28 #include "petscviewer.h" 29 #include "petscerror.h" 82 .
add_value(
MortarP1,
"P1",
"Mortar space: P1 on intersections, using non-conforming pressures.")
90 "Homogeneous Neumann boundary condition. Zero flux")
92 "Dirichlet boundary condition. " 93 "Specify the pressure head through the ''bc_pressure'' field " 94 "or the piezometric head through the ''bc_piezo_head'' field.")
95 .
add_value(total_flux,
"total_flux",
"Flux boundary condition (combines Neumann and Robin type). " 96 "Water inflow equal to (($ \\delta_d(q_d^N + \\sigma_d (h_d^R - h_d) )$)). " 97 "Specify the water inflow by the 'bc_flux' field, the transition coefficient by 'bc_robin_sigma' " 98 "and the reference pressure head or pieozmetric head through ''bc_pressure'' or ''bc_piezo_head'' respectively.")
100 "Seepage face boundary condition. Pressure and inflow bounded from above. Boundary with potential seepage flow " 101 "is described by the pair of inequalities: " 102 "(($h_d \\le h_d^D$)) and (($ -\\boldsymbol q_d\\cdot\\boldsymbol n \\le \\delta q_d^N$)), where the equality holds in at least one of them. " 103 "Caution. Setting (($q_d^N$)) strictly negative " 104 "may lead to an ill posed problem since a positive outflow is enforced. " 105 "Parameters (($h_d^D$)) and (($q_d^N$)) are given by fields ``bc_switch_pressure`` (or ``bc_switch_piezo_head``) and ``bc_flux`` respectively." 108 "River boundary condition. For the water level above the bedrock, (($H_d > H_d^S$)), the Robin boundary condition is used with the inflow given by: " 109 "(( $ \\delta_d(q_d^N + \\sigma_d(H_d^D - H_d) )$)). For the water level under the bedrock, constant infiltration is used: " 110 "(( $ \\delta_d(q_d^N + \\sigma_d(H_d^D - H_d^S) )$)). Parameters: ``bc_pressure``, ``bc_switch_pressure``, " 111 " ``bc_sigma, ``bc_flux``." 122 "Boundary piezometric head for BC types: dirichlet, robin, and river." )
124 "Boundary switch piezometric head for BC types: seepage, river." )
126 "Initial condition for the pressure given as the piezometric head." )
128 return field_descriptor;
135 "Linear solver for MH problem.")
137 "Residual tolerance.")
139 "Minimum number of iterations (linear solves) to use. This is usefull if the convergence criteria " 140 "does not characterize your goal well enough so it converges prematurely possibly without the single linear solve." 141 "If greater then 'max_it' the value is set to 'max_it'.")
143 "Maximum number of iterations (linear solves) of the non-linear solver.")
145 "If a stagnation of the nonlinear solver is detected the solver stops. " 146 "A divergence is reported by default forcing the end of the simulation. Setting this flag to 'true', the solver" 147 "ends with convergence success on stagnation, but report warning about it.")
150 return it::Record(
"Flow_Darcy_MH",
"Mixed-Hybrid solver for STEADY saturated Darcy flow.")
153 "Vector of the gravity force. Dimensionless.")
155 "Input data for Darcy flow model.")
157 "Non-linear solver for MH problem.")
159 "Parameters of output stream.")
162 "Parameters of output from MH module.")
164 "Parameters of output form MH module.")
166 "Settings for computing mass balance.")
168 "Time governor setting for the unsteady Darcy flow model.")
170 "Number of Schur complements to perform when solving MH system.")
172 "Method for coupling Darcy flow between dimensions." )
178 Input::register_class< DarcyMH, Mesh &, const Input::Record >(
"Flow_Darcy_MH") +
187 ADD_FIELD(anisotropy,
"Anisotropy of the conductivity tensor.",
"1.0" );
190 ADD_FIELD(cross_section,
"Complement dimension parameter (cross section for 1D, thickness for 2D).",
"1.0" );
191 cross_section.units(
UnitSI().m(3).md() );
193 ADD_FIELD(conductivity,
"Isotropic conductivity scalar.",
"1.0" );
194 conductivity.units(
UnitSI().m().s(-1) ).set_limits(0.0);
196 ADD_FIELD(sigma,
"Transition coefficient between dimensions.",
"1.0");
199 ADD_FIELD(water_source_density,
"Water source density.",
"0.0");
200 water_source_density.units(
UnitSI().s(-1) );
202 ADD_FIELD(bc_type,
"Boundary condition type, possible values:",
"\"none\"" );
204 bc_type.input_selection( get_bc_type_selection() );
207 ADD_FIELD(bc_pressure,
"Prescribed pressure value on the boundary. Used for all values of 'bc_type' except for 'none' and 'seepage'. " 208 "See documentation of 'bc_type' for exact meaning of 'bc_pressure' in individual boundary condition types.",
"0.0");
209 bc_pressure.disable_where(bc_type, {
none, seepage} );
210 bc_pressure.units(
UnitSI().m() );
212 ADD_FIELD(bc_flux,
"Incoming water boundary flux. Used for bc_types : 'total_flux', 'seepage', 'river'.",
"0.0");
213 bc_flux.disable_where(bc_type, {
none, dirichlet} );
214 bc_flux.units(
UnitSI().m(4).s(-1).md() );
216 ADD_FIELD(bc_robin_sigma,
"Conductivity coefficient in the 'total_flux' or the 'river' boundary condition type.",
"0.0");
217 bc_robin_sigma.disable_where(bc_type, {
none, dirichlet, seepage} );
218 bc_robin_sigma.units(
UnitSI().m(3).s(-1).md() );
221 "Critical switch pressure for 'seepage' and 'river' boundary conditions.",
"0.0");
222 bc_switch_pressure.disable_where(bc_type, {
none, dirichlet, total_flux} );
223 bc_switch_pressure.units(
UnitSI().m() );
226 ADD_FIELD(init_pressure,
"Initial condition for pressure",
"0.0" );
227 init_pressure.units(
UnitSI().m() );
229 ADD_FIELD(storativity,
"Storativity.",
"0.0" );
230 storativity.units(
UnitSI().m(-1) );
276 data_ = make_shared<EqData>();
279 data_->is_linear=
true;
310 gravity_array.copy_to(gvec);
312 data_->gravity_ = arma::vec(gvec);
313 data_->gravity_vec_ =
data_->gravity_.subvec(0,2);
315 data_->bc_pressure.add_factory(
317 (
data_->gravity_,
"bc_piezo_head") );
318 data_->bc_switch_pressure.add_factory(
320 (
data_->gravity_,
"bc_switch_piezo_head") );
321 data_->init_pressure.add_factory(
323 (
data_->gravity_,
"init_piezo_head") );
331 MessageOut() <<
"Missing the key 'time', obligatory for the transient problems." << endl;
353 .val<Input::AbstractRecord>(
"linear_solver");
372 data_->water_balance_idx =
balance_->add_quantity(
"water_volume");
402 if (zero_time_term_from_right) {
433 bool jump_time =
data_->storativity.is_jump_time();
434 if (! zero_time_term_from_left) {
444 WarningOut() <<
"Output of solution discontinuous in time not supported yet.\n";
453 if (! zero_time_term_from_left && ! jump_time)
output_data();
459 if (zero_time_term_from_right) {
464 }
else if (! zero_time_term_from_left && jump_time) {
465 WarningOut() <<
"Discontinuous time term not supported yet.\n";
476 return (
data_->storativity.input_list_size() == 0);
489 MessageOut().fmt(
"[nonlinear solver] norm of initial residual: {}\n", residual_norm);
492 int is_linear_common;
497 this->
max_n_it_ = nl_solver_rec.
val<
unsigned int>(
"max_it");
498 this->
min_n_it_ = nl_solver_rec.
val<
unsigned int>(
"min_it");
499 if (this->min_n_it_ > this->max_n_it_) this->min_n_it_ = this->
max_n_it_;
501 if (! is_linear_common) {
509 while (nonlinear_iteration_ < this->min_n_it_ ||
510 (residual_norm > this->tolerance_ && nonlinear_iteration_ < this->max_n_it_ )) {
512 convergence_history.push_back(residual_norm);
515 if (convergence_history.size() >= 5 &&
516 convergence_history[ convergence_history.size() - 1]/convergence_history[ convergence_history.size() - 2] > 0.9 &&
517 convergence_history[ convergence_history.size() - 1]/convergence_history[ convergence_history.size() - 5] > 0.8) {
523 THROW(ExcSolverDiverge() << EI_Reason(
"Stagnation."));
527 if (! is_linear_common)
533 if (is_linear_common){
536 MessageOut().fmt(
"[nonlinear solver] lin. it: {}, reason: {}, residual: {}\n",
537 si.n_iterations, si.converged_reason, residual_norm);
558 MessageOut().fmt(
"[nonlinear solver] it: {} lin. it: {}, reason: {}, residual: {}\n",
561 chkerr(VecDestroy(&save_solution));
588 if(
data_->mortar_method_ != MortarMethod::NoMortar){
589 auto multidim_assembler = AssemblyBase::create< AssemblyMH >(
data_);
592 unsigned int dim = ele_ac.
dim();
593 multidim_assembler[dim-1]->fix_velocity(ele_ac);
651 vec_size = this->
size;
652 OLD_ASSERT(vec != NULL,
"Requested solution is not allocated!\n");
658 OLD_ASSERT(vec != NULL,
"Requested solution is not allocated!\n");
670 START_TIMER(
"DarcyFlowMH_Steady::assembly_steady_mh_matrix");
681 data_->local_boundary_index=0;
684 unsigned int dim = ele_ac.
dim();
685 assembler[dim-1]->assemble(ele_ac);
696 START_TIMER(
"DarcyFlowMH_Steady::allocate_mh_matrix");
707 double zeros[100000];
708 for(
int i=0; i<100000; i++) zeros[i] = 0.0;
711 tmp_rows.reserve(200);
713 unsigned int nsides, loc_size;
720 loc_size = 1 + 2*nsides;
721 unsigned int i_side = 0;
723 for (; i_side < nsides; i_side++) {
724 local_dofs[i_side] = ele_ac.side_row(i_side);
725 local_dofs[i_side+nsides] = ele_ac.edge_row(i_side);
727 local_dofs[i_side+nsides] = ele_ac.ele_row();
728 int * edge_rows = local_dofs + nsides;
732 ls->
mat_set_values(loc_size, local_dofs, loc_size, local_dofs, zeros);
736 unsigned int n_neighs = ele_ac.element_accessor()->n_neighs_vb();
737 for (
unsigned int i = 0; i < n_neighs; i++) {
740 Neighbour *ngh = ele_ac.element_accessor()->neigh_vb[i];
742 tmp_rows.push_back(neigh_edge_row);
755 for(
auto &isec : isec_list ) {
759 for(
unsigned int i_side=0; i_side < slave_ele->
n_sides(); i_side++) {
806 double cs =
data_->cross_section.value(ele_ac.centre(), ele_ac.element_accessor());
809 double source = ele_ac.measure() * cs *
810 data_->water_source_density.value(ele_ac.centre(), ele_ac.element_accessor());
813 balance_->add_source_vec_values(
data_->water_balance_idx, ele_ac.region().bulk_idx(), {(
LongIdx) ele_ac.ele_row()}, {source});
833 #ifdef FLOW123D_HAVE_BDDCML 834 WarningOut() <<
"For BDDC no Schur complements are used.";
849 xprintf(
Err,
"Flow123d was not build with BDDCML support.\n");
850 #endif // FLOW123D_HAVE_BDDCML 855 WarningOut() <<
"Invalid number of Schur Complements. Using 2.";
868 ls->LinSys::set_from_input(in_rec);
887 ISCreateStride(PETSC_COMM_WORLD,
mh_dh.
el_ds->
lsize(), ls->get_distribution()->begin(), 1, &is);
890 ls1->set_negative_definite();
893 schur2 =
new LinSys_PETSC( ls1->make_complement_distribution() );
895 ls1->set_complement( schur2 );
898 ls->set_complement( schur1 );
900 ls->set_solution( NULL );
914 xprintf(
Err,
"Unknown solver type. Internal error.\n");
928 START_TIMER(
"DarcyFlowMH_Steady::assembly_linear_system");
930 data_->is_linear=
true;
947 auto multidim_assembler = AssemblyBase::create< AssemblyMH >(
data_);
984 std::string output_file;
996 PetscViewerASCIIOpen(PETSC_COMM_WORLD, output_file.c_str(), &viewer);
997 PetscViewerSetFormat(viewer, PETSC_VIEWER_ASCII_MATLAB);
1007 double d_max = std::numeric_limits<double>::max();
1008 double h1 = d_max, h2 = d_max, h3 = d_max;
1009 double he2 = d_max, he3 = d_max;
1012 case 1: h1 = std::min(h1,ele.measure());
break;
1013 case 2: h2 = std::min(h2,ele.measure());
break;
1014 case 3: h3 = std::min(h3,ele.measure());
break;
1017 for (
unsigned int j=0; j<ele->n_sides(); j++) {
1019 case 2: he2 = std::min(he2, ele.side(j)->measure());
break;
1020 case 3: he3 = std::min(he3, ele.side(j)->measure());
break;
1024 if(h1 == d_max) h1 = 0;
1025 if(h2 == d_max) h2 = 0;
1026 if(h3 == d_max) h3 = 0;
1027 if(he2 == d_max) he2 = 0;
1028 if(he3 == d_max) he3 = 0;
1031 file = fopen(output_file.c_str(),
"a");
1035 fprintf(file,
"h1 = %e;\nh2 = %e;\nh3 = %e;\n", h1, h2, h3);
1036 fprintf(file,
"he2 = %e;\nhe3 = %e;\n", he2, he3);
1042 START_TIMER(
"DarcyFlowMH_Steady::set_mesh_data_for_bddc");
1063 for (
unsigned int i_loc = 0; i_loc <
mh_dh.
el_ds->
lsize(); i_loc++ ) {
1067 elDimMax = std::max( elDimMax, ele_ac.dim() );
1068 elDimMin = std::min( elDimMin, ele_ac.dim() );
1070 isegn.push_back( ele_ac.ele_global_idx() );
1073 for (
unsigned int si=0; si<ele_ac.element_accessor()->n_sides(); si++) {
1075 int side_row = ele_ac.side_row(si);
1076 arma::vec3 coord = ele_ac.side(si)->centre();
1078 localDofMap.insert( std::make_pair( side_row, coord ) );
1079 inet.push_back( side_row );
1084 int el_row = ele_ac.ele_row();
1086 localDofMap.insert( std::make_pair( el_row, coord ) );
1087 inet.push_back( el_row );
1090 for (
unsigned int si=0; si<ele_ac.element_accessor()->n_sides(); si++) {
1092 int edge_row = ele_ac.edge_row(si);
1093 arma::vec3 coord = ele_ac.side(si)->centre();
1095 localDofMap.insert( std::make_pair( edge_row, coord ) );
1096 inet.push_back( edge_row );
1101 for (
unsigned int i_neigh = 0; i_neigh < ele_ac.element_accessor()->n_neighs_vb(); i_neigh++) {
1102 int edge_row =
mh_dh.
row_4_edge[ ele_ac.element_accessor()->neigh_vb[i_neigh]->edge_idx() ];
1103 arma::vec3 coord = ele_ac.element_accessor()->neigh_vb[i_neigh]->edge()->side(0)->centre();
1105 localDofMap.insert( std::make_pair( edge_row, coord ) );
1106 inet.push_back( edge_row );
1110 nnet.push_back( nne );
1115 double conduct =
data_->conductivity.value( centre , ele_ac.element_accessor() );
1116 auto aniso =
data_->anisotropy.value( centre, ele_ac.element_accessor() );
1120 for (
int i = 0; i < 3; i++) {
1121 coef = coef + aniso.at(i,i);
1124 coef = conduct*coef / 3;
1127 "Zero coefficient of hydrodynamic resistance %f . \n ", coef );
1128 element_permeability.push_back( 1. / coef );
1132 int numNodeSub = localDofMap.size();
1143 for ( ; itB != localDofMap.end(); ++itB ) {
1144 isngn[ind] = itB -> first;
1147 for (
int j = 0; j < 3; j++ ) {
1148 xyz[ j*numNodeSub + ind ] = coord[j];
1153 localDofMap.clear();
1161 Global2LocalMap_ global2LocalNodeMap;
1162 for (
unsigned ind = 0; ind < isngn.size(); ++ind ) {
1163 global2LocalNodeMap.insert( std::make_pair( static_cast<unsigned>( isngn[ind] ), ind ) );
1168 for (
unsigned int iEle = 0; iEle < isegn.size(); iEle++ ) {
1169 int nne = nnet[ iEle ];
1170 for (
int ien = 0; ien < nne; ien++ ) {
1172 int indGlob = inet[indInet];
1174 Global2LocalMap_::iterator pos = global2LocalNodeMap.find( indGlob );
1175 OLD_ASSERT( pos != global2LocalNodeMap.end(),
1176 "Cannot remap node index %d to local indices. \n ", indGlob );
1177 int indLoc =
static_cast<int> ( pos -> second );
1180 inet[ indInet++ ] = indLoc;
1184 int numNodes =
size;
1185 int numDofsInt =
size;
1187 int meshDim = elDimMax;
1189 bddc_ls -> load_mesh( spaceDim, numNodes, numDofsInt, inet, nnet, nndf, isegn, isngn, isngn, xyz, element_permeability, meshDim );
1217 if(
time_ !=
nullptr)
1237 VecCreateSeqWithArray(PETSC_COMM_SELF,1,
size,
solution,
1242 loc_idx =
new int [
size];
1245 for (
unsigned int si=0; si<ele->n_sides(); si++) {
1252 for(
unsigned int i_edg=0; i_edg <
mesh_->
n_edges(); i_edg++) {
1255 OLD_ASSERT( i==
size,
"Size of array does not match number of fills.\n");
1257 ISCreateGeneral(PETSC_COMM_SELF,
size, loc_idx, PETSC_COPY_VALUES, &(is_loc));
1261 chkerr(ISDestroy(&(is_loc)));
1313 for (
unsigned int i_loc_el = 0; i_loc_el <
mh_dh.
el_ds->
lsize(); i_loc_el++) {
1316 local_sol[ele_ac.ele_local_row()] =
data_->init_pressure.value(ele_ac.centre(),ele_ac.element_accessor());
1330 PetscScalar *local_diagonal;
1338 for (
unsigned int i_loc_el = 0; i_loc_el <
mh_dh.
el_ds->
lsize(); i_loc_el++) {
1342 double diagonal_coeff =
data_->cross_section.value(ele_ac.centre(), ele_ac.element_accessor())
1343 *
data_->storativity.value(ele_ac.centre(), ele_ac.element_accessor())
1345 local_diagonal[ele_ac.ele_local_row()]= - diagonal_coeff /
time_->
dt();
1349 ele_ac.region().bulk_idx(), {
LongIdx(ele_ac.ele_row()) }, {diagonal_coeff});
1364 if (scale_factor != 1.0) {
int LongIdx
Define type that represents indices of large arrays (elements, nodes, dofs etc.)
unsigned int size() const
get global size
void get_solution_vector(double *&vec, unsigned int &vec_size) override
void make_serial_scatter()
static const Input::Type::Record & get_input_type()
Main balance input record type.
Output class for darcy_flow_mh model.
RegionSet get_region_set(const std::string &set_name) const
virtual void initialize_specific()
void get_parallel_solution_vector(Vec &vector) override
SchurComplement SchurComplement
void assembly_mh_matrix(MultidimAssembly &assembler)
void set_symmetric(bool flag=true)
Classes with algorithms for computation of intersections of meshes.
Solver based on the original PETSc solver using MPIAIJ matrix and succesive Schur complement construc...
virtual ~DarcyMH() override
MixedMeshIntersections & mixed_intersections()
static const Input::Type::Record & get_input_type()
The specification of output stream.
Common base for intersection object.
void set_from_input(const Input::Record in_rec) override
unsigned int edge_idx() const
virtual void assembly_source_term()
Source term is implemented differently in LMH version.
friend class DarcyFlowMHOutput
#define MessageOut()
Macro defining 'message' record of log.
virtual void start_add_assembly()
virtual void output_data() override
Write computed fields.
virtual PetscErrorCode mat_zero_entries()
Wrappers for linear systems based on MPIAIJ and MATIS format.
bool is_end() const
Returns true if the actual time is greater than or equal to the end time.
void next_time()
Proceed to the next time according to current estimated time step.
static const int registrar
Registrar of class to factory.
static const Input::Type::Selection & get_mh_mortar_selection()
Selection for enum MortarMethod.
void initialize() override
static const Input::Type::Record & type_field_descriptor()
virtual void start_allocation()
void chkerr(unsigned int ierr)
Replacement of new/delete operator in the spirit of xmalloc.
virtual void finish_assembly()=0
virtual double get_solution_precision()=0
std::vector< std::vector< ILpair > > element_intersections_
SideIter side(const unsigned int loc_index)
const RegionDB & region_db() const
#define ASSERT(expr)
Allow use shorter versions of macro names if these names is not used with external library...
const TimeStep & step(int index=-1) const
static const std::string field_descriptor_record_description(const string &record_name)
#define ADD_FIELD(name,...)
Basic time management functionality for unsteady (and steady) solvers (class Equation).
unsigned int bulk_ele_idx() const
Returns index of bulk element.
bool solution_changed_for_scatter
void solve_nonlinear()
Solve method common to zero_time_step and update solution.
static const Input::Type::Record & get_input_type()
std::shared_ptr< EqData > data_
Basic time management class.
virtual void set_tolerances(double r_tol, double a_tol, unsigned int max_it)=0
virtual ElementAccessor< 3 > element_accessor(unsigned int idx) const
Create and return ElementAccessor to element of given idx.
void view(const char *name="") const
std::shared_ptr< LocalToGlobalMap > global_row_4_sub_row
Necessary only for BDDC solver.
unsigned int nonlinear_iteration_
void set_mesh_data_for_bddc(LinSys_BDDC *bddc_ls)
Assembly explicit Schur complement for the given linear system. Provides method for resolution of the...
void update_solution() override
void set_from_input(const Input::Record in_rec) override
virtual void postprocess()
static const Input::Type::Instance & get_input_type_specific()
double * get_solution_array()
std::shared_ptr< Balance > balance_
FLOW123D_FORCE_LINK_IN_CHILD(darcy_flow_mh)
const Vec & get_solution()
FMT_FUNC int fprintf(std::ostream &os, CStringRef format, ArgList args)
unsigned int n_sides() const
bool is_changed_dt() const
#define START_TIMER(tag)
Starts a timer with specified tag.
static const Input::Type::Instance & get_input_type()
unsigned int side_dof(const SideIter side) const
static Input::Type::Abstract & get_input_type()
virtual Range< ElementAccessor< 3 > > elements_range() const
Returns range of bulk elements.
bool use_steady_assembly_
unsigned int n_sides() const
void allocate_mh_matrix()
static const Input::Type::Selection & get_bc_type_selection()
Return a Selection corresponding to enum BC_Type.
void set_solution(double *sol_array)
virtual void assembly_linear_system()
virtual const Vec * get_rhs()
virtual PetscErrorCode rhs_zero_entries()
Dedicated class for storing path to input and output files.
DarcyMH(Mesh &mesh, const Input::Record in_rec)
CREATE AND FILL GLOBAL MH MATRIX OF THE WATER MODEL.
Support classes for parallel programing.
#define MPI_Allreduce(sendbuf, recvbuf, count, datatype, op, comm)
int set_upper_constraint(double upper, std::string message)
Sets upper constraint for the next time step estimating.
void create_linear_system(Input::AbstractRecord rec)
Initialize global_row_4_sub_row.
virtual unsigned int n_elements(bool boundary=false) const
Returns count of boundary or bulk elements.
MortarMethod
Type of experimental Mortar-like method for non-compatible 1d-2d interaction.
Input::Record input_record_
std::shared_ptr< Distribution > rows_ds
LocalElementAccessorBase< 3 > accessor(uint local_ele_idx)
static const Input::Type::Record & get_input_type()
#define WarningOut()
Macro defining 'warning' record of log.
virtual SolveInfo solve()=0
#define END_TIMER(tag)
Ends a timer with specified tag.
#define OLD_ASSERT_EQUAL(a, b)
EqData()
Creation of all fields.
void set_matrix_changed()
static const Input::Type::Record & get_input_type()
void print_matlab_matrix(string matlab_file)
Print darcy flow matrix in matlab format into a file.
mixed-hybrid model of linear Darcy flow, possibly unsteady.
unsigned int index() const
void zero_time_step() override
void set_positive_definite(bool flag=true)
virtual void read_initial_condition()
void prepare_parallel_bddc()
static Input::Type::Abstract & get_input_type()
virtual void mat_set_values(int nrow, int *rows, int ncol, int *cols, double *vals)=0
DarcyFlowMHOutput * output_object
unsigned int n_edges() const
virtual void prepare_new_time_step()
postprocess velocity field (add sources)
Class for representation SI units of Fields.
virtual const Mat * get_matrix()
virtual double solution_precision() const
virtual void setup_time_term()
static UnitSI & dimensionless()
Returns dimensionless unit.
#define DebugOut()
Macro defining 'debug' record of log.
virtual double compute_residual()=0
#define THROW(whole_exception_expr)
Wrapper for throw. Saves the throwing point.
Implementation of range helper class.
void rhs_set_value(int row, double val)
static const Input::Type::Record & get_input_type()
Solver based on Multilevel BDDC - using corresponding class of OpenFTL package.
virtual bool zero_time_term(bool time_global=false)
void output()
Calculate values for output.
unsigned int lsize(int proc) const
get local size