ){
1141 // WarningOut() << "Can output matrix only on a single processor.";
1142 // output_file = FilePath(matlab_file + "_bddc.m", FilePath::output_file);
1143 // ofstream os( output_file );
1144 // auto bddc = static_cast<LinSys_BDDC*>(schur0);
1145 // bddc->print_matrix(os);
1146  }
1147  else {//if ( typeid(*schur0) == typeid(LinSys_PETSC) ){
1148  output_file = FilePath(matlab_file + ".m", FilePath::output_file);
1149  PetscViewer viewer;
1150  PetscViewerASCIIOpen(PETSC_COMM_WORLD, output_file.c_str(), &viewer);
1151  PetscViewerSetFormat(viewer, PETSC_VIEWER_ASCII_MATLAB);
1152  MatView( *const_cast<Mat*>(schur0->get_matrix()), viewer);
1153  VecView( *const_cast<Vec*>(schur0->get_rhs()), viewer);
1154  VecView( *const_cast<Vec*>(schur0->get_rhs()), viewer);
1155  VecView( *const_cast<Vec*>(&(schur0->get_solution())), viewer);
1156  }
1157 // else{
1158 // WarningOut() << "No matrix output available for the current solver.";
1159 // return;
1160 // }
1161 
1162  // compute h_min for different dimensions
1163  double d_max = std::numeric_limits<double>::max();
1164  double h1 = d_max, h2 = d_max, h3 = d_max;
1165  double he2 = d_max, he3 = d_max;
1166  for (auto ele : mesh_->elements_range()) {
1167  switch(ele->dim()){
1168  case 1: h1 = std::min(h1,ele.measure()); break;
1169  case 2: h2 = std::min(h2,ele.measure()); break;
1170  case 3: h3 = std::min(h3,ele.measure()); break;
1171  }
1172 
1173  for (unsigned int j=0; j<ele->n_sides(); j++) {
1174  switch(ele->dim()){
1175  case 2: he2 = std::min(he2, ele.side(j)->measure()); break;
1176  case 3: he3 = std::min(he3, ele.side(j)->measure()); break;
1177  }
1178  }
1179  }
1180  if(h1 == d_max) h1 = 0;
1181  if(h2 == d_max) h2 = 0;
1182  if(h3 == d_max) h3 = 0;
1183  if(he2 == d_max) he2 = 0;
1184  if(he3 == d_max) he3 = 0;
1185 
1186  FILE * file;
1187  file = fopen(output_file.c_str(),"a");
1188  fprintf(file, "nA = %d;\n", data_->dh_cr_disc_->distr()->size());
1189  fprintf(file, "nB = %d;\n", data_->dh_->mesh()->get_el_ds()->size());
1190  fprintf(file, "nBF = %d;\n", data_->dh_cr_->distr()->size());
1191  fprintf(file, "h1 = %e;\nh2 = %e;\nh3 = %e;\n", h1, h2, h3);
1192  fprintf(file, "he2 = %e;\nhe3 = %e;\n", he2, he3);
1193  fclose(file);
1194 }
1195 
1196 
1197 //template <int dim>
1198 //std::vector<arma::vec3> dof_points(DHCellAccessor cell, const Mapping<dim, 3> &mapping) {
1199 //
1200 //
1201 // vector<arma::vec::fixed<dim+1>> bary_dof_points = cell->fe()->dof_points();
1202 //
1203 // std::vector<arma::vec3> points(20);
1204 // points.resize(0);
1205 //
1206 //}
1207 //
1208 
1210  START_TIMER("DarcyFlowMH_Steady::set_mesh_data_for_bddc");
1211  // prepare mesh for BDDCML
1212  // initialize arrays
1213  // auxiliary map for creating coordinates of local dofs and global-to-local numbering
1214  std::map<int, arma::vec3> localDofMap;
1215  // connectivity for the subdomain, i.e. global dof numbers on element, stored element-by-element
1216  // Indices of Nodes on Elements
1217  std::vector<int> inet;
1218  // number of degrees of freedom on elements - determines elementwise chunks of INET array
1219  // Number of Nodes on Elements
1220  std::vector<int> nnet;
1221  // Indices of Subdomain Elements in Global Numbering - for local elements, their global indices
1222  std::vector<int> isegn;
1223 
1224  // This array is currently not used in BDDCML, it was used as an interface scaling alternative to scaling
1225  // by diagonal. It corresponds to the rho-scaling.
1226  std::vector<double> element_permeability;
1227 
1228  // maximal and minimal dimension of elements
1229  uint elDimMax = 1;
1230  uint elDimMin = 3;
1231  std::vector<LongIdx> cell_dofs_global(10);
1232 
1233 
1234 
1235  for ( DHCellAccessor dh_cell : data_->dh_->own_range() ) {
1236  // for each element, create local numbering of dofs as fluxes (sides), pressure (element centre), Lagrange multipliers (edges), compatible connections
1237 
1238  dh_cell.get_dof_indices(cell_dofs_global);
1239 
1240  inet.insert(inet.end(), cell_dofs_global.begin(), cell_dofs_global.end());
1241  uint n_inet = cell_dofs_global.size();
1242 
1243 
1244  uint dim = dh_cell.elm().dim();
1245  elDimMax = std::max( elDimMax, dim );
1246  elDimMin = std::min( elDimMin, dim );
1247 
1248  // TODO: this is consistent with previous implementation, but may be wrong as it use global element numbering
1249  // used in sequential mesh, do global numbering of distributed elements.
1250  isegn.push_back( dh_cell.elm_idx());
1251 
1252  // TODO: use FiniteElement::dof_points
1253  for (unsigned int si=0; si<dh_cell.elm()->n_sides(); si++) {
1254  arma::vec3 coord = dh_cell.elm().side(si)->centre();
1255  // TODO: replace with DHCell getter when available for FESystem component
1256  // flux dof points
1257  localDofMap.insert( std::make_pair( cell_dofs_global[si], coord ) );
1258  // pressure trace dof points
1259  localDofMap.insert( std::make_pair( cell_dofs_global[si+dim+2], coord ) );
1260  }
1261  // pressure dof points
1262  arma::vec3 elm_centre = dh_cell.elm().centre();
1263  localDofMap.insert( std::make_pair( cell_dofs_global[dim+1], elm_centre ) );
1264 
1265  // insert dofs related to compatible connections
1266  //const Element *ele = dh_cell.elm().element();
1267  for(DHCellSide side : dh_cell.neighb_sides()) {
1268  uint neigh_dim = side.cell().elm().dim();
1269  side.cell().get_dof_indices(cell_dofs_global);
1270  int edge_row = cell_dofs_global[neigh_dim+2+side.side_idx()];
1271  localDofMap.insert( std::make_pair( edge_row, side.centre() ) );
1272  inet.push_back( edge_row );
1273  n_inet++;
1274  }
1275  nnet.push_back(n_inet);
1276 
1277 
1278  // version for rho scaling
1279  // trace computation
1280  double conduct = data_->conductivity.value( elm_centre , dh_cell.elm() );
1281  auto aniso = data_->anisotropy.value( elm_centre , dh_cell.elm() );
1282 
1283  // compute mean on the diagonal
1284  double coef = 0.;
1285  for ( int i = 0; i < 3; i++) {
1286  coef = coef + aniso.at(i,i);
1287  }
1288  // Maybe divide by cs
1289  coef = conduct*coef / 3;
1290 
1291  OLD_ASSERT( coef > 0.,
1292  "Zero coefficient of hydrodynamic resistance %f . \n ", coef );
1293  element_permeability.push_back( 1. / coef );
1294  }
1295 // uint i_inet = 0;
1296 // for(int n_dofs : nnet) {
1297 // DebugOut() << "nnet: " << n_dofs;
1298 // for(int j=0; j < n_dofs; j++, i_inet++) {
1299 // DebugOut() << "inet: " << inet[i_inet];
1300 // }
1301 // }
1302 
1303  auto distr = data_->dh_->distr();
1304 // for(auto pair : localDofMap) {
1305 // DebugOut().every_proc() << "r: " << distr->myp() << " gi: " << pair.first << "xyz: " << pair.second[0];
1306 //
1307 // }
1308 
1309 
1310  //convert set of dofs to vectors
1311  // number of nodes (= dofs) on the subdomain
1312  int numNodeSub = localDofMap.size();
1313  //ASSERT_EQ( (unsigned int)numNodeSub, data_->dh_->lsize() );
1314  // Indices of Subdomain Nodes in Global Numbering - for local nodes, their global indices
1315  std::vector<int> isngn( numNodeSub );
1316  // pseudo-coordinates of local nodes (i.e. dofs)
1317  // they need not be exact, they are used just for some geometrical considerations in BDDCML,
1318  // such as selection of corners maximizing area of a triangle, bounding boxes fro subdomains to
1319  // find candidate neighbours etc.
1320  std::vector<double> xyz( numNodeSub * 3 ) ;
1321  int ind = 0;
1322  std::map<int,arma::vec3>::iterator itB = localDofMap.begin();
1323  for ( ; itB != localDofMap.end(); ++itB ) {
1324  isngn[ind] = itB -> first;
1325 
1326  arma::vec3 coord = itB -> second;
1327  for ( int j = 0; j < 3; j++ ) {
1328  xyz[ j*numNodeSub + ind ] = coord[j];
1329  }
1330 
1331  ind++;
1332  }
1333  localDofMap.clear();
1334 
1335  // Number of Nodal Degrees of Freedom
1336  // nndf is trivially one - dofs coincide with nodes
1337  std::vector<int> nndf( numNodeSub, 1 );
1338 
1339  // prepare auxiliary map for renumbering nodes
1340  typedef std::map<int,int> Global2LocalMap_; //! type for storage of global to local map
1341  Global2LocalMap_ global2LocalNodeMap;
1342  for ( unsigned ind = 0; ind < isngn.size(); ++ind ) {
1343  global2LocalNodeMap.insert( std::make_pair( static_cast<unsigned>( isngn[ind] ), ind ) );
1344  }
1345 
1346  // renumber nodes in the inet array to locals
1347  int indInet = 0;
1348  for ( unsigned int iEle = 0; iEle < isegn.size(); iEle++ ) {
1349  int nne = nnet[ iEle ];
1350  for ( int ien = 0; ien < nne; ien++ ) {
1351 
1352  int indGlob = inet[indInet];
1353  // map it to local node
1354  Global2LocalMap_::iterator pos = global2LocalNodeMap.find( indGlob );
1355  OLD_ASSERT( pos != global2LocalNodeMap.end(),
1356  "Cannot remap node index %d to local indices. \n ", indGlob );
1357  int indLoc = static_cast<int> ( pos -> second );
1358 
1359  // store the node
1360  inet[ indInet++ ] = indLoc;
1361  }
1362  }
1363 
1364  int numNodes = size;
1365  int numDofsInt = size;
1366  int spaceDim = 3; // TODO: what is the proper value here?
1367  int meshDim = elDimMax;
1368 
1369  /**
1370  * We need:
1371  * - local to global element map (possibly mesh->el_4_loc
1372  * - inet, nnet - local dof numbers per element, local numbering of only those dofs that are on owned elements
1373  * 1. collect DH local dof indices on elements, manage map from DH local indices to BDDC local dof indices
1374  * 2. map collected DH indices to BDDC indices using the map
1375  * - local BDDC dofs to global dofs, use DH to BDDC map with DH local to global map
1376  * - XYZ - permuted, collect in main loop into array of size of all DH local dofs, compress and rearrange latter
1377  * - element_permeability - in main loop
1378  */
1379  bddc_ls -> load_mesh( LinSys_BDDC::BDDCMatrixType::SPD_VIA_SYMMETRICGENERAL, spaceDim, numNodes, numDofsInt, inet, nnet, nndf, isegn, isngn, isngn, xyz, element_permeability, meshDim );
1380 }
1381 
1382 
1383 
1384 
1385 //=============================================================================
1386 // DESTROY WATER MH SYSTEM STRUCTURE
1387 //=============================================================================
1389  if (previous_solution != nullptr) chkerr(VecDestroy(&previous_solution));
1390  if (steady_diagonal != nullptr) chkerr(VecDestroy(&steady_diagonal));
1391  if (new_diagonal != nullptr) chkerr(VecDestroy(&new_diagonal));
1392  if (steady_rhs != nullptr) chkerr(VecDestroy(&steady_rhs));
1393 
1394 
1395  if (schur0 != NULL) {
1396  delete schur0;
1397  }
1398 
1399  if (output_object) delete output_object;
1400 
1401  if(time_ != nullptr)
1402  delete time_;
1403 
1404 }
1405 
1406 
1407 /*
1408 void mat_count_off_proc_values(Mat m, Vec v) {
1409  int n, first, last;
1410  const PetscInt *cols;
1411  Distribution distr(v);
1412 
1413  int n_off = 0;
1414  int n_on = 0;
1415  int n_off_rows = 0;
1416  MatGetOwnershipRange(m, &first, &last);
1417  for (int row = first; row < last; row++) {
1418  MatGetRow(m, row, &n, &cols, PETSC_NULL);
1419  bool exists_off = false;
1420  for (int i = 0; i < n; i++)
1421  if (distr.get_proc(cols[i]) != distr.myp())
1422  n_off++, exists_off = true;
1423  else
1424  n_on++;
1425  if (exists_off)
1426  n_off_rows++;
1427  MatRestoreRow(m, row, &n, &cols, PETSC_NULL);
1428  }
1429 }
1430 */
1431 
1432 
1433 
1434 
1435 
1436 
1437 
1438 
1439 
1440 
1441 
1442 
1444 {
1445  double *local_sol = schur0->get_solution_array();
1446 
1447  // cycle over local element rows
1448 
1449  DebugOut().fmt("Setup with dt: {}\n", time_->dt());
1450  for ( DHCellAccessor dh_cell : data_->dh_->own_range() ) {
1451  ElementAccessor<3> ele = dh_cell.elm();
1452  // set initial condition
1453  // TODO: replace with DHCell getter when available for FESystem component
1454  const IntIdx p_ele_dof = dh_cell.get_loc_dof_indices()[dh_cell.n_dofs()/2];
1455  local_sol[p_ele_dof] = data_->init_pressure.value(ele.centre(),ele);
1456  }
1457 }
1458 
1460  // save diagonal of steady matrix
1461  MatGetDiagonal(*( schur0->get_matrix() ), steady_diagonal);
1462  // save RHS
1463  VecCopy(*( schur0->get_rhs()), steady_rhs);
1464 
1465 
1466  PetscScalar *local_diagonal;
1467  VecGetArray(new_diagonal,& local_diagonal);
1468 
1469  DebugOut().fmt("Setup with dt: {}\n", time_->dt());
1470 
1471  balance_->start_mass_assembly(data_->water_balance_idx);
1472 
1473  std::vector<LongIdx> dofs;
1474  dofs.reserve(data_->dh_->max_elem_dofs());
1475 
1476  for ( DHCellAccessor dh_cell : data_->dh_->own_range() ) {
1477  ElementAccessor<3> ele = dh_cell.elm();
1478  dofs.resize(dh_cell.n_dofs());
1479  dh_cell.get_dof_indices(dofs);
1480 
1481  // TODO: replace with DHCell getter when available for FESystem component
1482  const uint p_ele_dof = dh_cell.n_dofs() / 2;
1483  // set new diagonal
1484  double diagonal_coeff = data_->cross_section.value(ele.centre(), ele)
1485  * ( data_->storativity.value(ele.centre(), ele)
1486  +data_->extra_storativity.value(ele.centre(), ele))
1487  * ele.measure();
1488  local_diagonal[dh_cell.get_loc_dof_indices()[p_ele_dof]]= - diagonal_coeff / time_->dt();
1489 
1490  balance_->add_mass_values(data_->water_balance_idx, dh_cell,
1491  {dh_cell.get_loc_dof_indices()[p_ele_dof]},
1492  {diagonal_coeff}, 0.0);
1493  }
1494  VecRestoreArray(new_diagonal,& local_diagonal);
1495  MatDiagonalSet(*( schur0->get_matrix() ), new_diagonal, ADD_VALUES);
1496 
1497  schur0->set_matrix_changed();
1498 
1499  balance_->finish_mass_assembly(data_->water_balance_idx);
1500 }
1501 
1503  START_TIMER("modify system");
1504  if (time_->is_changed_dt() && time_->step().index()>0) {
1505  double scale_factor=time_->step(-2).length()/time_->step().length();
1506  if (scale_factor != 1.0) {
1507  // if time step has changed and setup_time_term not called
1508  MatDiagonalSet(*( schur0->get_matrix() ),steady_diagonal, INSERT_VALUES);
1509 
1510  VecScale(new_diagonal, time_->last_dt()/time_->dt());
1511  MatDiagonalSet(*( schur0->get_matrix() ),new_diagonal, ADD_VALUES);
1513  }
1514  }
1515 
1516  // modify RHS - add previous solution
1517  VecPointwiseMult(*( schur0->get_rhs()), new_diagonal, previous_solution);
1518 // VecPointwiseMult(*( schur0->get_rhs()), new_diagonal, schur0->get_solution());
1519  VecAXPY(*( schur0->get_rhs()), 1.0, steady_rhs);
1521 
1522  //VecSwap(previous_solution, schur0->get_solution());
1523 }
1524 
1525 
1526 /// Helper method fills range (min and max) of given component
1527 void dofs_range(unsigned int n_dofs, unsigned int &min, unsigned int &max, unsigned int component) {
1528  if (component==0) {
1529  min = 0;
1530  max = n_dofs/2;
1531  } else if (component==1) {
1532  min = n_dofs/2;
1533  max = (n_dofs+1)/2;
1534  } else {
1535  min = (n_dofs+1)/2;
1536  max = n_dofs;
1537  }
1538 }
1539 
1540 
1542  ASSERT_LT_DBG(component, 3).error("Invalid component!");
1543  unsigned int i, n_dofs, min, max;
1544  std::vector<int> dof_vec;
1545  std::vector<LongIdx> dof_indices(data_->dh_->max_elem_dofs());
1546  for ( DHCellAccessor dh_cell : data_->dh_->own_range() ) {
1547  n_dofs = dh_cell.get_dof_indices(dof_indices);
1548  dofs_range(n_dofs, min, max, component);
1549  for (i=min; i<max; ++i) dof_vec.push_back(dof_indices[i]);
1550  }
1551  return dof_vec;
1552 }
1553 
1554 
1555 //-----------------------------------------------------------------------------
1556 // vim: set cindent:
LimitSide::right
@ right
OLD_ASSERT_EQUAL
#define OLD_ASSERT_EQUAL(a, b)
Definition: global_defs.h:110
Element::n_neighs_vb
unsigned int n_neighs_vb() const
Return number of neighbours.
Definition: elements.h:65
DarcyMH::balance_
std::shared_ptr< Balance > balance_
Definition: darcy_flow_mh.hh:347
EquationBase::mesh_
Mesh * mesh_
Definition: equation.hh:218
linsys_BDDC.hh
Solver based on Multilevel BDDC - using corresponding class of OpenFTL package.
Input::Type::Bool
Class for declaration of the input of type Bool.
Definition: type_base.hh:452
result_zeros
@ result_zeros
Definition: field_algo_base.hh:74
LinSys::get_solution
const Vec & get_solution()
Definition: linsys.hh:282
MPI_MIN
#define MPI_MIN
Definition: mpi.h:198
DarcyMH::previous_solution
Vec previous_solution
Definition: darcy_flow_mh.hh:371
DarcyMH::solution_precision
virtual double solution_precision() const
Definition: darcy_flow_mh.cc:781
DarcyMH::init_eq_data
void init_eq_data()
Definition: darcy_flow_mh.cc:381
LinSys::SolveInfo::n_iterations
int n_iterations
Definition: linsys.hh:110
Armor::vec
ArmaVec< double, N > vec
Definition: armor.hh:885
DarcyMH::solve_nonlinear
void solve_nonlinear()
Solve method common to zero_time_step and update solution.
Definition: darcy_flow_mh.cc:642
DarcyFlowMHOutput::output
void output()
Calculate values for output.
Definition: darcy_flow_mh_output.cc:242
TimeGovernor::dt
double dt() const
Definition: time_governor.hh:558
DarcyMH::use_steady_assembly_
bool use_steady_assembly_
Definition: darcy_flow_mh.hh:356
UnitSI::dimensionless
static UnitSI & dimensionless()
Returns dimensionless unit.
Definition: unit_si.cc:55
SchurComplement::set_complement
void set_complement(LinSys_PETSC *ls)
Set complement LinSys object.
Definition: schur.cc:287
factory.hh
field_constant.hh
LinSys
Definition: la_linsys_new.hh:169
vector_mpi.hh
time_governor.hh
Basic time management class.
field_add_potential.hh
DarcyMH::size
int size
Definition: darcy_flow_mh.hh:351
DarcyMH::EqData::dirichlet
@ dirichlet
Definition: darcy_flow_mh.hh:153
DarcyMH::steady_rhs
Vec steady_rhs
Definition: darcy_flow_mh.hh:369
field_algo_base.hh
DarcyMH::solve_time_step
void solve_time_step(bool output=true)
Solve the problem without moving to next time and without output.
Definition: darcy_flow_mh.cc:585
MeshBase::region_db
const RegionDB & region_db() const
Definition: mesh.h:171
DarcyMH::update_solution
void update_solution() override
Definition: darcy_flow_mh.cc:570
LinSys::SolveInfo
Definition: linsys.hh:105
ASSERT
#define ASSERT(expr)
Allow use shorter versions of macro names if these names is not used with external library.
Definition: asserts.hh:347
DarcyMH::type_field_descriptor
static const Input::Type::Record & type_field_descriptor()
Definition: darcy_flow_mh.cc:120
LinSys::set_symmetric
void set_symmetric(bool flag=true)
Definition: linsys.hh:561
DarcyMH::postprocess
virtual void postprocess()
postprocess velocity field (add sources)
Definition: darcy_flow_mh.cc:731
Mesh::n_sides
unsigned int n_sides() const
Definition: mesh.cc:308
DarcyFlowInterface::MortarP1
@ MortarP1
Definition: darcy_flow_interface.hh:33
EquationBase::time_
TimeGovernor * time_
Definition: equation.hh:219
DarcyMH::setup_time_term
virtual void setup_time_term()
Definition: darcy_flow_mh.cc:1459
distribution.hh
Support classes for parallel programing.
LinSys_BDDC::get_input_type
static const Input::Type::Record & get_input_type()
Definition: linsys_BDDC.cc:39
bc_mesh.hh
Input::Type::Integer
Class for declaration of the integral input data.
Definition: type_base.hh:483
Input::Record::val
const Ret val(const string &key) const
Definition: accessors_impl.hh:31
DHCellAccessor::get_dof_indices
unsigned int get_dof_indices(std::vector< LongIdx > &indices) const
Fill vector of the global indices of dofs associated to the cell.
Definition: dh_cell_accessor.hh:80
TimeGovernor::set_upper_constraint
int set_upper_constraint(double upper, std::string message)
Sets upper constraint for the next time step estimating.
Definition: time_governor.cc:552
IntIdx
int IntIdx
Definition: index_types.hh:25
EquationBase::time
TimeGovernor & time()
Definition: equation.hh:149
Input::Type::Selection::close
const Selection & close() const
Close the Selection, no more values can be added.
Definition: type_selection.cc:65
fmt::fprintf
FMT_FUNC int fprintf(std::ostream &os, CStringRef format, ArgList args)
Definition: ostream.cc:56
FilePath
Dedicated class for storing path to input and output files.
Definition: file_path.hh:54
linsys.hh
Wrappers for linear systems based on MPIAIJ and MATIS format.
Input::Type::Double
Class for declaration of the input data that are floating point numbers.
Definition: type_base.hh:534
LinSys::rhs_zero_entries
virtual PetscErrorCode rhs_zero_entries()
Definition: linsys.hh:273
chkerr
void chkerr(unsigned int ierr)
Replacement of new/delete operator in the spirit of xmalloc.
Definition: system.hh:142
DarcyMH::create_linear_system
void create_linear_system(Input::AbstractRecord rec)
Definition: darcy_flow_mh.cc:967
FLOW123D_FORCE_LINK_IN_CHILD
#define FLOW123D_FORCE_LINK_IN_CHILD(x)
Definition: global_defs.h:157
LinSys_PETSC
Definition: linsys_PETSC.hh:43
MeshBase::n_edges
unsigned int n_edges() const
Definition: mesh.h:114
LinSys::mat_zero_entries
virtual PetscErrorCode mat_zero_entries()
Definition: linsys.hh:264
THROW
#define THROW(whole_exception_expr)
Wrapper for throw. Saves the throwing point.
Definition: exceptions.hh:53
LinSys::SolveInfo::converged_reason
int converged_reason
Definition: linsys.hh:109
std::vector< double >
ElementAccessor< 3 >
DarcyMH::output_data
virtual void output_data() override
Write computed fields.
Definition: darcy_flow_mh.cc:765
DarcyMH::~DarcyMH
virtual ~DarcyMH() override
Definition: darcy_flow_mh.cc:1388
DarcyMH::EqData::total_flux
@ total_flux
Definition: darcy_flow_mh.hh:154
system.hh
arma::vec3
Definition: doxy_dummy_defs.hh:17
LinSys::set_rhs_changed
void set_rhs_changed()
Definition: linsys.hh:218
fn_mh_velocity
Definition: assembly_models.hh:29
SchurComplement::make_complement_distribution
Distribution * make_complement_distribution()
get distribution of complement object if complement is defined
Definition: schur.cc:294
assembly_models.hh
Functors of FieldModels used in Darcy flow module.
DHCellAccessor::dim
unsigned int dim() const
Return dimension of element appropriate to cell.
Definition: dh_cell_accessor.hh:101
DarcyMH::get_mh_mortar_selection
static const Input::Type::Selection & get_mh_mortar_selection()
Selection for enum MortarMethod.
Definition: darcy_flow_mh.cc:82
FieldAddPotential
Definition: field_add_potential.hh:38
LinSys::solve
virtual SolveInfo solve()=0
field_fe.hh
uint
unsigned int uint
Definition: mh_dofhandler.hh:101
Input::AbstractRecord::type
Input::Type::Record type() const
Definition: accessors.cc:273
linsys_PETSC.hh
Solver based on the original PETSc solver using MPIAIJ matrix and succesive Schur complement construc...
DarcyMH::max_n_it_
unsigned int max_n_it_
Definition: darcy_flow_mh.hh:362
dofs_range
void dofs_range(unsigned int n_dofs, unsigned int &min, unsigned int &max, unsigned int component)
Helper method fills range (min and max) of given component.
Definition: darcy_flow_mh.cc:1527
LinSys::set_negative_definite
void set_negative_definite(bool flag=true)
Definition: linsys.hh:588
MeshBase::elements_range
Range< ElementAccessor< 3 > > elements_range() const
Returns range of mesh elements.
Definition: mesh.cc:1168
index_types.hh
LinSys::set_positive_definite
void set_positive_definite(bool flag=true)
Definition: linsys.hh:576
DarcyMH::allocate_mh_matrix
void allocate_mh_matrix()
Definition: darcy_flow_mh.cc:817
LinSys::set_matrix_changed
void set_matrix_changed()
Definition: linsys.hh:212
fe_p.hh
Definitions of basic Lagrangean finite elements with polynomial shape functions.
DarcyMH::prepare_new_time_step
void prepare_new_time_step()
Definition: darcy_flow_mh.cc:726
DarcyMH::assembly_mh_matrix
void assembly_mh_matrix(MultidimAssembly &assembler)
Definition: darcy_flow_mh.cc:793
DarcyMH::EqData
Definition: darcy_flow_mh.hh:145
LinSys::start_allocation
virtual void start_allocation()
Definition: linsys.hh:333
DarcyMH::EqData::none
@ none
Definition: darcy_flow_mh.hh:152
DarcyFlowMHOutput::get_input_type
static const Input::Type::Instance & get_input_type(FieldSet &eq_data, const std::string &equation_name)
Definition: darcy_flow_mh_output.cc:62
Input::Type::Record::size
unsigned int size() const
Returns number of keys in the Record.
Definition: type_record.hh:602
SchurComplement
Definition: schur.hh:64
TimeGovernor::is_end
bool is_end() const
Returns true if the actual time is greater than or equal to the end time.
Definition: time_governor.hh:588
SchurComplement::set_from_input
void set_from_input(const Input::Record in_rec) override
Definition: schur.cc:138
Input::Type::Default
Class Input::Type::Default specifies default value of keys of a Input::Type::Record.
Definition: type_record.hh:61
DHCellSide
Side accessor allows to iterate over sides of DOF handler cell.
Definition: dh_cell_accessor.hh:176
Input::Type::Record::derive_from
virtual Record & derive_from(Abstract &parent)
Method to derive new Record from an AbstractRecord parent.
Definition: type_record.cc:196
Distribution
Definition: distribution.hh:50
DarcyMH::output_object
DarcyFlowMHOutput * output_object
Definition: darcy_flow_mh.hh:349
Mesh::bc_mesh
BCMesh * bc_mesh() const override
Implement MeshBase::bc_mesh(), getter of boundary mesh.
Definition: mesh.h:559
LimitSide::left
@ left
LinSys::compute_residual
virtual double compute_residual()=0
DarcyMH::EqData::river
@ river
Definition: darcy_flow_mh.hh:156
DarcyFlowInterface::NoMortar
@ NoMortar
Definition: darcy_flow_interface.hh:31
accessors.hh
LinSys::set_tolerances
virtual void set_tolerances(double r_tol, double a_tol, unsigned int max_it)=0
Input::Record
Accessor to the data with type Type::Record.
Definition: accessors.hh:291
LinSys::rhs_set_value
void rhs_set_value(int row, double val)
Definition: linsys.hh:381
FieldFlag::equation_result
static constexpr Mask equation_result
Match result fields. These are never given by input or copy of input.
Definition: field_flag.hh:55
sys_profiler.hh
darcy_flow_mh_output.hh
Output class for darcy_flow_mh model.
field_model.hh
DarcyMH::assembly_source_term
virtual void assembly_source_term()
Source term is implemented differently in LMH version.
Definition: darcy_flow_mh.cc:930
DarcyMH::DarcyFlowMHOutput
friend class DarcyFlowMHOutput
Definition: darcy_flow_mh.hh:375
LinSys::get_matrix
virtual const Mat * get_matrix()
Definition: linsys.hh:187
mpi.h
mixed_mesh_intersections.hh
schur.hh
Assembly explicit Schur complement for the given linear system. Provides method for resolution of the...
DarcyMH::modify_system
void modify_system()
Definition: darcy_flow_mh.cc:1502
DarcyMH::min_n_it_
unsigned int min_n_it_
Definition: darcy_flow_mh.hh:361
TimeGovernor
Basic time management functionality for unsteady (and steady) solvers (class Equation).
Definition: time_governor.hh:310
TimeGovernor::step
const TimeStep & step(int index=-1) const
Definition: time_governor.cc:753
DarcyMH::zero_time_term
virtual bool zero_time_term(bool time_global=false)
Definition: darcy_flow_mh.cc:633
DarcyMH::steady_diagonal
Vec steady_diagonal
Definition: darcy_flow_mh.hh:368
DHCellAccessor::elm
const ElementAccessor< 3 > elm() const
Return ElementAccessor to element of loc_ele_idx_.
Definition: dh_cell_accessor.hh:71
field_values.hh
Input::AbstractRecord
Accessor to the polymorphic input data of a type given by an AbstracRecord object.
Definition: accessors.hh:458
Input::Type::Default::obligatory
static Default obligatory()
The factory function to make an empty default value which is obligatory.
Definition: type_record.hh:110
SchurComplement::IsB
IS IsB
Definition: schur.hh:138
UnitSI
Class for representation SI units of Fields.
Definition: unit_si.hh:40
LinSys_BDDC
Definition: linsys_BDDC.hh:39
fn_mh_piezohead
Definition: assembly_models.hh:37
DarcyMH::print_matlab_matrix
void print_matlab_matrix(string matlab_file)
Print darcy flow matrix in matlab format into a file.
Definition: darcy_flow_mh.cc:1136
EquationBase::input_record_
Input::Record input_record_
Definition: equation.hh:220
RegionDB::get_region_set
RegionSet get_region_set(const std::string &set_name) const
Definition: region.cc:328
FieldCommon::field_descriptor_record_description
static const std::string field_descriptor_record_description(const string &record_name)
Definition: field_common.cc:73
Input::Type::Record::declare_key
Record & declare_key(const string &key, std::shared_ptr< TypeBase > type, const Default &default_value, const string &description, TypeBase::attribute_map key_attributes=TypeBase::attribute_map())
Declares a new key of the Record.
Definition: type_record.cc:503
MPI_INT
#define MPI_INT
Definition: mpi.h:160
DarcyMH::EqData::get_bc_type_selection
static const Input::Type::Selection & get_bc_type_selection()
Return a Selection corresponding to enum BC_Type.
Definition: darcy_flow_mh.cc:91
DarcyFlowMHOutput::get_input_type_specific
static const Input::Type::Instance & get_input_type_specific()
Definition: darcy_flow_mh_output.cc:69
DarcyMH::schur0
LinSys * schur0
Definition: darcy_flow_mh.hh:366
mesh.h
DHCellAccessor::n_dofs
unsigned int n_dofs() const
Return number of dofs on given cell.
Definition: dh_cell_accessor.hh:420
Input::Type::Selection
Template for classes storing finite set of named values.
Definition: type_selection.hh:65
std::map
Definition: doxy_dummy_defs.hh:11
DarcyFlowInterface::MortarMethod
MortarMethod
Type of experimental Mortar-like method for non-compatible 1d-2d interaction.
Definition: darcy_flow_interface.hh:30
DarcyFlowInterface::get_input_type
static Input::Type::Abstract & get_input_type()
Definition: darcy_flow_interface.hh:23
LinSys::start_add_assembly
virtual void start_add_assembly()
Definition: linsys.hh:341
DarcyMH::n_schur_compls
int n_schur_compls
Definition: darcy_flow_mh.hh:352
TimeGovernor::view
void view(const char *name="") const
Definition: time_governor.cc:769
FieldFlag::input_copy
static constexpr Mask input_copy
Definition: field_flag.hh:44
Input::Type::Record::close
Record & close() const
Close the Record for further declarations of keys.
Definition: type_record.cc:304
LinSys_BDDC::set_from_input
void set_from_input(const Input::Record in_rec) override
Definition: linsys_BDDC.cc:279
SchurComplement::loc_size_B
int loc_size_B
Definition: schur.hh:137
Input::Type
Definition: balance.hh:41
MixedMeshIntersections::element_intersections_
std::vector< std::vector< ILpair > > element_intersections_
Definition: mixed_mesh_intersections.hh:83
partitioning.hh
Input::Type::Record
Record type proxy class.
Definition: type_record.hh:182
DarcyMH::data_
std::shared_ptr< EqData > data_
Definition: darcy_flow_mh.hh:373
DarcyMH::new_diagonal
Vec new_diagonal
Definition: darcy_flow_mh.hh:370
DarcyMH::get_component_indices_vec
std::vector< int > get_component_indices_vec(unsigned int component) const
Get vector of all DOF indices of given component (0..side, 1..element, 2..edge)
Definition: darcy_flow_mh.cc:1541
LongIdx
int LongIdx
Define type that represents indices of large arrays (elements, nodes, dofs etc.)
Definition: index_types.hh:24
LinSys_PETSC::set_from_input
void set_from_input(const Input::Record in_rec) override
Definition: linsys_PETSC.cc:470
Mesh
Definition: mesh.h:355
OutputTime::get_input_type
static const Input::Type::Record & get_input_type()
The specification of output stream.
Definition: output_time.cc:38
Element::n_sides
unsigned int n_sides() const
Definition: elements.h:131
DarcyMH::nonlinear_iteration_
unsigned int nonlinear_iteration_
Definition: darcy_flow_mh.hh:363
Input::Type::Record::copy_keys
Record & copy_keys(const Record &other)
Copy keys from other record.
Definition: type_record.cc:216
FieldAlgorithmBase
Definition: field_algo_base.hh:112
Input::Type::Array
Class for declaration of inputs sequences.
Definition: type_base.hh:339
DarcyMH::tolerance_
double tolerance_
Definition: darcy_flow_mh.hh:360
OLD_ASSERT
#define OLD_ASSERT(...)
Definition: global_defs.h:108
DarcyMH::set_mesh_data_for_bddc
void set_mesh_data_for_bddc(LinSys_BDDC *bddc_ls)
Definition: darcy_flow_mh.cc:1209
DarcyMH::get_input_type
static const Input::Type::Record & get_input_type()
Definition: darcy_flow_mh.cc:135
Model
Definition: field_model.hh:338
DHCellAccessor
Cell accessor allow iterate over DOF handler cells.
Definition: dh_cell_accessor.hh:43
LinSys::finish_assembly
virtual void finish_assembly()=0
LinSys::get_rhs
virtual const Vec * get_rhs()
Definition: linsys.hh:203
MPI_Allreduce
#define MPI_Allreduce(sendbuf, recvbuf, count, datatype, op, comm)
Definition: mpi.h:612
Input::Array
Accessor to input data conforming to declared Array.
Definition: accessors.hh:566
DarcyMH::assembly_linear_system
virtual void assembly_linear_system()
Definition: darcy_flow_mh.cc:1080
DarcyMH::DarcyMH
DarcyMH(Mesh &mesh, const Input::Record in_rec, TimeGovernor *tm=nullptr)
CREATE AND FILL GLOBAL MH MATRIX OF THE WATER MODEL.
Definition: darcy_flow_mh.cc:328
WarningOut
#define WarningOut()
Macro defining 'warning' record of log.
Definition: logger.hh:278
ElementAccessor::region
Region region() const
Definition: accessors.hh:201
EquationBase::record_template
static Input::Type::Record & record_template()
Template Record with common keys for derived equations.
Definition: equation.cc:35
LinSys::get_solution_precision
virtual double get_solution_precision()=0
MixedPtr
Definition: mixed.hh:247
SchurComplement
SchurComplement SchurComplement
Definition: linsys.hh:92
TimeGovernor::is_default
bool is_default()
Definition: time_governor.hh:381
darcy_flow_mh.hh
mixed-hybrid model of linear Darcy flow, possibly unsteady.
LinSys::set_solution
void set_solution(Vec sol_vec)
Definition: linsys.hh:290
ASSERT_LT_DBG
#define ASSERT_LT_DBG(a, b)
Definition of comparative assert macro (Less Than) only for debug mode.
Definition: asserts.hh:300
DarcyMH::initialize_specific
virtual void initialize_specific()
Definition: darcy_flow_mh.cc:531
std::vector::data
T data
Definition: doxy_dummy_defs.hh:7
assembly_mh.hh
LinSys::get_input_type
static Input::Type::Abstract & get_input_type()
Definition: linsys.cc:29
ElementAccessor::idx
unsigned int idx() const
We need this method after replacing Region by RegionIdx, and movinf RegionDB instance into particular...
Definition: accessors.hh:218
FilePath::output_file
@ output_file
Definition: file_path.hh:69
EquationBase::eq_fieldset_
FieldSet * eq_fieldset_
Definition: equation.hh:227
TimeGovernor::is_changed_dt
bool is_changed_dt() const
Definition: time_governor.hh:522
DarcyFlowInterface::MortarP0
@ MortarP0
Definition: darcy_flow_interface.hh:32
balance.hh
local_to_global_map.hh
DarcyMH::data_changed_
bool data_changed_
Definition: darcy_flow_mh.hh:357
MeshBase::n_elements
unsigned int n_elements() const
Definition: mesh.h:111
TimeStep::index
unsigned int index() const
Definition: time_governor.hh:159
DarcyMH::EqData::seepage
@ seepage
Definition: darcy_flow_mh.hh:155
IntersectionLocalBase::bulk_ele_idx
unsigned int bulk_ele_idx() const
Returns index of bulk element.
Definition: intersection_local.hh:77
Mesh::mixed_intersections
MixedMeshIntersections & mixed_intersections()
Definition: mesh.cc:849
DebugOut
#define DebugOut()
Macro defining 'debug' record of log.
Definition: logger.hh:284
Input::Type::Selection::add_value
Selection & add_value(const int value, const std::string &key, const std::string &description="", TypeBase::attribute_map attributes=TypeBase::attribute_map())
Adds one new value with name given by key to the Selection.
Definition: type_selection.cc:50
TimeGovernor::next_time
void next_time()
Proceed to the next time according to current estimated time step.
Definition: time_governor.cc:667
TimeStep::length
double length() const
Definition: time_governor.hh:160
LinSys::get_solution_array
double * get_solution_array()
Definition: linsys.hh:325
Input::Type::Default::optional
static Default optional()
The factory function to make an empty default value which is optional.
Definition: type_record.hh:124
DarcyMH::read_initial_condition
virtual void read_initial_condition()
Definition: darcy_flow_mh.cc:1443
RegionIdx::bulk_idx
unsigned int bulk_idx() const
Returns index of the region in the bulk set.
Definition: region.hh:91
START_TIMER
#define START_TIMER(tag)
Starts a timer with specified tag.
Definition: sys_profiler.hh:115
FESystem
Compound finite element on dim dimensional simplex.
Definition: fe_system.hh:101
DarcyMH::registrar
static const int registrar
Registrar of class to factory.
Definition: darcy_flow_mh.hh:381
DarcyMH::initialize
void initialize() override
Definition: darcy_flow_mh.cc:426
LinSys_PETSC::get_input_type
static const Input::Type::Record & get_input_type()
Definition: linsys_PETSC.cc:32
DarcyMH::zero_time_step
void zero_time_step() override
Definition: darcy_flow_mh.cc:534
field.hh
DarcyFlowInterface
Definition: darcy_flow_interface.hh:15
Balance::get_input_type
static const Input::Type::Record & get_input_type()
Main balance input record type.
Definition: balance.cc:53
IntersectionResult::none
@ none
ElementAccessor::measure
double measure() const
Computes the measure of the element.
Definition: accessors_impl.hh:67
END_TIMER
#define END_TIMER(tag)
Ends a timer with specified tag.
Definition: sys_profiler.hh:149
TimeGovernor::last_dt
double last_dt() const
Definition: time_governor.hh:541
FieldValue
Definition: field_values.hh:645
range_wrapper.hh
Implementation of range helper class.
ElementAccessor::centre
arma::vec::fixed< spacedim > centre() const
Computes the barycenter.
Definition: accessors_impl.hh:89
IntersectionLocalBase
Common base for intersection object.
Definition: intersection_local.hh:48
Distribution::begin
unsigned int begin(int proc) const
get starting local index
Definition: distribution.hh:109
DarcyMH::EqData::EqData
EqData()
Creation of all fields.
Definition: darcy_flow_mh.cc:190
MessageOut
#define MessageOut()
Macro defining 'message' record of log.
Definition: logger.hh:275
LinSys::mat_set_values
virtual void mat_set_values(int nrow, int *rows, int ncol, int *cols, double *vals)=0
intersection_local.hh
Classes with algorithms for computation of intersections of meshes.