Flow123d  JS_before_hm-979-g397e552
compute_intersection.cc
Go to the documentation of this file.
1 /*
2  * Author: viktor
3  */
4 
6 #include "mesh/ref_element.hh"
7 #include "mesh/mesh.h"
8 #include "mesh/accessors.hh"
9 #include "system/system.hh"
10 
11 #include "plucker.hh"
13 #include "intersection_aux.hh"
14 
15 using namespace std;
16 
17 /*************************************************************************************************************
18  * COMPUTE INTERSECTION FOR: 1D AND 2D
19  ************************************************************************************************************/
21 : computed_(false)
22 {
23  plucker_coordinates_abscissa_ = nullptr;
24  plucker_coordinates_triangle_.resize(3, nullptr);
25  plucker_products_.resize(3, nullptr);
26 }
27 
28 
30  ElementAccessor<3> triangle, FMT_UNUSED Mesh *mesh)
31 : computed_(false)
32 {
33  ASSERT_DBG(abscissa->dim() == 1);
34  ASSERT_DBG(triangle->dim() == 2);
35  // in this constructor, we suppose this is the final object -> we create all data members
36  plucker_coordinates_abscissa_ = new Plucker(*abscissa.node(0),
37  *abscissa.node(1), true);
38  scale_line_=plucker_coordinates_abscissa_->scale();
39 
40  plucker_coordinates_triangle_.resize(3);
41  plucker_products_.resize(3);
42  scale_triangle_=std::numeric_limits<double>::max();
43  for(unsigned int side = 0; side < 3; side++){
44  plucker_coordinates_triangle_[side] = new Plucker(*triangle.node(RefElement<2>::interact(Interaction<0,1>(side))[0]),
45  *triangle.node(RefElement<2>::interact(Interaction<0,1>(side))[1]),
46  true);
47  scale_triangle_ = std::min( scale_triangle_, plucker_coordinates_triangle_[side]->scale());
48 
49  // allocate and compute new Plucker products
50  plucker_products_[side] = new double((*plucker_coordinates_abscissa_)*(*plucker_coordinates_triangle_[side]));
51  }
52 }
53 
55 {
56  if(plucker_coordinates_abscissa_ != nullptr)
57  delete plucker_coordinates_abscissa_;
58 
59  for(unsigned int side = 0; side < RefElement<2>::n_sides; side++){
60  if(plucker_products_[side] != nullptr)
61  delete plucker_products_[side];
62  if(plucker_coordinates_triangle_[side] != nullptr)
63  delete plucker_coordinates_triangle_[side];
64  }
65 }
66 
67 
69  // unset all pointers
70  for(unsigned int side = 0; side < RefElement<2>::n_sides; side++)
71  {
72  plucker_products_[side] = nullptr;
73  plucker_coordinates_triangle_[side] = nullptr;
74  }
75  plucker_coordinates_abscissa_ = nullptr;
76 }
77 
79 
80  // if not already computed, compute plucker coordinates of abscissa
81  plucker_coordinates_abscissa_->compute();
82  scale_line_=plucker_coordinates_abscissa_->scale();
83 
84 // DBGMSG("Abscissa:\n");
85 // (*abscissa_)[0].point_coordinates().print();
86 // (*abscissa_)[1].point_coordinates().print();
87  scale_triangle_=std::numeric_limits<double>::max();
88  // if not already computed, compute plucker coordinates of triangle sides
89  for(unsigned int side = 0; side < RefElement<2>::n_sides; side++){
90  plucker_coordinates_triangle_[side]->compute();
91  scale_triangle_ = std::min( scale_triangle_, plucker_coordinates_triangle_[side]->scale());
92 
93  ASSERT_DBG(plucker_products_[side]).error("Undefined plucker product.");
94  if(*plucker_products_[side] == plucker_empty){
95  *plucker_products_[side] = (*plucker_coordinates_abscissa_)*(*plucker_coordinates_triangle_[side]);
96  }
97 // DBGMSG("Plucker product = %e\n", *(plucker_products_[side]));
98  }
99 }
100 
101 
103 {
104  double tol = geometry_epsilon * scale_line_;
105 
106  double t = RefElement<1>::bary_to_local(IP.local_bcoords_A())(0);
107 
108  int sign = (t < tol ? -2 : (t > 1+tol ? +2 : 0) ); // outside or inside
109  if (std::abs(t) <= tol){ // left end
110  sign = -1;
111  IP.set_topology_A(0,0);
112  }
113  else if (std::abs(1-t) <= tol){ // right end
114  sign = +1;
115  IP.set_topology_A(1,0);
116  }
117 
118  return sign;
119 }
120 
121 
123 {
124  // compute local barycentric coordinates of IP: see formula (3) on pg. 12 in BP VF
125  // local alfa = w2/sum; local beta = w1/sum; => local barycentric coordinates in the triangle
126  // where sum = w0+w1+w2
127 
128  // plucker products with correct signs according to ref_element, ordered by sides
129 // double w[3] = {signed_plucker_product(0),
130 // signed_plucker_product(1),
131 // signed_plucker_product(2)};
132 
133  // local barycentric coordinates of IP, depends on barycentric coordinates order !!!
134 // arma::vec3 local_triangle({w[2],w[1],w[0]});
135 // DBGMSG("Plucker product sum = %f\n",w[0]+w[1]+w[2]);
136 // local_triangle = local_triangle / (w[0]+w[1]+w[2]);
137 // double w_sum = local[0] + local[1] + local[2];
138 // DBGMSG("Plucker product sum = %e %e %e\n",w_sum, 1-rounding_epsilon, 1+rounding_epsilon);
139 
140  //assert inaccurate barycentric coordinates
141  ASSERT_DBG(fabs(1.0 - local[0] - local[1] - local[2]) < geometry_epsilon)(local[0]+local[1]+local[2])
142  (local[0])(local[1])(local[2]);
143 
144 
145 
146  arma::vec3 local_triangle({local[2],local[1],local[0]});
147 
148  // local coordinate T on the line
149  // for i-th coordinate it holds: (from formula (4) on pg. 12 in BP VF)
150  // T = localAbscissa= (- A(i) + ( 1 - alfa - beta ) * V0(i) + alfa * V1(i) + beta * V2 (i)) / U(i)
151  // let's choose [max,i] = max {U(i)}
152  arma::vec3 u = plucker_coordinates_abscissa_->get_u_vector();
153 
154  //find max in u in abs value:
155  unsigned int i = 0; // index of maximum in u
156  double max = u[0]; // maximum in u
157  if(fabs((double)u[1]) > fabs(max)){ max = u[1]; i = 1;}
158  if(fabs((double)u[2]) > fabs(max)){ max = u[2]; i = 2;}
159 
160  // global coordinates in triangle
161  double isect_coord_i =
162  local_triangle[0] * plucker_coordinates_triangle_[0]->point(RefElement<2>::normal_orientation(0))[i] +
163  local_triangle[1] * plucker_coordinates_triangle_[0]->point(1-RefElement<2>::normal_orientation(0))[i] +
164  local_triangle[2] * plucker_coordinates_triangle_[1]->point(RefElement<2>::normal_orientation(1))[i];
165 
166  //theta on abscissa
167  double t = (-plucker_coordinates_abscissa_->point(0)[i] + isect_coord_i)/max;
168  //DebugOut() << print_var(t) << print_var(isect_coord_i) << print_var(max);
169  arma::vec2 local_abscissa = {1-t, t};
170 
171  /*
172  DBGMSG("Coordinates: line; local and global triangle\n");
173  theta.print();
174  local_triangle.print();
175  global_triangle.print();
176  */
177 
178  IP.set_topology_A(0, 1);
179  IP.set_topology_B(0, 2);
180  IP.set_coordinates(local_abscissa,local_triangle);
181 
182  return true;
183 }
184 
185 
187 {
188  compute_plucker_products();
189  computed_ = true;
190 
191  //DebugOut() << "LINE: \n" << (*abscissa_)[0].point_coordinates()
192  // << (*abscissa_)[1].point_coordinates();
193 
194 
195  // convert plucker products to local coords
196  arma::vec3 w = {signed_plucker_product(0),
197  signed_plucker_product(1),
198  signed_plucker_product(2)};
199  double w_sum = w[0] + w[1] + w[2];
200 
201  unsigned int n_positive = 0;
202  unsigned int n_negative = 0;
203  unsigned int zero_idx_sum =0;
204  //DebugOut() << print_var(std::fabs(w_sum));
205  //DebugOut() << print_var(scale_line_);
206  //DebugOut() << print_var(scale_triangle_);
207 
208  double scaled_epsilon = geometry_epsilon*scale_line_*scale_triangle_*scale_triangle_;
209  if(std::fabs(w_sum) > scaled_epsilon) {
210  w = w / w_sum;
211  for (unsigned int i=0; i < 3; i++) {
212  //DebugOut() << print_var(i) << print_var(w[i]);
213  if (w[i] > geometry_epsilon) n_positive++;
214  else if ( w[i] > -geometry_epsilon) zero_idx_sum+=i;
215  else n_negative++;
216  }
217 
218  } else {
219  /* case 'w_sum == 0':
220  * 1] all products are zero => n_negative=0 and n_positive=0 => it is degenerate case (coplanar case)
221  * 2] at least two products are nonzero AND some of them must be negative => no intersection
222  * (it happens when line is parallel with the triangle but not coplanar; unit test line_triangle09.msh)
223  * See the IF conditions below.
224  */
225 
226  for (unsigned int i=0; i < 3; i++) {
227  //DebugOut().fmt("i: {} w[i]: {:g}", i, w[i]);
228  if (w[i] > scaled_epsilon || w[i] < -scaled_epsilon) n_negative++;
229  }
230  // n_positive == 0
231  //DebugOut() << print_var(n_negative);
232  }
233 
234 // w.print("w");
235 
236  // any negative barycentric coordinate means, no intersection
237  if (n_negative>0) return IntersectionResult::none;
238 
239  // test whether any plucker products is non-zero
240  if (n_positive > 0) {
241 
242  compute_plucker(IP, w);
243  // edge of triangle
244  unsigned int non_zero_idx=0;
245  if (n_positive == 2) {
246  // one zero product, intersection on the zero edge
247  // the zero edge index is equal to zero_idx_sum
248  IP.set_topology_B(zero_idx_sum, 1);
249  non_zero_idx = (zero_idx_sum + 1) % 3;
250  }
251  else if (n_positive == 1) {
252  // two zero products, intersection in vertex oposite to single non-zero edge
253  // index of the non-zero edge is 3-zero_idx_sum
254  IP.set_topology_B(RefElement<2>::oposite_node(3-zero_idx_sum), 0);
255  non_zero_idx = 3-zero_idx_sum;
256  }
257  //DebugOut() << print_var(non_zero_idx) << print_var(signed_plucker_product(non_zero_idx));
258 
259  IntersectionResult result = signed_plucker_product(non_zero_idx) > 0 ?
261  IP.set_result(result);
262 
263  return result;
264 
265  } else {
266  ASSERT_DBG(IP.topology_equal(IPAux12())); // check empty IP (none)
267  IP.set_result(IntersectionResult::degenerate); // set deg. result
269  }
270 }
271 
273 {
274  IPAux12 IP;
275  IntersectionResult result = compute(IP);
276 // DBGVAR((int)result);
277  // skip empty cases
278  if(result == IntersectionResult::none) return 0;
279 
280  // standard case with a single intersection corner
281  if(result < IntersectionResult::degenerate){
282 // DBGCOUT(<< "12d plucker case\n");
283  int sign = check_abscissa_topology(IP);
284 // DBGVAR(sign);
285  if(std::abs(sign) > 1) return 0;
286 
287  IP12s.push_back(IP);
288  return IP12s.size();
289  }
290  else{
292 // DBGCOUT(<< "12d degenerate case, all products are zero\n");
293  return compute_final_in_plane(IP12s);
294  }
295 }
296 
297 
299  IPAux12& IP)
300 {
301 // DBGMSG("PluckerProduct[%d]: %f\n",side, *plucker_products_[side]);
302 
303  // We solve following equation for parameters s,t:
304  /* A + sU = C + tV = intersection point
305  * sU - tV = C - A
306  *
307  * which is by components:
308  * (u1 -v1) (s) = (c1-a1)
309  * (u2 -v2) (t) = (c2-a2)
310  * (u3 -v3) = (c3-a3)
311  *
312  * these are 3 equations for variables s,t
313  * see (4.3) on pg. 19 in DP VF
314  *
315  * We will solve this using Crammer's rule for the maximal subdeterminant det_ij of the matrix.
316  * s = detX_ij / det_ij
317  * t = detY_ij / det_ij
318  */
319 
320  // starting point of abscissa
321  arma::vec3 A = plucker_coordinates_abscissa_->point(0);
322  // direction vector of abscissa
323  arma::vec3 U = plucker_coordinates_abscissa_->get_u_vector();
324  // vertex of triangle side
325  arma::vec3 C = plucker_coordinates_triangle_[side]->point(RefElement<2>::normal_orientation(side));
326  // direction vector of triangle side
327  arma::vec3 V = plucker_coordinates_triangle_[side]->get_u_vector();
328  // right hand side
329  arma::vec3 K = C - A;
330  // subdeterminants det_ij of the system equal minus normal vector to common plane of U and V
331  // det_12 = (-UxV)[1]
332  // det_13 = -(-UxV)[2]
333  // det_23 = (-UxV)[3]
334  arma::vec3 Det = -arma::cross(U,V);
335 
336 
337 // A.print("A");
338 // U.print("U");
339 // C.print("C");
340 // V.print("V");
341 // K.print("K");
342 // Det.print();
343 // cout <<endl;
344 
345  unsigned int max_index = 0;
346  double maximum = fabs(Det[0]);
347  if(fabs((double)Det[1]) > maximum){
348  maximum = fabs(Det[1]);
349  max_index = 1;
350  }
351  if(fabs((double)Det[2]) > maximum){
352  maximum = fabs(Det[2]);
353  max_index = 2;
354  }
355 // DBGVAR(maximum);
356  //abscissa is parallel to triangle side
357  //TODO What tolerance should we use here and why?
358 // if(std::abs(maximum) <= std::sqrt(geometry_epsilon)) return false;
359  if(std::abs(maximum) <= geometry_epsilon) return false;
360 
361  // map maximum index in {-UxV} to i,j of subdeterminants
362  // i j
363  // max_index 0: 1 2
364  // 1: 2 0 (switch due to sign change)
365  // 2: 0 1
366  unsigned int i = (max_index+1)%3,
367  j = (max_index+2)%3;
368 
369  double DetX = -K[i]*V[j] + K[j]*V[i];
370  double DetY = -K[i]*U[j] + K[j]*U[i];
371 
372  double s = DetX/Det[max_index]; //parameter on abscissa
373  double t = DetY/Det[max_index]; //parameter on triangle side
374 
375  // change sign according to side orientation
376  if(RefElement<2>::normal_orientation(side)) t=-t;
377 
378 // DBGVAR(s);
379 // DBGVAR(t);
380 
381  //TODO correct tolerance with scale; compute scale without plucker coords
382  double tol = geometry_epsilon;
383  // if IP is inside of triangle side
384  if(t >= -tol && t <= 1+tol){
385 
386  IP.set_result(IntersectionResult::degenerate); // set orientation as a pathologic case ( > 1)
387 
388  // possibly set triangle vertex {0,1,2}
390  else if(fabs(1-t) <= tol) { IP.set_topology_B(RefElement<2>::interact(Interaction<0,1>(side))[1-RefElement<2>::normal_orientation(side)],0);}
391  else { IP.set_topology_B(side,1);} // no vertex, side side, dim = 1
392 
393  arma::vec2 local_abscissa({1-s, s});
394  arma::vec3 local_triangle({0,0,0});
395 
396  // set local triangle barycentric coordinates according to nodes of the triangle side:
397  local_triangle[RefElement<2>::interact(Interaction<0,1>(side))[RefElement<2>::normal_orientation(side)]] = 1 - t;
399 // local_abscissa.print();
400 // local_triangle.print();
401 
402  IP.set_coordinates(local_abscissa,local_triangle);
403  return true; // IP found
404  }
405 
406  return false; // IP NOT found
407 }
408 
409 
411 {
412  std::vector<int> sign;
413 
414  for(unsigned int i = 0; i < 3;i++){
415 // DBGCOUT( << "side [" << i << "]\n");
416  if(IP12s.size() == 2) break;
417 
418  IPAux12 IP;
419  if (compute_degenerate(i,IP))
420  {
421  uint s = check_abscissa_topology(IP);
422 // cout << IP;
423  // check whether we have found the same IP (e.g. vertex case)
424  if(IP12s.size() > 0 && IP.topology_equal(IP12s.back())) continue;
425 
426  sign.push_back(s);
427  IP12s.push_back(IP);
428  }
429  }
430  if(IP12s.size() == 0) return IP12s.size();
431 
432  // in the case, that line goes through vertex, but outside tetrahedron (touching vertex)
433  if(IP12s.size() == 1){
434  if(std::abs(sign[0]) > 1) IP12s.pop_back(); // outside abscissa
435  return IP12s.size();
436  }
437 
438  // 2 IPs CASE:
439  ASSERT_EQ_DBG(2, IP12s.size());
440 
441 // DBGVAR(sign[0]);
442 // DebugOut() << IP12s[0];
443 // DBGVAR(sign[1]);
444 // DebugOut() << IP12s[1];
445 
446  // intersection outside of abscissa => NO intersection
447  if (sign[0] == sign[1] && std::abs(sign[0]) > 1) {
448  IP12s.clear();
449  return 0;
450  }
451 
452  // order IPs according to the abscissa parameter
453  if(IP12s[0].local_bcoords_A()[1] > IP12s[1].local_bcoords_A()[1]){
454  std::swap(IP12s[0], IP12s[1]);
455  std::swap(sign[0], sign[1]);
456  }
457 
458  // possibly cut IPs to abscissa ends and interpolate tetrahedron bcoords
459  const int ip_sign[] = {-2, +2}; // states to cut
460  for( unsigned int ip=0; ip<2; ip++) {
461  // cut every IP to its end of the abscissa
462  if (sign[ip] == ip_sign[ip]) {
463  sign[ip] /=2; // -2 to -1; +2 to +1
464  correct_triangle_ip_topology(double(ip), ip, IP12s);
465  IP12s[ip].set_topology_A(ip, 0);
466  }
467  }
468 
469  // if IPs are the same, then throw the second one away
470  if(IP12s[0].topology_equal(IP12s[1])){
471 // DebugOut() << "IP same, pop up\n";
472  IP12s.pop_back();
473  }
474 
475  return IP12s.size();
476 }
477 
479  double t, unsigned int ip, std::vector<IPAux12> &ips)
480 {
482  ips[0].local_bcoords_B(), ips[1].local_bcoords_B(),
483  ips[0].local_bcoords_A()[1], ips[1].local_bcoords_A()[1], t);
484  arma::vec2 local_abscissa({1 - t, t}); // abscissa local barycentric coords
485  ips[ip].set_coordinates(local_abscissa, local_tria);
486 
487  // create mask for zeros in barycentric coordinates
488  // coords (*,*,*,*) -> byte bitwise xxxx
489  // only least significant one byte used from the integer
490  std::pair<unsigned int, unsigned int> zeros =
491  RefElement<2>::zeros_positions(ips[ip].local_bcoords_B(), geometry_epsilon);
492 
493  /**
494  * TODO:
495  * 1. Try to avoid setting topology from coords. Try to use just topology information.
496  * 2. If can not be done. Use interact method to setup a map mapping 16 possible zeros positions to appropriate topology,
497  * remove topology_idx from RefElement.
498  */
499 
500 // DebugOut() << "zeros: <" << zeros.first << ", " << zeros.second << ">\n";
501  switch(zeros.first)
502  {
503  default: ips[ip].set_topology_B(0,2); //inside tetrahedon
504  break;
505  case 1: ips[ip].set_topology_B(RefElement<2>::topology_idx<1>(zeros.second),1);
506  break;
507  case 2: ips[ip].set_topology_B(RefElement<2>::topology_idx<0>(zeros.second),0);
508  break;
509  }
510 }
511 
512 
514  os << "\tPluckerCoordinates Abscissa[0]";
515  if(plucker_coordinates_abscissa_ == nullptr){
516  os << "NULL" << endl;
517  }else{
518  os << plucker_coordinates_abscissa_;
519  }
520  for(unsigned int i = 0; i < 3;i++){
521  os << "\tPluckerCoordinates Triangle[" << i << "]";
522  if(plucker_coordinates_triangle_[i] == nullptr){
523  os << "NULL" << endl;
524  }else{
525  os << plucker_coordinates_triangle_[i];
526  }
527  }
528 }
529 
530 
531 
532 
533 /*************************************************************************************************************
534  * COMPUTE INTERSECTION FOR: 2D AND 2D
535  ************************************************************************************************************/
537 {
538  plucker_coordinates_.resize(2*RefElement<2>::n_sides, nullptr);
539  plucker_products_.resize(3*RefElement<2>::n_sides, nullptr);
540 }
541 
543  ElementAccessor<3> triaB,
544  FMT_UNUSED Mesh *mesh)
545 {
546  ASSERT_DBG(triaA->dim() == 2);
547  ASSERT_DBG(triaB->dim() == 2);
548  plucker_coordinates_.resize(2*RefElement<2>::n_sides);
549  plucker_products_.resize(3*RefElement<2>::n_sides);
550 
551  for(unsigned int side = 0; side < RefElement<2>::n_sides; side++){
552  plucker_coordinates_[side] = new Plucker(*triaA.node(RefElement<2>::interact(Interaction<0,1>(side))[0]),
553  *triaA.node(RefElement<2>::interact(Interaction<0,1>(side))[1]));
554  plucker_coordinates_[RefElement<2>::n_sides+side]
555  = new Plucker(*triaB.node(RefElement<2>::interact(Interaction<0,1>(side))[0]),
556  *triaB.node(RefElement<2>::interact(Interaction<0,1>(side))[1]));
557  }
558 
559  // compute Plucker products for each pair triangle A side and triangle B side
560  for(unsigned int p = 0; p < 3*RefElement<2>::n_sides; p++){
561  plucker_products_[p] = new double(plucker_empty);
562  }
563 }
564 
566 {
567  // unset pointers:
568  for(unsigned int side = 0; side < 2*RefElement<2>::n_sides; side++)
569  CI12[side].clear_all();
570 
571  // then delete objects:
572  for(unsigned int side = 0; side < 2*RefElement<2>::n_sides; side++){
573  if(plucker_coordinates_[side] != nullptr)
574  delete plucker_coordinates_[side];
575  }
576 
577  for(unsigned int p = 0; p < 3*RefElement<2>::n_sides; p++){
578  if(plucker_products_[p] != nullptr)
579  delete plucker_products_[p];
580  }
581 }
582 
584 {
585  // unset all pointers
586  for(unsigned int side = 0; side < 2*RefElement<2>::n_sides; side++)
587  {
588  plucker_coordinates_[side] = nullptr;
589  }
590  for(unsigned int p = 0; p < 3*RefElement<2>::n_sides; p++){
591  plucker_products_[p] = nullptr;
592  }
593 }
594 
596 
597 // DBGMSG("init\n");
598  for(unsigned int i = 0; i < RefElement<2>::n_sides; i++){
599  // set side A vs triangle B
600  for(unsigned int j = 0; j < RefElement<2>::n_sides; j++)
601  CI12[i].set_pc_triangle(plucker_coordinates_[3+j], j); // set triangle B
602  // set side of triangle A
603  CI12[i].set_pc_abscissa(plucker_coordinates_[i]);
604 
605  // set side B vs triangle A
606  for(unsigned int j = 0; j < RefElement<2>::n_sides; j++)
607  CI12[RefElement<2>::n_sides + i].set_pc_triangle(plucker_coordinates_[j], j); // set triangle A
608  // set side of triangle B
609  CI12[RefElement<2>::n_sides + i].set_pc_abscissa(plucker_coordinates_[RefElement<2>::n_sides + i]);
610 
611  // set plucker products
612  for(unsigned int j = 0; j < RefElement<2>::n_sides; j++)
613  {
614  //for A[i]_B set pp. A[i] x B[j]
615  CI12[i].set_plucker_product(get_plucker_product(i,j),j);
616  //for B[i]_A set pp. A[j] x B[i]
617  CI12[RefElement<2>::n_sides + i].set_plucker_product(get_plucker_product(j,i),j);
618  }
619 
620  }
621 }
622 
623 
625 {
626  // final intersection points
627  std::vector<IPAux22> &IP22s = intersection.points();
628  // temporary vector for lower dimensional IPs
629  std::vector<IPAux12> IP12s;
630  IP12s.reserve(2);
631  unsigned int ip_coutner = 0;
632 
633  // loop over CIs (side vs triangle): [A0_B, A1_B, A2_B, B0_A, B1_A, B2_A].
634  for(unsigned int i = 0; i < 2*RefElement<2>::n_sides && ip_coutner < 2; i++){
635  if(!CI12[i].is_computed()) // if not computed yet
636  {
637 // DBGVAR(i);
638  if(CI12[i].compute_final(IP12s) == 0) continue;
639 
640  unsigned int triangle_side = i%3; //i goes from 0 to 5 -> i%3 = 0,1,2,0,1,2
641 
642  for(IPAux12 &IP : IP12s)
643  {
644  IPAux22 IP22(IP.switch_objects(), triangle_side); // swicth dim 12 -> 21; interpolate dim 21 -> 22
645 
646  if(i < 3){
647  //switch back to keep order of triangles [A,B]
648  IP22 = IP22.switch_objects();
649 
650  if( IP22.dim_A() == 0 ) // if IP is vertex of triangle
651  {
652 // DBGCOUT("set_node A\n");
653  // we are on line of the triangle A, and IP.idx_A contains local node of the line
654  // we know vertex index
655 
656  // set flag on all sides of tetrahedron connected by the node
657  for(unsigned int s=0; s < RefElement<2>::n_sides_per_node; s++)
658  CI12[RefElement<2>::interact(Interaction<1,0>(IP22.idx_A()))[s]].set_computed();
659  }
660  if( IP22.dim_B() == 0 ) // if IP is vertex of triangle
661  {
662 // DBGCOUT("set_node B\n");
663  // set flag on both sides of triangle connected by the node
664  for(unsigned int s=0; s < RefElement<2>::n_sides_per_node; s++)
665  CI12[3 + RefElement<2>::interact(Interaction<1,0>(IP22.idx_B()))[s]].set_computed();
666  }
667  else if( IP22.dim_B() == 1 ) // if IP is vertex of triangle
668  {
669 // DBGCOUT("set line B\n");
670  // set flag on both sides of triangle connected by the node
671  CI12[3 + IP22.idx_B()].set_computed();
672  }
673  }
674  else if( IP22.dim_B() == 0 ) // if IP is vertex of triangle B (triangles switched!!! A <-> B)
675  {
676  //we do not need to look back to triangle A, because if IP was at vertex, we would know already
677 // DBGCOUT("set_node B\n");
678  // we are on line of the triangle, and IP.idx_A contains local node of the line
679  // we know vertex index
680 
681  // set flag on both sides of triangle connected by the node
682  for(unsigned int s=0; s < RefElement<2>::n_sides_per_node; s++)
683  CI12[3 + RefElement<2>::interact(Interaction<1,0>(IP22.idx_B()))[s]].set_computed();
684  }
685 // DBGCOUT( << IP22);
686  ip_coutner++;
687  IP22s.push_back(IP22);
688  }
689  IP12s.clear();
690  }
691  }
692 
693  return ip_coutner;
694 }
695 
696 // void ComputeIntersection< 2, 2>::correct_triangle_ip_topology(IntersectionPointAux<2,2>& ip)
697 // {
698 // // create mask for zeros in barycentric coordinates
699 // // coords (*,*,*,*) -> byte bitwise xxxx
700 // // only least significant one byte used from the integer
701 // unsigned int zeros = 0;
702 // unsigned int n_zeros = 0;
703 // for(char i=0; i < 3; i++){
704 // if(std::fabs(ip.local_bcoords_B()[i]) < geometry_epsilon)
705 // {
706 // zeros = zeros | (1 << (2-i));
707 // n_zeros++;
708 // }
709 // }
710 //
711 // switch(n_zeros)
712 // {
713 // default: ip.set_topology_B(0,2); //inside triangle
714 // break;
715 // case 1: ip.set_topology_B(RefElement<2>::topology_idx<1>(zeros),2);
716 // break;
717 // case 2: ip.set_topology_B(RefElement<2>::topology_idx<0>(zeros),1);
718 // break;
719 // }
720 // }
721 
722 
724 
725  for(unsigned int i = 0; i < RefElement<2>::n_lines; i++){
726  os << "\tPluckerCoordinates Triangle A[" << i << "]";
727  if(plucker_coordinates_[i] == nullptr){
728  os << "NULL" << endl;
729  }else{
730  os << plucker_coordinates_[i];
731  }
732  }
733  for(unsigned int i = 0; i < RefElement<2>::n_lines; i++){
734  os << "\tPluckerCoordinates Triangle B[" << i << "]";
735  if(plucker_coordinates_[RefElement<2>::n_lines + i] == nullptr){
736  os << "NULL" << endl;
737  }else{
738  os << plucker_coordinates_[RefElement<2>::n_lines + i];
739  }
740  }
741 }
742 
744  os << "ComputeIntersection<2,2> Plucker Coordinates Tree:" << endl;
745  print_plucker_coordinates(os);
746  for(unsigned int i = 0; i < 6;i++){
747  os << "ComputeIntersection<1,2>["<< i <<"] Plucker Coordinates:" << endl;
748  CI12[i].print_plucker_coordinates(os);
749  }
750 }
751 
752 
753 /*************************************************************************************************************
754  * COMPUTE INTERSECTION FOR: 1D AND 3D
755  ************************************************************************************************************/
757 {
758  plucker_coordinates_abscissa_ = nullptr;
759  plucker_coordinates_tetrahedron.resize(6, nullptr);
760  plucker_products_.resize(6, nullptr);
761 }
762 
764  ElementAccessor<3> tetrahedron,
765  FMT_UNUSED Mesh *mesh)
766 {
767  ASSERT_DBG(abscissa->dim() == 1);
768  ASSERT_DBG(tetrahedron->dim() == 3);
769 
770  plucker_coordinates_abscissa_ = new Plucker(*abscissa.node(0), *abscissa.node(1));
771  plucker_coordinates_tetrahedron.resize(6);
772  plucker_products_.resize(6);
773 
774  for(unsigned int line = 0; line < RefElement<3>::n_lines; line++){
775  plucker_coordinates_tetrahedron[line] = new Plucker(*tetrahedron.node(RefElement<3>::interact(Interaction<0,1>(line))[0]),
776  *tetrahedron.node(RefElement<3>::interact(Interaction<0,1>(line))[1]));
777  // compute Plucker products (abscissa X tetrahedron line)
778  plucker_products_[line] = new double(plucker_empty);
779  }
780 }
781 
783 {
784  // unset pointers:
785  for(unsigned int side = 0; side < RefElement<3>::n_sides; side++)
786  CI12[side].clear_all();
787 
788  // then delete objects:
789  if(plucker_coordinates_abscissa_ != nullptr)
790  delete plucker_coordinates_abscissa_;
791 
792  for(unsigned int line = 0; line < RefElement<3>::n_lines; line++){
793  if(plucker_products_[line] != nullptr)
794  delete plucker_products_[line];
795  if(plucker_coordinates_tetrahedron[line] != nullptr)
796  delete plucker_coordinates_tetrahedron[line];
797  }
798 }
799 
801 {
802  // unset all pointers
803  for(unsigned int side = 0; side < RefElement<3>::n_lines; side++)
804  {
805  plucker_products_[side] = nullptr;
806  plucker_coordinates_tetrahedron[side] = nullptr;
807  }
808  plucker_coordinates_abscissa_ = nullptr;
809 }
810 
812 
813  for(unsigned int side = 0; side < RefElement<3>::n_sides; side++){
814  for(unsigned int line = 0; line < RefElement<3>::n_lines_per_side; line++){
815  CI12[side].set_pc_triangle(plucker_coordinates_tetrahedron[
816  RefElement<3>::interact(Interaction<1,2>(side))[line]], line);
817 
818  CI12[side].set_plucker_product(
819  plucker_products_[RefElement<3>::interact(Interaction<1,2>(side))[line]],
820  line);
821  }
822  CI12[side].set_pc_abscissa(plucker_coordinates_abscissa_);
823  }
824 }
825 
826 
828 {
829  return compute(intersection.i_points_);
830 }
831 
833  ASSERT_EQ_DBG(0, IP13s.size());
834  std::vector<int> sign;
835 
836  // loop over faces of tetrahedron
837  for(unsigned int face = 0; face < RefElement<3>::n_sides && IP13s.size() < 2; face++){
838 
839  if (CI12[face].is_computed()) continue;
840 
842  IntersectionResult result = CI12[face].compute(IP12);
843  //DebugOut() << print_var(face) << print_var(int(result)) << "1d-3d";
844 
845  if (int(result) < int(IntersectionResult::degenerate) ) {
846  // fix topology of A (abscissa) in IP12 and save sign
847  sign.push_back(CI12[face].check_abscissa_topology(IP12));
848 
849  IPAux IP13(IP12, face);
850  //DebugOut() << IP13;
851  IP13s.push_back(IP13);
852 
853  // set the 'computed' flag on the connected sides by IP
854  if(IP13.dim_B() == 0) // IP is vertex of triangle
855  {
856  // set flag on all sides of tetrahedron connected by the node
857  for(unsigned int node_face : RefElement<3>::interact(Interaction<2,0>(IP13.idx_B())))
858  CI12[node_face].set_computed();
859  }
860  else if(IP13.dim_B() == 1) // IP is on edge of triangle
861  {
862  for(unsigned int edge_face : RefElement<3>::interact(Interaction<2,1>(IP13.idx_B())))
863  CI12[edge_face].set_computed();
864  }
865  }
866  }
867  if (IP13s.size() == 0) return IP13s.size();
868 
869  // in the case, that line goes through vertex, but outside tetrahedron (touching vertex)
870  if(IP13s.size() == 1){
871  if(std::abs(sign[0]) > 1) IP13s.pop_back(); // outside abscissa
872  return IP13s.size();
873  }
874 
875  // 2 IPs CASE:
876  ASSERT_EQ_DBG(2, IP13s.size());
877 
878  // intersection outside of abscissa => NO intersection
879  if (sign[0] == sign[1] && std::abs(sign[0]) > 1) {
880  IP13s.clear();
881  return 0;
882  }
883 
884  // order IPs according to the abscissa parameter
885  if(IP13s[0].local_bcoords_A()[1] > IP13s[1].local_bcoords_A()[1]){
886  std::swap(IP13s[0], IP13s[1]);
887  std::swap(sign[0], sign[1]);
888  }
889 
890  // possibly cut IPs to abscissa ends and interpolate tetrahedron bcoords
891  const int ip_sign[] = {-2, +2}; // states to cut
892  for( unsigned int ip=0; ip<2; ip++) {
893  // cut every IP to its end of the abscissa
894  if (sign[ip] == ip_sign[ip]) {
895  sign[ip] /=2; // -2 to -1; +2 to +1
896  correct_tetrahedron_ip_topology(double(ip), ip, IP13s);
897  IP13s[ip].set_topology_A(ip, 0);
898  }
899  }
900 
901  // if IPs are the same, then throw the second one away
902  if(IP13s[0].topology_equal(IP13s[1])){
903  IP13s.pop_back();
904  }
905 
906  return IP13s.size();
907 }
908 
910  double t, unsigned int ip, std::vector<IPAux> &ips)
911 {
912  arma::vec4 local_tetra = RefElement<3>::line_barycentric_interpolation(
913  ips[0].local_bcoords_B(), ips[1].local_bcoords_B(),
914  ips[0].local_bcoords_A()[1], ips[1].local_bcoords_A()[1], t);
915  arma::vec2 local_abscissa({1 - t, t}); // abscissa local barycentric coords
916  ips[ip].set_coordinates(local_abscissa, local_tetra);
917 
918  // create mask for zeros in barycentric coordinates
919  // coords (*,*,*,*) -> byte bitwise xxxx
920  // only least significant one byte used from the integer
921  unsigned int zeros = 0;
922  unsigned int n_zeros = 0;
923  for(char i=0; i < 4; i++){
924  if(std::fabs(ips[ip].local_bcoords_B()[i]) < geometry_epsilon)
925  {
926  zeros = zeros | (1 << i);
927  n_zeros++;
928  }
929  }
930 
931  /**
932  * TODO:
933  * 1. Try to avoid setting topology from coords. Try to use just topology information.
934  * 2. If can not be done. Use interact method to setup a map mapping 16 possible zeros positions to appropriate topology,
935  * remove topology_idx from RefElement.
936  */
937 
938  switch(n_zeros)
939  {
940  default: ips[ip].set_topology_B(0,3); //inside tetrahedon
941  break;
942  case 1: ips[ip].set_topology_B(RefElement<3>::topology_idx<2>(zeros),2);
943  break;
944  case 2: ips[ip].set_topology_B(RefElement<3>::topology_idx<1>(zeros),1);
945  break;
946  case 3: ips[ip].set_topology_B(RefElement<3>::topology_idx<0>(zeros),0);
947  break;
948  }
949 }
950 
951 
953  os << "\tPluckerCoordinates Abscissa[0]";
954  if(plucker_coordinates_abscissa_ == nullptr){
955  os << "NULL" << endl;
956  }else{
957  os << plucker_coordinates_abscissa_;
958  }
959 
960  for(unsigned int i = 0; i < 6;i++){
961  os << "\tPluckerCoordinates Tetrahedron[" << i << "]";
962  if(plucker_coordinates_tetrahedron[i] == nullptr){
963  os << "NULL" << endl;
964  }else{
965  os << plucker_coordinates_tetrahedron[i];
966  }
967  }
968 }
969 
971  os << "ComputeIntersection<1,3> Plucker Coordinates Tree:" << endl;
972  print_plucker_coordinates(os);
973  for(unsigned int i = 0; i < 4;i++){
974  os << "ComputeIntersection<1,2>["<< i <<"] Plucker Coordinates:" << endl;
975  CI12[i].print_plucker_coordinates(os);
976  }
977 }
978 
979 
980 
981 /*************************************************************************************************************
982  * COMPUTE INTERSECTION FOR: 2D AND 3D
983  ************************************************************************************************************/
985 : no_idx(100),
986 s3_dim_starts({0, 4, 10, 14}), // vertices, edges, faces, volume
987 s2_dim_starts({15, 18, 21}), // vertices, sides, surface
988 object_next(22, no_idx), // 4 vertices, 6 edges, 4 faces, 1 volume, 3 corners, 3 sides, 1 surface; total 22
989 on_faces(_on_faces())
990  {
991 
992  plucker_coordinates_triangle_.resize(3, nullptr);
993  plucker_coordinates_tetrahedron.resize(6, nullptr);
994  plucker_products_.resize(3*6, nullptr);
995 }
996 
997 
999  ElementAccessor<3> tetrahedron,
1000  Mesh *mesh)
1002 {
1003  mesh_ = mesh;
1004  plucker_coordinates_triangle_.resize(3);
1005  plucker_coordinates_tetrahedron.resize(6);
1006 
1007  // set CI object for 1D-2D intersection 'tetrahedron edge - triangle'
1008  for(unsigned int i = 0; i < RefElement<3>::n_lines; i++){
1009  plucker_coordinates_tetrahedron[i] = new Plucker(*tetrahedron.node(RefElement<3>::interact(Interaction<0,1>(i))[0]),
1010  *tetrahedron.node(RefElement<3>::interact(Interaction<0,1>(i))[1]));
1011  }
1012  // set CI object for 1D-3D intersection 'triangle side - tetrahedron'
1013  for(unsigned int i = 0; i < RefElement<2>::n_lines;i++){
1014  plucker_coordinates_triangle_[i] = new Plucker(*triangle.node(RefElement<2>::interact(Interaction<0,1>(i))[0]),
1015  *triangle.node(RefElement<2>::interact(Interaction<0,1>(i))[1]));
1016  }
1017 
1018  // compute Plucker products (triangle side X tetrahedron line)
1019  // order: triangle sides X tetrahedron lines:
1020  // TS[0] X TL[0..6]; TS[1] X TL[0..6]; TS[1] X TL[0..6]
1021  unsigned int np = RefElement<2>::n_sides * RefElement<3>::n_lines;
1022  plucker_products_.resize(np, nullptr);
1023  for(unsigned int line = 0; line < np; line++){
1024  plucker_products_[line] = new double(plucker_empty);
1025 
1026  }
1027 }
1028 
1030 {
1031  // unset pointers:
1032  for(unsigned int triangle_side = 0; triangle_side < RefElement<2>::n_sides; triangle_side++)
1033  CI13[triangle_side].clear_all();
1034 
1035  for(unsigned int line = 0; line < RefElement<3>::n_lines; line++)
1036  CI12[line].clear_all();
1037 
1038  // then delete objects:
1039  unsigned int np = RefElement<2>::n_sides * RefElement<3>::n_lines;
1040  for(unsigned int line = 0; line < np; line++){
1041  if(plucker_products_[line] != nullptr)
1042  delete plucker_products_[line];
1043  }
1044 
1045  for(unsigned int i = 0; i < RefElement<3>::n_lines;i++){
1046  if(plucker_coordinates_tetrahedron[i] != nullptr)
1047  delete plucker_coordinates_tetrahedron[i];
1048  }
1049  for(unsigned int i = 0; i < RefElement<2>::n_sides;i++){
1050  if(plucker_coordinates_triangle_[i] != nullptr)
1051  delete plucker_coordinates_triangle_[i];
1052  }
1053 }
1054 
1056 
1057  // set pointers to Plucker coordinates for 1D-2D
1058  // set pointers to Plucker coordinates for 1D-3D
1059  // distribute Plucker products - CI13
1060  for(unsigned int triangle_side = 0; triangle_side < RefElement<2>::n_sides; triangle_side++){
1061  for(unsigned int line = 0; line < RefElement<3>::n_lines; line++){
1062  CI13[triangle_side].set_plucker_product(
1063  plucker_products_[triangle_side * RefElement<3>::n_lines + line],
1064  line);
1065  CI12[line].set_plucker_product(
1066  plucker_products_[triangle_side * RefElement<3>::n_lines + line],
1067  triangle_side);
1068 
1069  CI13[triangle_side].set_pc_tetrahedron(plucker_coordinates_tetrahedron[line],line);
1070  CI12[line].set_pc_triangle(plucker_coordinates_triangle_[triangle_side],triangle_side);
1071  }
1072  CI13[triangle_side].set_pc_abscissa(plucker_coordinates_triangle_[triangle_side]);
1073  CI13[triangle_side].init();
1074  }
1075 
1076  // set pointers to Plucker coordinates for 1D-2D
1077  for(unsigned int line = 0; line < RefElement<3>::n_lines; line++)
1078  CI12[line].set_pc_abscissa(plucker_coordinates_tetrahedron[line]);
1079 
1080 }
1081 
1082 
1083 
1085  ASSERT_LT_DBG(i_obj, object_next.size());
1086  unsigned int ip = object_next[i_obj];
1087  if (ip == no_idx) return false;
1088  ASSERT_LT_DBG(ip, IP_next.size());
1089  return IP_next[ip] == i_obj;
1090 }
1091 
1092 /**
1093  * Set links: obj_before -> IP -> obj_after
1094  * if obj_after have null successor, set obj_after -> IP (backlink)
1095  */
1096 void ComputeIntersection<2,3>::set_links(uint obj_before_ip, uint ip_idx, uint obj_after_ip) {
1097  if (have_backlink(obj_after_ip)) {
1098  // target object is already target of other IP, so it must be source object
1099  std::swap(obj_before_ip, obj_after_ip);
1100  }
1101  //DebugOut().fmt("before: {} ip: {} after: {}\n", obj_before_ip, ip_idx, obj_after_ip );
1102  ASSERT_DBG( ! have_backlink(obj_after_ip) )
1103  (mesh_->element_accessor(intersection_->component_ele_idx()).idx())
1104  (mesh_->element_accessor(intersection_->bulk_ele_idx()).idx())
1105  (obj_before_ip)(ip_idx)(obj_after_ip); // at least one could be target object
1106  object_next[obj_before_ip] = ip_idx;
1107  IP_next.push_back( obj_after_ip);
1108  if (object_next[obj_after_ip] == no_idx) {
1109  object_next[obj_after_ip] = ip_idx;
1110  }
1111 }
1112 
1113 
1114 
1116 {
1117  intersection_= &intersection;
1118  //DebugOut().fmt("2d ele: {} 3d ele: {}\n",
1119  // intersection.component_ele_idx(),
1120  // intersection.bulk_ele_idx());
1121 
1122  IP23_list.clear();
1123  IP_next.clear();
1124  std::fill(object_next.begin(), object_next.end(), no_idx);
1125  std::vector<IPAux13> IP13s;
1126 
1127  std::array<bool, 6> edge_touch={false,false, false, false, false, false};
1128  unsigned int object_before_ip, object_after_ip;
1129 
1130  //unsigned int last_triangle_vertex=30; // no vertex at last IP
1131 
1132  // pass through the ccwise oriented sides in ccwise oriented order
1133  // How to make this in independent way?
1134  // Move this into RefElement?
1135  std::vector<unsigned int> side_cycle_orientation = { 0, 0, 1};
1136  std::vector<unsigned int> cycle_sides = {0, 2, 1};
1137 
1138  // TODO:
1139  // better mechanism for detecting vertex duplicities, do no depend on cyclic order of sides
1140  // still need cyclic orientation
1141  for(unsigned int _i_side = 0; _i_side < RefElement<2>::n_lines; _i_side++) { // go through triangle lines
1142  unsigned int i_side = cycle_sides[_i_side];
1143  IP13s.clear();
1144  CI13[ i_side ].compute(IP13s);
1145  ASSERT_DBG(IP13s.size() < 3);
1146  if (IP13s.size() == 0) continue;
1147  for(unsigned int _ip=0; _ip < IP13s.size(); _ip++) {
1148  //int ip_topo_position = _ip*2-1; // -1 (incoming ip), +1 (outcoming ip), 0 both
1149 
1150  // fix order of IPs
1151  unsigned int ip = (side_cycle_orientation[_i_side] + _ip) % IP13s.size();
1152 
1153 // DebugOut().fmt("rside: {} cside: {} rip: {} cip: {}", _i_side, i_side, _ip, ip);
1154 
1155  // convert from 13 to 23 IP
1156  IntersectionPointAux<3,1> IP31 = IP13s[ip].switch_objects(); // switch idx_A and idx_B and coords
1157  IntersectionPointAux<3,2> IP32(IP31, i_side); // interpolation uses local_bcoords_B and given idx_B
1158  IPAux23 IP23 = IP32.switch_objects(); // switch idx_A and idx_B and coords back
1159  //DebugOut() << IP;
1160 
1161  // Tracking info
1162  unsigned int tetra_object = s3_dim_starts[IP23.dim_B()] + IP23.idx_B();
1163  unsigned int side_object = s2_dim_starts[1] + i_side;
1164 
1165  object_before_ip = tetra_object;
1166  object_after_ip = side_object;
1167 
1168 
1169  // IP is vertex of triangle,
1170  if( IP23.dim_A() == 0 && IP23.dim_B() == 3)
1171  {
1172  // we are on line of the triangle, and IP.idx_A contains local node of the line
1173  // E-E, we know vertex index
1174  object_before_ip = s2_dim_starts[0]+IP23.idx_A();
1175  }// else current_triangle_vertex=3+IP23_list.size(); // no vertex, and unique
1176 
1177  // side of triangle touching S3, in vertex or in edge
1178  if (IP13s.size() == 1 ) {
1179  if (IP23.dim_B() == 0) {
1180  continue; // skip, S3 vertices are better detected in phase 2
1181  }
1182  if (IP23.dim_A() == 0) { // vertex of triangle
1183  object_before_ip = tetra_object;
1184  object_after_ip = s2_dim_starts[0]+IP23.idx_A();
1185 
1186  // source vertex of the side vector (oriented CCwise)
1187  //if ( (IP.idx_A()+side_cycle_orientation[_i_side])%2 == 0)
1188  // std::swap(object_before_ip, object_after_ip);
1189  } else {
1190  // touch in edge
1191 
1192  //continue;
1193  ASSERT_EQ_DBG(IP23.dim_B(), 1);
1194  edge_touch[IP23.idx_B()]=true;
1195  std::swap(object_before_ip, object_after_ip);
1196  }
1197  }
1198 
1199  IP23_list.push_back(IP23);
1200 
1201  unsigned int ip_idx = IP23_list.size()-1;
1202  //DebugOut().fmt("before: {} after: {} ip: {}\n", object_before_ip, object_after_ip, ip_idx);
1203  ASSERT_EQ_DBG(IP23_list.size(), IP_next.size()+1);
1204  set_links(object_before_ip, ip_idx, object_after_ip);
1205  }
1206 
1207  }
1208 
1209  // now we have at most single true degenerate IP in IP23
1210  // TODO:
1211  // - deal with degenerate IPs in the edge-trinagle phase
1212  // - remove degenerate_list (just count degen points)
1213  // - remove check for duplicities in final list copy
1214  // - add more comment to individual cases in order to be sure that any case in particular branch is
1215  // treated right
1216 
1217 
1218  //TODO: cannot the two cycles be merged in one now?
1219  // and instead of processed_edge use CI12[tetra_edge].set_computed();
1220  // and I think we don't have to generate dummy IP12s
1221  // so we don't have to have IP12s vector here
1222  IP12s_.clear();
1223  // S3 Edge - S2 intersections; collect all signs, make dummy intersections
1224  for(unsigned int tetra_edge = 0; tetra_edge < 6; tetra_edge++) {
1225  IPAux12 IP12;
1226  CI12[tetra_edge].compute(IP12);
1227  // IntersectionResult result = CI12[tetra_edge].compute(IP12);
1228  // DebugOut() << print_var(tetra_edge) << print_var(int(result));
1229  // in degenerate case: IP12 is empty with degenerate result
1230  IP12s_.push_back(IP12);
1231  }
1232  vector<uint> processed_edge(6, 0);
1233  FacePair face_pair;
1234  for(unsigned int tetra_edge = 0; tetra_edge < 6;tetra_edge++) {
1235  if (! processed_edge[tetra_edge]) {
1236 // DBGVAR(tetra_edge);
1237  IPAux12 &IP12 = IP12s_[tetra_edge];
1238  if(IP12.result() >= IntersectionResult::degenerate) continue;
1239 
1240  int sign = CI12[tetra_edge].check_abscissa_topology(IP12);
1241 // DBGVAR(sign);
1242  if(std::abs(sign) > 1) continue;
1243 
1244  IPAux23 IP23(IP12s_[tetra_edge].switch_objects(), tetra_edge);
1245 
1246  const uint edge_dim = IP23.dim_B();
1247  const uint i_edge = IP23.idx_B();
1248  ASSERT_LT_DBG(edge_dim, 2);
1249 
1250  if ( edge_dim == 0) {
1251  face_pair = vertex_faces(i_edge);
1252  // mark edges coincident with the vertex
1253  for( uint ie : RefElement<3>::interact(Interaction<1,0>(i_edge)) )
1254  processed_edge[ie] = 1;
1255  }
1256  else
1257  face_pair = edge_faces(i_edge);
1258 
1259  //DebugOut() << print_var(face_pair[0])<< print_var(face_pair[1]);
1260 
1261  IP23_list.push_back(IP23);
1262  unsigned int ip_idx = IP23_list.size()-1;
1263 
1264  unsigned int s3_object = s3_dim_starts[edge_dim] + i_edge;
1265 
1266  //DebugOut() << print_var(edge_touch[i_edge]) << print_var(have_backlink(s3_object));
1267  if (IP23.dim_A() < 2
1268  && (! edge_touch[i_edge])
1269  && object_next[s3_object] != no_idx) { // boundary of S2, these ICs are duplicate
1270 
1271  if ( have_backlink(s3_object) ) {
1272  set_links(s3_object, ip_idx, face_pair[1]);
1273  } else {
1274  set_links(face_pair[0], ip_idx, s3_object);
1275  }
1276 
1277  } else { // interior of S2, just use the face pair
1278  //DebugOut() << print_var(face_pair[0])<< print_var(face_pair[1]);
1279  set_links(face_pair[0], ip_idx, face_pair[1]);
1280 
1281  if ( have_backlink(s3_object) ) {
1282  object_next[s3_object]=ip_idx;
1283  }
1284  }
1285  }
1286  }
1287 
1288 
1289  // Return IPs in correct order and remove duplicates
1290  ASSERT_EQ(0, intersection.size());
1291 
1292  if (IP23_list.size() == 0) return; // empty intersection
1293 
1294  // detect first IP, this needs to be done only in the case of
1295  // point or line intersections, where IPs links do not form closed cycle
1296  // Possibly we do this only if we detect such case through previous phases.
1297  vector<char> have_predecessor(IP23_list.size(), 0);
1298  for(auto obj : IP_next) {
1299  ASSERT_LT_DBG(obj, object_next.size());
1300  unsigned int ip = object_next[obj];
1301  if (ip < IP_next.size()) have_predecessor[ip]=1;
1302  }
1303  unsigned int ip_init=0;
1304  for(unsigned int i=0; i< IP23_list.size(); i++) if (! have_predecessor[i]) ip_init=i;
1305 
1306  arma::uvec::fixed<RefElement<3>::n_sides> ips_face_counter;
1307  ips_face_counter.zeros();
1308 
1309  // regular case, merge duplicit IPs
1310  unsigned int ip=ip_init;
1311  ASSERT_EQ_DBG(IP_next.size(), IP23_list.size());
1312  intersection.points().push_back(IP23_list[ip]);
1313  //DebugOut() << print_var(ip) << IP23_list[ip];
1314  while (1) {
1315  //DebugOut() << print_var(ip) << IP23_list[ip];
1316 
1317  unsigned int object = IP_next[ip];
1318  //IP_next[ip]=no_idx;
1319  ASSERT_LT_DBG(object, object_next.size());
1320  ip = object_next[object];
1321  object_next[object]=no_idx;
1322  if ((ip == no_idx)) break;
1323  ASSERT_LT_DBG(ip, IP_next.size());
1324 
1325  if ( ! IP23_list[ip].topology_equal(intersection.points().back()) ) {
1326  IPAux23 &IP = IP23_list[ip];
1327  //DebugOut() << print_var(ip) << IP23_list[ip];
1328  intersection.points().push_back(IP);
1329  if(IP.dim_B() < 3)
1330  ips_face_counter += on_faces[IP.dim_B()][IP.idx_B()];
1331  }
1332  }
1333 
1334  if (intersection.points().size() == 1) return;
1335 
1336  if (IP23_list[ip_init].topology_equal(intersection.points().back()) )
1337  intersection.points().pop_back();
1338 
1339  if (intersection.points().size() > 2){
1340  for(uint i=0; i< ips_face_counter.n_elem; i++){
1341  if(ips_face_counter(i) >= intersection.points().size()){ // all IPs lie in a single face
1342 // DBGCOUT(<< "all IPs in face: " << i <<"\n");
1343 // ips_face_counter.print("face_counter");
1344  intersection.set_ips_in_face(i);
1345  }
1346  }
1347  }
1348 }
1349 
1351 {
1352  auto &line_faces=RefElement<3>::interact(Interaction<2,1>(i_edge));
1353  unsigned int ip_ori = (unsigned int)(IP12s_[i_edge].result());
1354  ASSERT_DBG(ip_ori < 2); // no degenerate case
1355 
1356  // RefElement returns edge faces in clockwise order (edge pointing to us)
1357  // negative ip sign (ori 0) = faces counter-clockwise
1358  // positive ip sign (ori 1) = faces clockwise
1359  return { s3_dim_starts[2] + line_faces[1-ip_ori], s3_dim_starts[2] + line_faces[ip_ori] };
1360 }
1361 
1363 {
1364  // vertex edges clockwise
1365  const IdxVector<3> &vtx_edges = RefElement<3>::interact(Interaction<1,0>(i_vertex));
1366  std::array<unsigned int, 3> n_ori, sum_idx;
1367  n_ori.fill(0);
1368  sum_idx.fill(0);
1369  for(unsigned int ie=0; ie <3; ie++) {
1370  unsigned int edge_ip_ori = (unsigned int)(IP12s_[ vtx_edges[ie]].result());
1371  if (RefElement<3>::interact(Interaction<0,1>(vtx_edges[ie]))[0] != i_vertex
1372  && edge_ip_ori!= int(IntersectionResult::degenerate) )
1373  edge_ip_ori = (edge_ip_ori +1)%2;
1374  //ASSERT_LT_DBG(edge_ip_ori, 3)(ie);
1375  if (edge_ip_ori == 3) edge_ip_ori=2; // none as degenerate
1376  n_ori[edge_ip_ori]++;
1377  sum_idx[edge_ip_ori]+=ie;
1378  }
1379  unsigned int n_degen = n_ori[ int(IntersectionResult::degenerate) ];
1380  unsigned int sum_degen = sum_idx[ int(IntersectionResult::degenerate) ];
1381  unsigned int n_positive = n_ori[ int(IntersectionResult::positive) ];
1382  unsigned int n_negative= n_ori[ int(IntersectionResult::negative) ];
1383  //DebugOut().fmt("nd: {} sd: {} np: {} nn: {}", n_degen, sum_degen, n_positive, n_negative);
1384  if ( n_degen == 2 ) {
1385  // S2 plane match a face of S3, we treat degenerated edges as the faces
1386  // incident with the single regualr edge.
1387 
1388  unsigned int i_edge = 3 - sum_degen; // regular edge index
1389  FacePair pair = edge_faces(vtx_edges[i_edge]);
1390  auto &vtx_faces = RefElement<3>::interact(Interaction<2,0>(i_vertex));
1391  // replace faces by edges
1392  if (pair[0] == s3_dim_starts[2] + vtx_faces[(i_edge+1)%3])
1393  return { s3_dim_starts[1] + (i_edge+2)%3, s3_dim_starts[1] + (i_edge+1)%3 };
1394  else
1395  return { s3_dim_starts[1] + (i_edge+1)%3, s3_dim_starts[1] + (i_edge+2)%3 };
1396 
1397  } else if (n_degen == 1) {
1398  // One edge in S2 plane.
1399  unsigned int i_edge = sum_degen;
1400  ASSERT( n_positive + n_negative == 2);
1401  if ( n_positive == 1) {
1402  // opposite signs, S2 plane cuts S3
1403 
1404  FacePair pair = edge_faces(vtx_edges[(i_edge+1)%3]);
1405  unsigned int face = RefElement<3>::interact(Interaction<2,0>(i_vertex))[i_edge];
1406  // assign edges to faces
1407  //DebugOut().fmt("vtx: {} edg: {} face: {}", i_vertex, i_edge, face);
1408  if (pair[0] == s3_dim_starts[2] + face)
1409  return { s3_dim_starts[2] + face, s3_dim_starts[1] + vtx_edges[i_edge]};
1410  else
1411  return { s3_dim_starts[1] + vtx_edges[i_edge], s3_dim_starts[2] + face };
1412  } else {
1413  // same signs; S2 plane touch S3 vertex and a single edge
1414  //DebugOut() << "Touch in edge.";
1415  // same signs S2 plane touchs S3
1416  ASSERT(n_positive == 0 || n_positive== 2);
1417  return { s3_dim_starts[0]+i_vertex, s3_dim_starts[1] + vtx_edges[i_edge]};
1418  }
1419 
1420 
1421  } else {
1422  ASSERT(n_degen == 0);
1423  ASSERT( n_positive + n_negative == 3);
1424 
1425  if (n_positive == 1) {
1426  unsigned int i_edge = sum_idx[ int(IntersectionResult::positive) ];
1427  return edge_faces(vtx_edges[i_edge]);
1428  } else if (n_negative == 1) {
1429  unsigned int i_edge = sum_idx[ int(IntersectionResult::negative) ];
1430  return edge_faces(vtx_edges[i_edge]);
1431  } else {
1432  // S2 touch vertex of S3 in
1433  ASSERT( n_positive == 0 || n_positive == 3);
1434  return { s3_dim_starts[0]+i_vertex, s3_dim_starts[0]+i_vertex};
1435  }
1436  }
1437 }
1438 
1439 
1441 {
1443 
1444  on_faces.resize(3);
1445  arma::uvec::fixed<RefElement<3>::n_sides> v; v.zeros();
1446 
1447  on_faces[0].resize(RefElement<3>::n_nodes, v);
1448  for(uint i=0; i<RefElement<3>::n_nodes; i++)
1449  for(uint j=0; j<RefElement<3>::n_sides_per_node; j++)
1450  on_faces[0][i](RefElement<3>::interact(Interaction<2,0>(i))[j]) = 1;
1451 
1452  on_faces[1].resize(RefElement<3>::n_lines, v);
1453  for(uint i=0; i<RefElement<3>::n_lines; i++)
1454  for(uint j=0; j<RefElement<3>::n_sides_per_line; j++)
1455  on_faces[1][i](RefElement<3>::interact(Interaction<2,1>(i))[j]) = 1;
1456 
1457  on_faces[2].resize(RefElement<3>::n_sides, v);
1458  for(uint i=0; i<RefElement<3>::n_sides; i++)
1459  on_faces[2][i](i) = 1;
1460 
1461 // DBGCOUT("Print on_faces:\n");
1462 // for(uint d=0; d<on_faces.size(); d++)
1463 // for(uint i=0; i<on_faces[d].size(); i++){
1464 // for(uint j=0; j<on_faces[d][i].n_elem; j++)
1465 // cout << on_faces[d][i](j) << " ";
1466 // cout << endl;
1467 // }
1468  return on_faces;
1469 }
1470 
1471 
1473  for(unsigned int i = 0; i < 3;i++){
1474  os << "\tPluckerCoordinates Triangle[" << i << "]";
1475  if(plucker_coordinates_triangle_[i] == nullptr){
1476  os << "NULL" << endl;
1477  }else{
1478  os << plucker_coordinates_triangle_[i];
1479  }
1480  }
1481  for(unsigned int i = 0; i < 6;i++){
1482  os << "\tPluckerCoordinates Tetrahedron[" << i << "]";
1483  if(plucker_coordinates_tetrahedron[i] == nullptr){
1484  os << "NULL" << endl;
1485  }else{
1486  os << plucker_coordinates_tetrahedron[i];
1487  }
1488  }
1489 }
1490 
1492  os << "ComputeIntersection<2,3> Plucker Coordinates Tree:" << endl;
1493  print_plucker_coordinates(os);
1494  for(unsigned int i = 0; i < 6;i++){
1495  os << "ComputeIntersection<1,2>["<< i <<"] Plucker Coordinates:" << endl;
1496  CI12[i].print_plucker_coordinates(os);
1497  }
1498  for(unsigned int i = 0; i < 3;i++){
1499  CI13[i].print_plucker_coordinates_tree(os);
1500  }
1501 }
1502 
unsigned int dim_A() const
Returns dimension of object A.
#define ASSERT_EQ_DBG(a, b)
Definition of comparative assert macro (EQual) only for debug mode.
Definition: asserts.hh:332
void set_topology_B(unsigned int idx, unsigned int dim_B)
Sets the topology of object B in Simplex<M>.
std::vector< IntersectionPointAux< dimA, dimB > > i_points_
Vector of internal intersection points.
unsigned int uint
Plucker coordinates class.
IntersectionResult result() const
Result: 0 - negative sign, 1 - positive sign, 2 - degenerate (zero for all sides), 3 - none.
static BaryPoint line_barycentric_interpolation(BaryPoint first_coords, BaryPoint second_coords, double first_theta, double second_theta, double theta)
Definition: ref_element.cc:571
Fundamental simplicial intersections.
void set_topology_A(unsigned int idx, unsigned int dim_A)
Sets the topology of object A in Simplex<N>.
Definition: mesh.h:78
unsigned int size() const
Returns number of intersection points.
static const double geometry_epsilon
static std::pair< unsigned int, unsigned int > zeros_positions(const BaryPoint &barycentric, double tolerance=std::numeric_limits< double >::epsilon()*2)
Definition: ref_element.cc:412
#define ASSERT(expr)
Allow use shorter versions of macro names if these names is not used with external library...
Definition: asserts.hh:347
const arma::vec::fixed< N+1 > & local_bcoords_A() const
Returns barycentric coordinates in the Simplex<N>.
NodeAccessor< 3 > node(unsigned int ni) const
Definition: accessors.hh:200
static unsigned int normal_orientation(unsigned int sid)
Definition: ref_element.cc:334
unsigned int idx_A() const
Returns the index of Simplex<N>.
unsigned int dim_B() const
Returns dimension of object B.
static LocalPoint bary_to_local(const BaryPoint &bp)
Converts from barycentric to local coordinates.
Definition: ref_element.cc:319
unsigned int dim() const
Definition: elements.h:121
void set_coordinates(const arma::vec::fixed< N+1 > &lcA, const arma::vec::fixed< M+1 > &lcB)
Setter for coordinates.
#define FMT_UNUSED
Definition: posix.h:75
static const IdxVector< (InDim >OutDim?InDim+1:dim-InDim) > interact(TInteraction< OutDim, InDim > interaction)
std::vector< IntersectionPointAux< dimA, dimB > > & points()
Returns intersection points by a reference.
void swap(nlohmann::json &j1, nlohmann::json &j2) noexcept(is_nothrow_move_constructible< nlohmann::json >::value andis_nothrow_move_assignable< nlohmann::json >::value)
exchanges the values of two JSON objects
Definition: json.hpp:8688
std::array< unsigned int, Size > IdxVector
Definition: ref_element.hh:147
bool topology_equal(const IntersectionPointAux< N, M > &other) const
Returns true, if other intersection point has the same topology.
IntersectionPointAux< M, N > switch_objects() const
Switches the object A and B.
#define ASSERT_DBG(expr)
static const double plucker_empty
Auxiliary value for Plucker product. If equal this value, it is supposed not to be set yet...
void set_ips_in_face(unsigned int face_idx)
Internal auxiliary class represents an intersection point of simplex<N> and simplex<M>.
Class RefElement defines numbering of vertices, sides, calculation of normal vectors etc...
unsigned int idx_B() const
void set_result(IntersectionResult result)
Setter orientation flag.
Internal class representing intersection point.
Plucker coordinates representing line given by points A,B.
Definition: plucker.hh:45
#define ASSERT_EQ(a, b)
Definition of comparative assert macro (EQual)
Definition: asserts.hh:328
double scale() const
Definition: plucker.hh:74
Internal class representing intersection object.
#define ASSERT_LT_DBG(a, b)
Definition of comparative assert macro (Less Than) only for debug mode.
Definition: asserts.hh:300