Flow123d  JS_before_hm-2088-g1c00063e5
darcy_flow_mh.cc
Go to the documentation of this file.
1 /*!
2  *
3  * Copyright (C) 2015 Technical University of Liberec. All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify it under
6  * the terms of the GNU General Public License version 3 as published by the
7  * Free Software Foundation. (http://www.gnu.org/licenses/gpl-3.0.en.html)
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
11  * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
12  *
13  *
14  * @file darcy_flow_mh.cc
15  * @ingroup flow
16  * @brief Setup and solve linear system of mixed-hybrid discretization of the linear
17  * porous media flow with possible preferential flow in fractures and chanels.
18  */
19 
20 //#include <limits>
21 #include <vector>
22 //#include <iostream>
23 //#include <iterator>
24 //#include <algorithm>
25 #include <armadillo>
26 
27 #include "petscmat.h"
28 #include "petscviewer.h"
29 #include "petscerror.h"
30 #include "mpi.h"
31 
32 #include "system/system.hh"
33 #include "system/sys_profiler.hh"
34 #include "system/index_types.hh"
35 #include "input/factory.hh"
36 
37 #include "mesh/mesh.h"
38 #include "mesh/bc_mesh.hh"
39 #include "mesh/partitioning.hh"
40 #include "mesh/accessors.hh"
41 #include "mesh/range_wrapper.hh"
42 #include "la/distribution.hh"
43 #include "la/linsys.hh"
44 #include "la/linsys_PETSC.hh"
45 #include "la/linsys_BDDC.hh"
46 #include "la/schur.hh"
47 //#include "la/sparse_graph.hh"
49 #include "la/vector_mpi.hh"
50 
51 #include "flow/assembly_mh_old.hh"
52 #include "flow/darcy_flow_mh.hh"
54 #include "flow/assembly_models.hh"
55 
56 #include "tools/time_governor.hh"
58 #include "fields/field.hh"
59 #include "fields/field_values.hh"
61 #include "fields/field_fe.hh"
62 #include "fields/field_model.hh"
63 #include "fields/field_constant.hh"
64 
65 #include "coupling/balance.hh"
66 
69 
70 #include "fem/fe_p.hh"
71 
72 
73 FLOW123D_FORCE_LINK_IN_CHILD(darcy_flow_mh)
74 
75 
76 
77 
78 
79 
80 namespace it = Input::Type;
81 
83  return it::Selection("MH_MortarMethod")
84  .add_value(NoMortar, "None", "No Mortar method is applied.")
85  .add_value(MortarP0, "P0", "Mortar space: P0 on elements of lower dimension.")
86  .add_value(MortarP1, "P1", "Mortar space: P1 on intersections, using non-conforming pressures.")
87  .close();
88 }
89 
90 
92  return it::Selection("Flow_Darcy_BC_Type")
93  .add_value(none, "none",
94  "Homogeneous Neumann boundary condition\n(zero normal flux over the boundary).")
95  .add_value(dirichlet, "dirichlet",
96  "Dirichlet boundary condition. "
97  "Specify the pressure head through the ``bc_pressure`` field "
98  "or the piezometric head through the ``bc_piezo_head`` field.")
99  .add_value(total_flux, "total_flux", "Flux boundary condition (combines Neumann and Robin type). "
100  "Water inflow equal to (($ \\delta_d(q_d^N + \\sigma_d (h_d^R - h_d) )$)). "
101  "Specify the water inflow by the ``bc_flux`` field, the transition coefficient by ``bc_robin_sigma`` "
102  "and the reference pressure head or piezometric head through ``bc_pressure`` or ``bc_piezo_head`` respectively.")
103  .add_value(seepage, "seepage",
104  "Seepage face boundary condition. Pressure and inflow bounded from above. Boundary with potential seepage flow "
105  "is described by the pair of inequalities: "
106  "(($h_d \\le h_d^D$)) and (($ -\\boldsymbol q_d\\cdot\\boldsymbol n \\le \\delta q_d^N$)), where the equality holds in at least one of them. "
107  "Caution: setting (($q_d^N$)) strictly negative "
108  "may lead to an ill posed problem since a positive outflow is enforced. "
109  "Parameters (($h_d^D$)) and (($q_d^N$)) are given by the fields ``bc_switch_pressure`` (or ``bc_switch_piezo_head``) and ``bc_flux`` respectively."
110  )
111  .add_value(river, "river",
112  "River boundary condition. For the water level above the bedrock, (($H_d > H_d^S$)), the Robin boundary condition is used with the inflow given by: "
113  "(( $ \\delta_d(q_d^N + \\sigma_d(H_d^D - H_d) )$)). For the water level under the bedrock, constant infiltration is used: "
114  "(( $ \\delta_d(q_d^N + \\sigma_d(H_d^D - H_d^S) )$)). Parameters: ``bc_pressure``, ``bc_switch_pressure``, "
115  " ``bc_sigma``, ``bc_flux``."
116  )
117  .close();
118 }
119 
121 
122  const it::Record &field_descriptor =
123  it::Record("Flow_Darcy_MH_Data",FieldCommon::field_descriptor_record_description("Flow_Darcy_MH_Data") )
124  .copy_keys( DarcyMH::EqFields().make_field_descriptor_type("Flow_Darcy_MH_Data_aux") )
125  .declare_key("bc_piezo_head", FieldAlgorithmBase< 3, FieldValue<3>::Scalar >::get_input_type_instance(),
126  "Boundary piezometric head for BC types: dirichlet, robin, and river." )
127  .declare_key("bc_switch_piezo_head", FieldAlgorithmBase< 3, FieldValue<3>::Scalar >::get_input_type_instance(),
128  "Boundary switch piezometric head for BC types: seepage, river." )
129  .declare_key("init_piezo_head", FieldAlgorithmBase< 3, FieldValue<3>::Scalar >::get_input_type_instance(),
130  "Initial condition for the pressure given as the piezometric head." )
131  .close();
132  return field_descriptor;
133 }
134 
136 
137  it::Record ns_rec = Input::Type::Record("NonlinearSolver", "Non-linear solver settings.")
138  .declare_key("linear_solver", LinSys::get_input_type(), it::Default("{}"),
139  "Linear solver for MH problem.")
140  .declare_key("tolerance", it::Double(0.0), it::Default("1E-6"),
141  "Residual tolerance.")
142  .declare_key("min_it", it::Integer(0), it::Default("1"),
143  "Minimum number of iterations (linear solutions) to use.\nThis is usefull if the convergence criteria "
144  "does not characterize your goal well enough so it converges prematurely, possibly even without a single linear solution."
145  "If greater then 'max_it' the value is set to 'max_it'.")
146  .declare_key("max_it", it::Integer(0), it::Default("100"),
147  "Maximum number of iterations (linear solutions) of the non-linear solver.")
148  .declare_key("converge_on_stagnation", it::Bool(), it::Default("false"),
149  "If a stagnation of the nonlinear solver is detected the solver stops. "
150  "A divergence is reported by default, forcing the end of the simulation. By setting this flag to 'true', the solver "
151  "ends with convergence success on stagnation, but it reports warning about it.")
152  .close();
153 
155 
156  return it::Record("Flow_Darcy_MH", "Mixed-Hybrid solver for saturated Darcy flow.")
159  .declare_key("gravity", it::Array(it::Double(), 3,3), it::Default("[ 0, 0, -1]"),
160  "Vector of the gravity force. Dimensionless.")
162  "Input data for Darcy flow model.")
163  .declare_key("nonlinear_solver", ns_rec, it::Default("{}"),
164  "Non-linear solver for MH problem.")
165  .declare_key("output_stream", OutputTime::get_input_type(), it::Default("{}"),
166  "Output stream settings.\n Specify file format, precision etc.")
167 
168  .declare_key("output", DarcyFlowMHOutput::get_input_type(eq_fields, "Flow_Darcy_MH"),
169  IT::Default("{ \"fields\": [ \"pressure_p0\", \"velocity_p0\" ] }"),
170  "Specification of output fields and output times.")
172  "Output settings specific to Darcy flow model.\n"
173  "Includes raw output and some experimental functionality.")
174  .declare_key("balance", Balance::get_input_type(), it::Default("{}"),
175  "Settings for computing mass balance.")
176  .declare_key("n_schurs", it::Integer(0,2), it::Default("2"),
177  "Number of Schur complements to perform when solving MH system.")
178  .declare_key("mortar_method", get_mh_mortar_selection(), it::Default("\"None\""),
179  "Method for coupling Darcy flow between dimensions on incompatible meshes. [Experimental]" )
180  .close();
181 }
182 
183 
184 const int DarcyMH::registrar =
185  Input::register_class< DarcyMH, Mesh &, const Input::Record >("Flow_Darcy_MH") +
187 
188 
189 
191 {
192  *this += field_ele_pressure.name("pressure_p0")
193  .units(UnitSI().m())
195  .description("Pressure solution - P0 interpolation.");
196 
197  *this += field_edge_pressure.name("pressure_edge")
198  .units(UnitSI().m())
199  .flags(FieldFlag::input_copy)
200  .description("Pressure solution - Crouzeix-Raviart interpolation.");
201 
202  *this += field_ele_piezo_head.name("piezo_head_p0")
203  .units(UnitSI().m())
205  .description("Piezo head solution - P0 interpolation.");
206 
207  *this += field_ele_velocity.name("velocity_p0")
208  .units(UnitSI().m().s(-1))
210  .description("Velocity solution - P0 interpolation.");
211 
212  *this += flux.name("flux")
213  .units(UnitSI().m().s(-1))
215  .description("Darcy flow flux.");
216 
217  *this += anisotropy.name("anisotropy")
218  .description("Anisotropy of the conductivity tensor.")
219  .input_default("1.0")
220  .units( UnitSI::dimensionless() );
221 
222  *this += cross_section.name("cross_section")
223  .description("Complement dimension parameter (cross section for 1D, thickness for 2D).")
224  .input_default("1.0")
225  .units( UnitSI().m(3).md() );
226 
227  *this += conductivity.name("conductivity")
228  .description("Isotropic conductivity scalar.")
229  .input_default("1.0")
230  .units( UnitSI().m().s(-1) )
231  .set_limits(0.0);
232 
233  *this += sigma.name("sigma")
234  .description("Transition coefficient between dimensions.")
235  .input_default("1.0")
236  .units( UnitSI::dimensionless() );
237 
238  *this += water_source_density.name("water_source_density")
239  .description("Water source density.")
240  .input_default("0.0")
241  .units( UnitSI().s(-1) );
242 
243  *this += bc_type.name("bc_type")
244  .description("Boundary condition type.")
245  .input_selection( get_bc_type_selection() )
246  .input_default("\"none\"")
247  .units( UnitSI::dimensionless() );
248 
249  *this += bc_pressure
250  .disable_where(bc_type, {none, seepage} )
251  .name("bc_pressure")
252  .description("Prescribed pressure value on the boundary. Used for all values of ``bc_type`` except ``none`` and ``seepage``. "
253  "See documentation of ``bc_type`` for exact meaning of ``bc_pressure`` in individual boundary condition types.")
254  .input_default("0.0")
255  .units( UnitSI().m() );
256 
257  *this += bc_flux
258  .disable_where(bc_type, {none, dirichlet} )
259  .name("bc_flux")
260  .description("Incoming water boundary flux. Used for bc_types : ``total_flux``, ``seepage``, ``river``.")
261  .input_default("0.0")
262  .units( UnitSI().m().s(-1) );
263 
264  *this += bc_robin_sigma
265  .disable_where(bc_type, {none, dirichlet, seepage} )
266  .name("bc_robin_sigma")
267  .description("Conductivity coefficient in the ``total_flux`` or the ``river`` boundary condition type.")
268  .input_default("0.0")
269  .units( UnitSI().s(-1) );
270 
271  *this += bc_switch_pressure
272  .disable_where(bc_type, {none, dirichlet, total_flux} )
273  .name("bc_switch_pressure")
274  .description("Critical switch pressure for ``seepage`` and ``river`` boundary conditions.")
275  .input_default("0.0")
276  .units( UnitSI().m() );
277 
278 
279  //these are for unsteady
280  *this += init_pressure.name("init_pressure")
281  .description("Initial condition for pressure in time dependent problems.")
282  .input_default("0.0")
283  .units( UnitSI().m() );
284 
285  *this += storativity.name("storativity")
286  .description("Storativity (in time dependent problems).")
287  .input_default("0.0")
288  .units( UnitSI().m(-1) );
289 
290  *this += extra_storativity.name("extra_storativity")
291  .description("Storativity added from upstream equation.")
292  .units( UnitSI().m(-1) )
293  .input_default("0.0")
294  .flags( input_copy );
295 
296  *this += extra_source.name("extra_water_source_density")
297  .description("Water source density added from upstream equation.")
298  .input_default("0.0")
299  .units( UnitSI().s(-1) )
300  .flags( input_copy );
301 
302  *this += gravity_field.name("gravity")
303  .description("Gravity vector.")
304  .input_default("0.0")
305  .units( UnitSI::dimensionless() );
306 
307  *this += bc_gravity.name("bc_gravity")
308  .description("Boundary gravity vector.")
309  .input_default("0.0")
310  .units( UnitSI::dimensionless() );
311 
312  *this += init_piezo_head.name("init_piezo_head")
313  .units(UnitSI().m())
314  .input_default("0.0")
315  .description("Init piezo head.");
316 
317  *this += bc_piezo_head.name("bc_piezo_head")
318  .units(UnitSI().m())
319  .input_default("0.0")
320  .description("Boundary piezo head.");
321 
322  *this += bc_switch_piezo_head.name("bc_switch_piezo_head")
323  .units(UnitSI().m())
324  .input_default("0.0")
325  .description("Boundary switch piezo head.");
326 
327  //time_term_fields = this->subset({"storativity"});
328  //main_matrix_fields = this->subset({"anisotropy", "conductivity", "cross_section", "sigma", "bc_type", "bc_robin_sigma"});
329  //rhs_fields = this->subset({"water_source_density", "bc_pressure", "bc_flux"});
330 }
331 
333 {
334  mortar_method_=NoMortar;
335 }
336 
337 
338 
339 
340 //=============================================================================
341 // CREATE AND FILL GLOBAL MH MATRIX OF THE WATER MODEL
342 // - do it in parallel:
343 // - initial distribution of elements, edges
344 //
345 /*! @brief CREATE AND FILL GLOBAL MH MATRIX OF THE WATER MODEL
346  *
347  * Parameters {Solver,NSchurs} number of performed Schur
348  * complements (0,1,2) for water flow MH-system
349  *
350  */
351 //=============================================================================
352 DarcyMH::DarcyMH(Mesh &mesh_in, const Input::Record in_rec, TimeGovernor *tm)
353 : DarcyFlowInterface(mesh_in, in_rec),
354  output_object(nullptr),
355  data_changed_(false),
356  schur0(nullptr),
357  steady_diagonal(nullptr),
358  steady_rhs(nullptr),
359  new_diagonal(nullptr),
360  previous_solution(nullptr)
361 {
362 
363  START_TIMER("Darcy constructor");
364  {
365  auto time_rec = in_rec.val<Input::Record>("time");
366  if (tm == nullptr)
367  {
368  time_ = new TimeGovernor(time_rec);
369  }
370  else
371  {
372  TimeGovernor tm_from_rec(time_rec);
373  if (!tm_from_rec.is_default()) // is_default() == false when time record is present in input file
374  {
375  MessageOut() << "Duplicate key 'time', time in flow equation is already initialized from parent class!";
376  ASSERT(false);
377  }
378  time_ = tm;
379  }
380  }
381 
382  eq_fields_ = make_shared<EqFields>();
383  eq_data_ = make_shared<EqData>();
384  this->eq_fieldset_ = eq_fields_.get();
385 
386  eq_data_->is_linear=true;
387 
388  size = mesh_->n_elements() + mesh_->n_sides() + mesh_->n_edges();
389  n_schur_compls = in_rec.val<int>("n_schurs");
390  eq_data_->mortar_method_= in_rec.val<MortarMethod>("mortar_method");
391  if (eq_data_->mortar_method_ != NoMortar) {
393  }
394 
395 
396 
397  //side_ds->view( std::cout );
398  //el_ds->view( std::cout );
399  //edge_ds->view( std::cout );
400  //rows_ds->view( std::cout );
401 
402 }
403 
404 
405 
407 //connecting data fields with mesh
408 {
409 
410  START_TIMER("data init");
411  eq_data_->mesh = mesh_;
412  eq_fields_->set_mesh(*mesh_);
413 
414  auto gravity_array = input_record_.val<Input::Array>("gravity");
415  std::vector<double> gvec;
416  gravity_array.copy_to(gvec);
417  gvec.push_back(0.0); // zero pressure shift
418  eq_data_->gravity_ = arma::vec(gvec);
419  eq_data_->gravity_vec_ = eq_data_->gravity_.subvec(0,2);
420 
421  FieldValue<3>::VectorFixed gvalue(eq_data_->gravity_vec_);
422  auto field_algo=std::make_shared<FieldConstant<3, FieldValue<3>::VectorFixed>>();
423  field_algo->set_value(gvalue);
424  eq_fields_->gravity_field.set(field_algo, 0.0);
425  eq_fields_->bc_gravity.set(field_algo, 0.0);
426 
427  eq_fields_->bc_pressure.add_factory(
428  std::make_shared<AddPotentialFactory<3, FieldValue<3>::Scalar> >
429  (eq_fields_->bc_gravity, eq_fields_->X(), eq_fields_->bc_piezo_head) );
430  eq_fields_->bc_switch_pressure.add_factory(
431  std::make_shared<AddPotentialFactory<3, FieldValue<3>::Scalar> >
432  (eq_fields_->bc_gravity, eq_fields_->X(), eq_fields_->bc_switch_piezo_head) );
433  eq_fields_->init_pressure.add_factory(
434  std::make_shared<AddPotentialFactory<3, FieldValue<3>::Scalar> >
435  (eq_fields_->gravity_field, eq_fields_->X(), eq_fields_->init_piezo_head) );
436 
437 
438  eq_fields_->set_input_list( this->input_record_.val<Input::Array>("input_fields"), *time_ );
439  // Check that the time step was set for the transient simulation.
440  if (! zero_time_term(true) && time_->is_default() ) {
441  //THROW(ExcAssertMsg());
442  //THROW(ExcMissingTimeGovernor() << input_record_.ei_address());
443  MessageOut() << "Missing the key 'time', obligatory for the transient problems." << endl;
444  ASSERT(false);
445  }
446 
447  eq_fields_->mark_input_times(*time_);
448 }
449 
450 
451 
453 
454  { // init DOF handler for pressure fields
455 // std::shared_ptr< FiniteElement<0> > fe0_rt = std::make_shared<FE_RT0_disc<0>>();
456  std::shared_ptr< FiniteElement<1> > fe1_rt = std::make_shared<FE_RT0_disc<1>>();
457  std::shared_ptr< FiniteElement<2> > fe2_rt = std::make_shared<FE_RT0_disc<2>>();
458  std::shared_ptr< FiniteElement<3> > fe3_rt = std::make_shared<FE_RT0_disc<3>>();
459  std::shared_ptr< FiniteElement<0> > fe0_disc = std::make_shared<FE_P_disc<0>>(0);
460  std::shared_ptr< FiniteElement<1> > fe1_disc = std::make_shared<FE_P_disc<1>>(0);
461  std::shared_ptr< FiniteElement<2> > fe2_disc = std::make_shared<FE_P_disc<2>>(0);
462  std::shared_ptr< FiniteElement<3> > fe3_disc = std::make_shared<FE_P_disc<3>>(0);
463  std::shared_ptr< FiniteElement<0> > fe0_cr = std::make_shared<FE_CR<0>>();
464  std::shared_ptr< FiniteElement<1> > fe1_cr = std::make_shared<FE_CR<1>>();
465  std::shared_ptr< FiniteElement<2> > fe2_cr = std::make_shared<FE_CR<2>>();
466  std::shared_ptr< FiniteElement<3> > fe3_cr = std::make_shared<FE_CR<3>>();
467 // static FiniteElement<0> fe0_sys = FE_P_disc<0>(0); //TODO fix and use solution with FESystem<0>( {fe0_rt, fe0_disc, fe0_cr} )
468  FESystem<0> fe0_sys( {fe0_disc, fe0_disc, fe0_cr} );
469  FESystem<1> fe1_sys( {fe1_rt, fe1_disc, fe1_cr} );
470  FESystem<2> fe2_sys( {fe2_rt, fe2_disc, fe2_cr} );
471  FESystem<3> fe3_sys( {fe3_rt, fe3_disc, fe3_cr} );
472  MixedPtr<FESystem> fe_sys( std::make_shared<FESystem<0>>(fe0_sys), std::make_shared<FESystem<1>>(fe1_sys),
473  std::make_shared<FESystem<2>>(fe2_sys), std::make_shared<FESystem<3>>(fe3_sys) );
474  std::shared_ptr<DiscreteSpace> ds = std::make_shared<EqualOrderDiscreteSpace>( mesh_, fe_sys);
475  eq_data_->dh_ = std::make_shared<DOFHandlerMultiDim>(*mesh_);
476  eq_data_->dh_->distribute_dofs(ds);
477  }
478 
479  init_eq_data();
480  this->eq_data_->multidim_assembler = AssemblyFlowBase::create< AssemblyMH >(eq_fields_, eq_data_);
482 
483  eq_fields_->add_coords_field();
484 
485  { // construct pressure, velocity and piezo head fields
486  uint rt_component = 0;
487  eq_data_->full_solution = eq_data_->dh_->create_vector();
488  auto ele_flux_ptr = create_field_fe<3, FieldValue<3>::VectorFixed>(eq_data_->dh_, &eq_data_->full_solution, rt_component);
489  eq_fields_->flux.set(ele_flux_ptr, 0.0);
490 
491  eq_fields_->field_ele_velocity.set(Model<3, FieldValue<3>::VectorFixed>::create(fn_mh_velocity(), eq_fields_->flux, eq_fields_->cross_section), 0.0);
492 
493  uint p_ele_component = 1;
494  auto ele_pressure_ptr = create_field_fe<3, FieldValue<3>::Scalar>(eq_data_->dh_, &eq_data_->full_solution, p_ele_component);
495  eq_fields_->field_ele_pressure.set(ele_pressure_ptr, 0.0);
496 
497  uint p_edge_component = 2;
498  auto edge_pressure_ptr = create_field_fe<3, FieldValue<3>::Scalar>(eq_data_->dh_, &eq_data_->full_solution, p_edge_component);
499  eq_fields_->field_edge_pressure.set(edge_pressure_ptr, 0.0);
500 
501  eq_fields_->field_ele_piezo_head.set(
502  Model<3, FieldValue<3>::Scalar>::create(fn_mh_piezohead(), eq_fields_->gravity_field, eq_fields_->X(), eq_fields_->field_ele_pressure),
503  0.0
504  );
505  }
506 
507  { // init DOF handlers represents edge DOFs
508  uint p_edge_component = 2;
509  eq_data_->dh_cr_ = std::make_shared<SubDOFHandlerMultiDim>(eq_data_->dh_,p_edge_component);
510  }
511 
512  { // init DOF handlers represents side DOFs
513  MixedPtr<FE_CR_disc> fe_cr_disc;
514  std::shared_ptr<DiscreteSpace> ds_cr_disc = std::make_shared<EqualOrderDiscreteSpace>( mesh_, fe_cr_disc);
515  eq_data_->dh_cr_disc_ = std::make_shared<DOFHandlerMultiDim>(*mesh_);
516  eq_data_->dh_cr_disc_->distribute_dofs(ds_cr_disc);
517  }
518 
519  // Initialize bc_switch_dirichlet to size of global boundary.
520  eq_data_->bc_switch_dirichlet.resize(mesh_->n_elements()+mesh_->bc_mesh()->n_elements(), 1);
521 
522 
525  .val<Input::Record>("nonlinear_solver")
526  .val<Input::AbstractRecord>("linear_solver");
527 
528  // auxiliary set_time call since allocation assembly evaluates fields as well
531 
532 
533 
534  // allocate time term vectors
535  VecDuplicate(schur0->get_solution(), &previous_solution);
536  VecCreateMPI(PETSC_COMM_WORLD, eq_data_->dh_->distr()->lsize(),PETSC_DETERMINE,&(steady_diagonal));
537  VecDuplicate(steady_diagonal,& new_diagonal);
538  VecZeroEntries(new_diagonal);
539  VecDuplicate(steady_diagonal, &steady_rhs);
540 
541 
542  // initialization of balance object
543  balance_ = std::make_shared<Balance>("water", mesh_);
544  balance_->init_from_input(input_record_.val<Input::Record>("balance"), time());
545  eq_data_->water_balance_idx = balance_->add_quantity("water_volume");
546  balance_->allocate(eq_data_->dh_->distr()->lsize(), 1);
547  balance_->units(UnitSI().m(3));
548 
549 
550  eq_data_->balance = balance_;
551  eq_data_->lin_sys = schur0;
552 
553 
555 }
556 
558 {}
559 
561 {
562 
563  /* TODO:
564  * - Allow solution reconstruction (pressure and velocity) from initial condition on user request.
565  * - Steady solution as an intitial condition may be forced by setting inti_time =-1, and set data for the steady solver in that time.
566  * Solver should be able to switch from and to steady case depending on the zero time term.
567  */
568 
570 
571  // zero_time_term means steady case
572  bool zero_time_term_from_right = zero_time_term();
573 
574 
575  if (zero_time_term_from_right) {
576  // steady case
577  VecZeroEntries(schur0->get_solution());
578  //read_initial_condition(); // Possible solution guess for steady case.
579  use_steady_assembly_ = true;
580  solve_nonlinear(); // with right limit data
581  } else {
582  VecZeroEntries(schur0->get_solution());
583  VecZeroEntries(previous_solution);
585  assembly_linear_system(); // in particular due to balance
586 // print_matlab_matrix("matrix_zero");
587  // TODO: reconstruction of solution in zero time.
588  }
589  //solution_output(T,right_limit); // data for time T in any case
590  output_data();
591 }
592 
593 //=============================================================================
594 // COMPOSE and SOLVE WATER MH System possibly through Schur complements
595 //=============================================================================
597 {
598  START_TIMER("Solving MH system");
599 
600  time_->next_time();
601 
602  time_->view("DARCY"); //time governor information output
603 
604  solve_time_step();
605 
606  eq_data_->full_solution.local_to_ghost_begin();
607  eq_data_->full_solution.local_to_ghost_end();
608 }
609 
610 
611 void DarcyMH::solve_time_step(bool output)
612 {
614 
615  bool zero_time_term_from_left=zero_time_term();
616 
617  bool jump_time = eq_fields_->storativity.is_jump_time();
618  if (! zero_time_term_from_left) {
619  // time term not treated as zero
620  // Unsteady solution up to the T.
621 
622  // this flag is necesssary for switching BC to avoid setting zero neumann on the whole boundary in the steady case
623  use_steady_assembly_ = false;
624 
626  solve_nonlinear(); // with left limit data
627  if (jump_time) {
628  WarningOut() << "Output of solution discontinuous in time not supported yet.\n";
629  //solution_output(T, left_limit); // output use time T- delta*dt
630  //output_data();
631  }
632  }
633 
634  if (time_->is_end()) {
635  // output for unsteady case, end_time should not be the jump time
636  // but rether check that
637  if (! zero_time_term_from_left && ! jump_time && output) output_data();
638  return;
639  }
640 
642  bool zero_time_term_from_right=zero_time_term();
643  if (zero_time_term_from_right) {
644  // this flag is necesssary for switching BC to avoid setting zero neumann on the whole boundary in the steady case
645  use_steady_assembly_ = true;
646  solve_nonlinear(); // with right limit data
647 
648  } else if (! zero_time_term_from_left && jump_time) {
649  WarningOut() << "Discontinuous time term not supported yet.\n";
650  //solution_transfer(); // internally call set_time(T, left) and set_time(T,right) again
651  //solve_nonlinear(); // with right limit data
652  }
653 
654  //solution_output(T,right_limit); // data for time T in any case
655  if (output) output_data();
656 }
657 
658 
659 bool DarcyMH::zero_time_term(bool time_global) {
660  if (time_global) {
661  return (eq_fields_->storativity.input_list_size() == 0);
662  } else {
663  return eq_fields_->storativity.field_result(mesh_->region_db().get_region_set("BULK")) == result_zeros;
664  }
665 }
666 
667 
669 {
670 
672  double residual_norm = schur0->compute_residual();
674  MessageOut().fmt("[nonlinear solver] norm of initial residual: {}\n", residual_norm);
675 
676  // Reduce is_linear flag.
677  int is_linear_common;
678  MPI_Allreduce(&(eq_data_->is_linear), &is_linear_common,1, MPI_INT ,MPI_MIN,PETSC_COMM_WORLD);
679 
680  Input::Record nl_solver_rec = input_record_.val<Input::Record>("nonlinear_solver");
681  this->tolerance_ = nl_solver_rec.val<double>("tolerance");
682  this->max_n_it_ = nl_solver_rec.val<unsigned int>("max_it");
683  this->min_n_it_ = nl_solver_rec.val<unsigned int>("min_it");
684  if (this->min_n_it_ > this->max_n_it_) this->min_n_it_ = this->max_n_it_;
685 
686  if (! is_linear_common) {
687  // set tolerances of the linear solver unless they are set by user.
688  schur0->set_tolerances(0.1*this->tolerance_, 0.01*this->tolerance_, 100);
689  }
690  vector<double> convergence_history;
691 
692  Vec save_solution;
693  VecDuplicate(schur0->get_solution(), &save_solution);
694  while (nonlinear_iteration_ < this->min_n_it_ ||
695  (residual_norm > this->tolerance_ && nonlinear_iteration_ < this->max_n_it_ )) {
696  OLD_ASSERT_EQUAL( convergence_history.size(), nonlinear_iteration_ );
697  convergence_history.push_back(residual_norm);
698 
699  // stagnation test
700  if (convergence_history.size() >= 5 &&
701  convergence_history[ convergence_history.size() - 1]/convergence_history[ convergence_history.size() - 2] > 0.9 &&
702  convergence_history[ convergence_history.size() - 1]/convergence_history[ convergence_history.size() - 5] > 0.8) {
703  // stagnation
704  if (input_record_.val<Input::Record>("nonlinear_solver").val<bool>("converge_on_stagnation")) {
705  WarningOut().fmt("Accept solution on stagnation. Its: {} Residual: {}\n", nonlinear_iteration_, residual_norm);
706  break;
707  } else {
708  THROW(ExcSolverDiverge() << EI_Reason("Stagnation."));
709  }
710  }
711 
712  if (! is_linear_common)
713  VecCopy( schur0->get_solution(), save_solution);
716 
717  // hack to make BDDC work with empty compute_residual
718  if (is_linear_common){
719  // we want to print this info in linear (and steady) case
720  residual_norm = schur0->compute_residual();
721  MessageOut().fmt("[nonlinear solver] lin. it: {}, reason: {}, residual: {}\n",
722  si.n_iterations, si.converged_reason, residual_norm);
723  break;
724  }
725  data_changed_=true; // force reassembly for non-linear case
726 
727  double alpha = 1; // how much of new solution
728  VecAXPBY(schur0->get_solution(), (1-alpha), alpha, save_solution);
729 
730  //LogOut().fmt("Linear solver ended with reason: {} \n", si.converged_reason );
731  //OLD_ASSERT( si.converged_reason >= 0, "Linear solver failed to converge. Convergence reason %d \n", si.converged_reason );
733 
734  residual_norm = schur0->compute_residual();
735  MessageOut().fmt("[nonlinear solver] it: {} lin. it: {}, reason: {}, residual: {}\n",
736  nonlinear_iteration_, si.n_iterations, si.converged_reason, residual_norm);
737  }
738  chkerr(VecDestroy(&save_solution));
739  this -> postprocess();
740 
741  // adapt timestep
742  if (! this->zero_time_term()) {
743  double mult = 1.0;
744  if (nonlinear_iteration_ < 3) mult = 1.6;
745  if (nonlinear_iteration_ > 7) mult = 0.7;
746  time_->set_upper_constraint(time_->dt() * mult, "Darcy adaptivity.");
747  // int result = time_->set_upper_constraint(time_->dt() * mult, "Darcy adaptivity.");
748  //DebugOut().fmt("time adaptivity, res: {} it: {} m: {} dt: {} edt: {}\n", result, nonlinear_iteration_, mult, time_->dt(), time_->estimate_dt());
749  }
750 }
751 
753 {
755 }
756 
758 {
759  START_TIMER("postprocess");
760 
761  //fix velocity when mortar method is used
762  if(eq_data_->mortar_method_ != MortarMethod::NoMortar){
763  auto multidim_assembler = AssemblyFlowBase::create< AssemblyMH >(eq_fields_, eq_data_);
764  for ( DHCellAccessor dh_cell : eq_data_->dh_->own_range() ) {
765  unsigned int dim = dh_cell.dim();
766  multidim_assembler[dim-1]->fix_velocity(dh_cell);
767  }
768  }
769  //ElementAccessor<3> ele;
770 
771  // modify side fluxes in parallel
772  // for every local edge take time term on digonal and add it to the corresponding flux
773  /*
774  for (unsigned int i_loc = 0; i_loc < el_ds->lsize(); i_loc++) {
775  ele = mesh_->element_accessor(el_4_loc[i_loc]);
776  for (unsigned int i=0; i<ele->n_sides(); i++) {
777  side_rows[i] = side_row_4_id[ mh_dh.side_dof( ele_ac.side(i) ) ];
778  values[i] = -1.0 * ele_ac.measure() *
779  data.cross_section.value(ele_ac.centre(), ele_ac.element_accessor()) *
780  data.water_source_density.value(ele_ac.centre(), ele_ac.element_accessor()) /
781  ele_ac.n_sides();
782  }
783  VecSetValues(schur0->get_solution(), ele_ac.n_sides(), side_rows, values, ADD_VALUES);
784  }
785  VecAssemblyBegin(schur0->get_solution());
786  VecAssemblyEnd(schur0->get_solution());
787  */
788 }
789 
790 
792  START_TIMER("Darcy output data");
793 
794  //print_matlab_matrix("matrix_" + std::to_string(time_->step().index()));
795 
796  //time_->view("DARCY"); //time governor information output
797  this->output_object->output();
798 
799 
800  START_TIMER("Darcy balance output");
801  balance_->calculate_cumulative(eq_data_->water_balance_idx, schur0->get_solution());
802  balance_->calculate_instant(eq_data_->water_balance_idx, schur0->get_solution());
803  balance_->output();
804 }
805 
806 
808 {
809  return schur0->get_solution_precision();
810 }
811 
812 
813 // ===========================================================================================
814 //
815 // MATRIX ASSEMBLY - we use abstract assembly routine, where LS Mat/Vec SetValues
816 // are in fact pointers to allocating or filling functions - this is governed by Linsystem roitunes
817 //
818 // =======================================================================================
820 {
821  START_TIMER("DarcyFlowMHy::assembly_mh_matrix");
822 
823  // set auxiliary flag for switchting Dirichlet like BC
824  eq_data_->force_no_neumann_bc = use_steady_assembly_ && (nonlinear_iteration_ == 0);
825  eq_data_->n_schur_compls = n_schur_compls;
826 
827 
828  balance_->start_flux_assembly(eq_data_->water_balance_idx);
829 
830  // TODO: try to move this into balance, or have it in the generic assembler class, that should perform the cell loop
831  // including various pre- and post-actions
832  for ( DHCellAccessor dh_cell : eq_data_->dh_->own_range() ) {
833  unsigned int dim = dh_cell.dim();
834  assembler[dim-1]->assemble(dh_cell);
835  }
836 
837 
838  balance_->finish_flux_assembly(eq_data_->water_balance_idx);
839 
840 }
841 
842 
844 {
845  START_TIMER("DarcyFlowMH::allocate_mh_matrix");
846 
847  // set auxiliary flag for switchting Dirichlet like BC
848  eq_data_->n_schur_compls = n_schur_compls;
849  LinSys *ls = schur0;
850 
851  // to make space for second schur complement, max. 10 neighbour edges of one el.
852  double zeros[100000];
853  for(int i=0; i<100000; i++) zeros[i] = 0.0;
854 
855  std::vector<LongIdx> tmp_rows;
856  tmp_rows.reserve(200);
857 
858  std::vector<LongIdx> dofs, dofs_ngh;
859  dofs.reserve(eq_data_->dh_->max_elem_dofs());
860  dofs_ngh.reserve(eq_data_->dh_->max_elem_dofs());
861 
862  for ( DHCellAccessor dh_cell : eq_data_->dh_->own_range() ) {
863  ElementAccessor<3> ele = dh_cell.elm();
864 
865  const uint ndofs = dh_cell.n_dofs();
866  dofs.resize(ndofs);
867  dh_cell.get_dof_indices(dofs);
868 
869  // whole local MH matrix
870  ls->mat_set_values(ndofs, dofs.data(), ndofs, dofs.data(), zeros);
871 
872  tmp_rows.clear();
873 
874  // compatible neighborings rows
875  unsigned int n_neighs = ele->n_neighs_vb();
876  for ( DHCellSide neighb_side : dh_cell.neighb_sides() ) {
877  // every compatible connection adds a 2x2 matrix involving
878  // current element pressure and a connected edge pressure
879 
880  // read neighbor dofs (dh dofhandler)
881  // neighbor cell owning neighb_side
882  DHCellAccessor dh_neighb_cell = neighb_side.cell();
883 
884  const uint ndofs_ngh = dh_neighb_cell.n_dofs();
885  dofs_ngh.resize(ndofs_ngh);
886  dh_neighb_cell.get_dof_indices(dofs_ngh);
887 
888  // local index of pedge dof on neighboring cell
889  // (dim+1) is number of edges of higher dim element
890  // TODO: replace with DHCell getter when available for FESystem component
891  const unsigned int t = dh_neighb_cell.n_dofs() - (dh_neighb_cell.dim()+1) + neighb_side.side().side_idx();
892  tmp_rows.push_back(dofs_ngh[t]);
893  }
894 
895  const uint nsides = ele->n_sides();
896  LongIdx * edge_rows = dofs.data() + nsides; // pointer to start of ele
897  // allocate always also for schur 2
898  ls->mat_set_values(nsides+1, edge_rows, n_neighs, tmp_rows.data(), zeros); // (edges, ele) x (neigh edges)
899  ls->mat_set_values(n_neighs, tmp_rows.data(), nsides+1, edge_rows, zeros); // (neigh edges) x (edges, ele)
900  ls->mat_set_values(n_neighs, tmp_rows.data(), n_neighs, tmp_rows.data(), zeros); // (neigh edges) x (neigh edges)
901 
902  tmp_rows.clear();
903 
904  if (eq_data_->mortar_method_ != NoMortar) {
905  auto &isec_list = mesh_->mixed_intersections().element_intersections_[ele.idx()];
906  for(auto &isec : isec_list ) {
907  IntersectionLocalBase *local = isec.second;
908  DHCellAccessor dh_cell_slave = eq_data_->dh_->cell_accessor_from_element(local->bulk_ele_idx());
909 
910  const uint ndofs_slave = dh_cell_slave.n_dofs();
911  dofs_ngh.resize(ndofs_slave);
912  dh_cell_slave.get_dof_indices(dofs_ngh);
913 
914  //DebugOut().fmt("Alloc: {} {}", ele.idx(), local->bulk_ele_idx());
915  for(unsigned int i_side=0; i_side < dh_cell_slave.elm()->n_sides(); i_side++) {
916  // TODO: replace with DHCell getter when available for FESystem component
917  tmp_rows.push_back( dofs_ngh[(ndofs_slave+1)/2+i_side] );
918  //DebugOut() << "aedge" << print_var(tmp_rows[tmp_rows.size()-1]);
919  }
920  }
921  }
922  /*
923  for(unsigned int i_side=0; i_side < ele->n_sides(); i_side++) {
924  DebugOut() << "aedge:" << print_var(edge_rows[i_side]);
925  }*/
926 
927  edge_rows = dofs.data() + nsides +1; // pointer to start of edges
928  ls->mat_set_values(nsides, edge_rows, tmp_rows.size(), tmp_rows.data(), zeros); // master edges x neigh edges
929  ls->mat_set_values(tmp_rows.size(), tmp_rows.data(), nsides, edge_rows, zeros); // neigh edges x master edges
930  ls->mat_set_values(tmp_rows.size(), tmp_rows.data(), tmp_rows.size(), tmp_rows.data(), zeros); // neigh edges x neigh edges
931 
932  }
933 /*
934  // alloc edge diagonal entries
935  if(rank == 0)
936  for( vector<Edge>::iterator edg = mesh_->edges.begin(); edg != mesh_->edges.end(); ++edg) {
937  int edg_idx = mh_dh.row_4_edge[edg->side(0)->edge_idx()];
938 
939 // for( vector<Edge>::iterator edg2 = mesh_->edges.begin(); edg2 != mesh_->edges.end(); ++edg2){
940 // int edg_idx2 = mh_dh.row_4_edge[edg2->side(0)->edge_idx()];
941 // if(edg_idx == edg_idx2){
942 // DBGCOUT(<< "P[ " << rank << " ] " << "edg alloc: " << edg_idx << " " << edg_idx2 << "\n");
943  ls->mat_set_value(edg_idx, edg_idx, 0.0);
944 // }
945 // }
946  }
947  */
948  /*
949  if (mortar_method_ == MortarP0) {
950  P0_CouplingAssembler(*this).assembly(*ls);
951  } else if (mortar_method_ == MortarP1) {
952  P1_CouplingAssembler(*this).assembly(*ls);
953  }*/
954 }
955 
957 {
958  START_TIMER("assembly source term");
959  balance_->start_source_assembly(eq_data_->water_balance_idx);
960 
961  std::vector<LongIdx> global_dofs(eq_data_->dh_->max_elem_dofs());
962 
963  for ( DHCellAccessor dh_cell : eq_data_->dh_->own_range() ) {
964  ElementAccessor<3> ele = dh_cell.elm();
965 
966  const uint ndofs = dh_cell.n_dofs();
967  global_dofs.resize(ndofs);
968  dh_cell.get_dof_indices(global_dofs);
969 
970  double cs = eq_fields_->cross_section.value(ele.centre(), ele);
971 
972  // set sources
973  double source = ele.measure() * cs *
974  (eq_fields_->water_source_density.value(ele.centre(), ele)
975  +eq_fields_->extra_source.value(ele.centre(), ele));
976  // TODO: replace with DHCell getter when available for FESystem component
977  schur0->rhs_set_value(global_dofs[ndofs/2], -1.0 * source );
978 
979  balance_->add_source_values(eq_data_->water_balance_idx, ele.region().bulk_idx(),
980  {dh_cell.get_loc_dof_indices()[ndofs/2]}, {0}, {source});
981  }
982 
983  balance_->finish_source_assembly(eq_data_->water_balance_idx);
984 }
985 
986 
987 
988 
989 /*******************************************************************************
990  * COMPOSE WATER MH MATRIX WITHOUT SCHUR COMPLEMENT
991  ******************************************************************************/
992 
994 
995  START_TIMER("preallocation");
996 
997  if (schur0 == NULL) { // create Linear System for MH matrix
998 
999  if (in_rec.type() == LinSys_BDDC::get_input_type()) {
1000 #ifdef FLOW123D_HAVE_BDDCML
1001  WarningOut() << "For BDDC no Schur complements are used.";
1002  n_schur_compls = 0;
1003  LinSys_BDDC *ls = new LinSys_BDDC(&(*eq_data_->dh_->distr()),
1004  true); // swap signs of matrix and rhs to make the matrix SPD
1005  ls->set_from_input(in_rec);
1006  ls->set_solution( eq_data_->full_solution.petsc_vec() );
1007  // possible initialization particular to BDDC
1008  START_TIMER("BDDC set mesh data");
1010  schur0=ls;
1011  END_TIMER("BDDC set mesh data");
1012 #else
1013  //Exception
1014  THROW( ExcBddcmlNotSupported() );
1015 #endif // FLOW123D_HAVE_BDDCML
1016  }
1017  else if (in_rec.type() == LinSys_PETSC::get_input_type()) {
1018  // use PETSC for serial case even when user wants BDDC
1019  if (n_schur_compls > 2) {
1020  WarningOut() << "Invalid number of Schur Complements. Using 2.";
1021  n_schur_compls = 2;
1022  }
1023 
1024  LinSys_PETSC *schur1, *schur2;
1025 
1026  if (n_schur_compls == 0) {
1027  LinSys_PETSC *ls = new LinSys_PETSC( &(*eq_data_->dh_->distr()) );
1028 
1029  // temporary solution; we have to set precision also for sequantial case of BDDC
1030  // final solution should be probably call of direct solver for oneproc case
1031  if (in_rec.type() != LinSys_BDDC::get_input_type()) ls->set_from_input(in_rec);
1032  else {
1033  ls->LinSys::set_from_input(in_rec); // get only common options
1034  }
1035 
1036  ls->set_solution( eq_data_->full_solution.petsc_vec() );
1037  schur0=ls;
1038  } else {
1039  IS is;
1040  auto side_dofs_vec = get_component_indices_vec(0);
1041 
1042  ISCreateGeneral(PETSC_COMM_SELF, side_dofs_vec.size(), &(side_dofs_vec[0]), PETSC_COPY_VALUES, &is);
1043  //ISView(is, PETSC_VIEWER_STDOUT_SELF);
1044  //OLD_ASSERT(err == 0,"Error in ISCreateStride.");
1045 
1046  SchurComplement *ls = new SchurComplement(&(*eq_data_->dh_->distr()), is);
1047 
1048  // make schur1
1050  if (n_schur_compls==1) {
1051  schur1 = new LinSys_PETSC(ds);
1052  schur1->set_positive_definite();
1053  } else {
1054  IS is;
1055  auto elem_dofs_vec = get_component_indices_vec(1);
1056 
1057  const PetscInt *b_indices;
1058  ISGetIndices(ls->IsB, &b_indices);
1059  uint b_size = ls->loc_size_B;
1060  for(uint i_b=0, i_bb=0; i_b < b_size && i_bb < elem_dofs_vec.size(); i_b++) {
1061  if (b_indices[i_b] == elem_dofs_vec[i_bb])
1062  elem_dofs_vec[i_bb++] = i_b + ds->begin();
1063  }
1064  ISRestoreIndices(ls->IsB, &b_indices);
1065 
1066 
1067  ISCreateGeneral(PETSC_COMM_SELF, elem_dofs_vec.size(), &(elem_dofs_vec[0]), PETSC_COPY_VALUES, &is);
1068  //ISView(is, PETSC_VIEWER_STDOUT_SELF);
1069  //OLD_ASSERT(err == 0,"Error in ISCreateStride.");
1070  SchurComplement *ls1 = new SchurComplement(ds, is); // is is deallocated by SchurComplement
1071  ls1->set_negative_definite();
1072 
1073  // make schur2
1074  schur2 = new LinSys_PETSC( ls1->make_complement_distribution() );
1075  schur2->set_positive_definite();
1076  ls1->set_complement( schur2 );
1077  schur1 = ls1;
1078  }
1079  ls->set_complement( schur1 );
1080  ls->set_from_input(in_rec);
1081  ls->set_solution( eq_data_->full_solution.petsc_vec() );
1082  schur0=ls;
1083  }
1084 
1085  START_TIMER("PETSC PREALLOCATION");
1086  schur0->set_symmetric();
1088 
1090 
1091  VecZeroEntries(schur0->get_solution());
1092  END_TIMER("PETSC PREALLOCATION");
1093  }
1094  else {
1095  THROW( ExcUnknownSolver() );
1096  }
1097 
1098  END_TIMER("preallocation");
1099  }
1100 
1101 }
1102 
1103 
1104 
1105 
1107  START_TIMER("DarcyFlowMH_Steady::assembly_linear_system");
1108 
1109  eq_data_->is_linear=true;
1110  bool is_steady = zero_time_term();
1111  //DebugOut() << "Assembly linear system\n";
1112  if (data_changed_) {
1113  data_changed_ = false;
1114  //DebugOut() << "Data changed\n";
1115  // currently we have no optimization for cases when just time term data or RHS data are changed
1116  START_TIMER("full assembly");
1117  if (typeid(*schur0) != typeid(LinSys_BDDC)) {
1118  schur0->start_add_assembly(); // finish allocation and create matrix
1119  }
1120 
1123 
1125 
1126 
1127  assembly_mh_matrix( eq_data_->multidim_assembler ); // fill matrix
1128 
1130 // print_matlab_matrix("matrix");
1132  //MatView( *const_cast<Mat*>(schur0->get_matrix()), PETSC_VIEWER_STDOUT_WORLD );
1133  //VecView( *const_cast<Vec*>(schur0->get_rhs()), PETSC_VIEWER_STDOUT_WORLD);
1134 
1135  if (! is_steady) {
1136  START_TIMER("fix time term");
1137  //DebugOut() << "setup time term\n";
1138  // assembly time term and rhs
1139  setup_time_term();
1140  modify_system();
1141  }
1142  else
1143  {
1144  balance_->start_mass_assembly(eq_data_->water_balance_idx);
1145  balance_->finish_mass_assembly(eq_data_->water_balance_idx);
1146  }
1147  END_TIMER("full assembly");
1148  } else {
1149  START_TIMER("modify system");
1150  if (! is_steady) {
1151  modify_system();
1152  } else {
1153  //Should be replaced with exception if error will be switched on.
1154  //ASSERT(false).error("Planned computation time for steady solver, but data are not changed.\n");
1155  }
1156  END_TIMER("modiffy system");
1157  }
1158 
1159 }
1160 
1161 
1162 void DarcyMH::print_matlab_matrix(std::string matlab_file)
1163 {
1164  std::string output_file;
1165 
1166  if ( typeid(*schur0) == typeid(LinSys_BDDC) ){
1167 // WarningOut() << "Can output matrix only on a single processor.";
1168 // output_file = FilePath(matlab_file + "_bddc.m", FilePath::output_file);
1169 // ofstream os( output_file );
1170 // auto bddc = static_cast<LinSys_BDDC*>(schur0);
1171 // bddc->print_matrix(os);
1172  }
1173  else {//if ( typeid(*schur0) == typeid(LinSys_PETSC) ){
1174  output_file = FilePath(matlab_file + ".m", FilePath::output_file);
1175  PetscViewer viewer;
1176  PetscViewerASCIIOpen(PETSC_COMM_WORLD, output_file.c_str(), &viewer);
1177  PetscViewerSetFormat(viewer, PETSC_VIEWER_ASCII_MATLAB);
1178  MatView( *const_cast<Mat*>(schur0->get_matrix()), viewer);
1179  VecView( *const_cast<Vec*>(schur0->get_rhs()), viewer);
1180  VecView( *const_cast<Vec*>(schur0->get_rhs()), viewer);
1181  VecView( *const_cast<Vec*>(&(schur0->get_solution())), viewer);
1182  }
1183 // else{
1184 // WarningOut() << "No matrix output available for the current solver.";
1185 // return;
1186 // }
1187 
1188  // compute h_min for different dimensions
1189  double d_max = std::numeric_limits<double>::max();
1190  double h1 = d_max, h2 = d_max, h3 = d_max;
1191  double he2 = d_max, he3 = d_max;
1192  for (auto ele : mesh_->elements_range()) {
1193  switch(ele->dim()){
1194  case 1: h1 = std::min(h1,ele.measure()); break;
1195  case 2: h2 = std::min(h2,ele.measure()); break;
1196  case 3: h3 = std::min(h3,ele.measure()); break;
1197  }
1198 
1199  for (unsigned int j=0; j<ele->n_sides(); j++) {
1200  switch(ele->dim()){
1201  case 2: he2 = std::min(he2, ele.side(j)->measure()); break;
1202  case 3: he3 = std::min(he3, ele.side(j)->measure()); break;
1203  }
1204  }
1205  }
1206  if(h1 == d_max) h1 = 0;
1207  if(h2 == d_max) h2 = 0;
1208  if(h3 == d_max) h3 = 0;
1209  if(he2 == d_max) he2 = 0;
1210  if(he3 == d_max) he3 = 0;
1211 
1212  FILE * file;
1213  file = fopen(output_file.c_str(),"a");
1214  fprintf(file, "nA = %d;\n", eq_data_->dh_cr_disc_->distr()->size());
1215  fprintf(file, "nB = %d;\n", eq_data_->dh_->mesh()->get_el_ds()->size());
1216  fprintf(file, "nBF = %d;\n", eq_data_->dh_cr_->distr()->size());
1217  fprintf(file, "h1 = %e;\nh2 = %e;\nh3 = %e;\n", h1, h2, h3);
1218  fprintf(file, "he2 = %e;\nhe3 = %e;\n", he2, he3);
1219  fclose(file);
1220 }
1221 
1222 
1223 //template <int dim>
1224 //std::vector<arma::vec3> dof_points(DHCellAccessor cell, const Mapping<dim, 3> &mapping) {
1225 //
1226 //
1227 // vector<arma::vec::fixed<dim+1>> bary_dof_points = cell->fe()->dof_points();
1228 //
1229 // std::vector<arma::vec3> points(20);
1230 // points.resize(0);
1231 //
1232 //}
1233 //
1234 
1236  START_TIMER("DarcyFlowMH_Steady::set_mesh_data_for_bddc");
1237  // prepare mesh for BDDCML
1238  // initialize arrays
1239  // auxiliary map for creating coordinates of local dofs and global-to-local numbering
1240  std::map<int, arma::vec3> localDofMap;
1241  // connectivity for the subdomain, i.e. global dof numbers on element, stored element-by-element
1242  // Indices of Nodes on Elements
1243  std::vector<int> inet;
1244  // number of degrees of freedom on elements - determines elementwise chunks of INET array
1245  // Number of Nodes on Elements
1246  std::vector<int> nnet;
1247  // Indices of Subdomain Elements in Global Numbering - for local elements, their global indices
1248  std::vector<int> isegn;
1249 
1250  // This array is currently not used in BDDCML, it was used as an interface scaling alternative to scaling
1251  // by diagonal. It corresponds to the rho-scaling.
1252  std::vector<double> element_permeability;
1253 
1254  // maximal and minimal dimension of elements
1255  uint elDimMax = 1;
1256  uint elDimMin = 3;
1257  std::vector<LongIdx> cell_dofs_global(10);
1258 
1259 
1260 
1261  for ( DHCellAccessor dh_cell : eq_data_->dh_->own_range() ) {
1262  // for each element, create local numbering of dofs as fluxes (sides), pressure (element centre), Lagrange multipliers (edges), compatible connections
1263 
1264  dh_cell.get_dof_indices(cell_dofs_global);
1265 
1266  inet.insert(inet.end(), cell_dofs_global.begin(), cell_dofs_global.end());
1267  uint n_inet = cell_dofs_global.size();
1268 
1269 
1270  uint dim = dh_cell.elm().dim();
1271  elDimMax = std::max( elDimMax, dim );
1272  elDimMin = std::min( elDimMin, dim );
1273 
1274  // TODO: this is consistent with previous implementation, but may be wrong as it use global element numbering
1275  // used in sequential mesh, do global numbering of distributed elements.
1276  isegn.push_back( dh_cell.elm_idx());
1277 
1278  // TODO: use FiniteElement::dof_points
1279  for (unsigned int si=0; si<dh_cell.elm()->n_sides(); si++) {
1280  arma::vec3 coord = dh_cell.elm().side(si)->centre();
1281  // TODO: replace with DHCell getter when available for FESystem component
1282  // flux dof points
1283  localDofMap.insert( std::make_pair( cell_dofs_global[si], coord ) );
1284  // pressure trace dof points
1285  localDofMap.insert( std::make_pair( cell_dofs_global[si+dim+2], coord ) );
1286  }
1287  // pressure dof points
1288  arma::vec3 elm_centre = dh_cell.elm().centre();
1289  localDofMap.insert( std::make_pair( cell_dofs_global[dim+1], elm_centre ) );
1290 
1291  // insert dofs related to compatible connections
1292  //const Element *ele = dh_cell.elm().element();
1293  for(DHCellSide side : dh_cell.neighb_sides()) {
1294  uint neigh_dim = side.cell().elm().dim();
1295  side.cell().get_dof_indices(cell_dofs_global);
1296  int edge_row = cell_dofs_global[neigh_dim+2+side.side_idx()];
1297  localDofMap.insert( std::make_pair( edge_row, side.centre() ) );
1298  inet.push_back( edge_row );
1299  n_inet++;
1300  }
1301  nnet.push_back(n_inet);
1302 
1303 
1304  // version for rho scaling
1305  // trace computation
1306  double conduct = eq_fields_->conductivity.value( elm_centre , dh_cell.elm() );
1307  auto aniso = eq_fields_->anisotropy.value( elm_centre , dh_cell.elm() );
1308 
1309  // compute mean on the diagonal
1310  double coef = 0.;
1311  for ( int i = 0; i < 3; i++) {
1312  coef = coef + aniso.at(i,i);
1313  }
1314  // Maybe divide by cs
1315  coef = conduct*coef / 3;
1316 
1317  OLD_ASSERT( coef > 0.,
1318  "Zero coefficient of hydrodynamic resistance %f . \n ", coef );
1319  element_permeability.push_back( 1. / coef );
1320  }
1321 // uint i_inet = 0;
1322 // for(int n_dofs : nnet) {
1323 // DebugOut() << "nnet: " << n_dofs;
1324 // for(int j=0; j < n_dofs; j++, i_inet++) {
1325 // DebugOut() << "inet: " << inet[i_inet];
1326 // }
1327 // }
1328 
1329  auto distr = eq_data_->dh_->distr();
1330 // for(auto pair : localDofMap) {
1331 // DebugOut().every_proc() << "r: " << distr->myp() << " gi: " << pair.first << "xyz: " << pair.second[0];
1332 //
1333 // }
1334 
1335 
1336  //convert set of dofs to vectors
1337  // number of nodes (= dofs) on the subdomain
1338  int numNodeSub = localDofMap.size();
1339  //ASSERT_EQ( (unsigned int)numNodeSub, eq:data_->dh_->lsize() );
1340  // Indices of Subdomain Nodes in Global Numbering - for local nodes, their global indices
1341  std::vector<int> isngn( numNodeSub );
1342  // pseudo-coordinates of local nodes (i.e. dofs)
1343  // they need not be exact, they are used just for some geometrical considerations in BDDCML,
1344  // such as selection of corners maximizing area of a triangle, bounding boxes fro subdomains to
1345  // find candidate neighbours etc.
1346  std::vector<double> xyz( numNodeSub * 3 ) ;
1347  int ind = 0;
1348  std::map<int,arma::vec3>::iterator itB = localDofMap.begin();
1349  for ( ; itB != localDofMap.end(); ++itB ) {
1350  isngn[ind] = itB -> first;
1351 
1352  arma::vec3 coord = itB -> second;
1353  for ( int j = 0; j < 3; j++ ) {
1354  xyz[ j*numNodeSub + ind ] = coord[j];
1355  }
1356 
1357  ind++;
1358  }
1359  localDofMap.clear();
1360 
1361  // Number of Nodal Degrees of Freedom
1362  // nndf is trivially one - dofs coincide with nodes
1363  std::vector<int> nndf( numNodeSub, 1 );
1364 
1365  // prepare auxiliary map for renumbering nodes
1366  typedef std::map<int,int> Global2LocalMap_; //! type for storage of global to local map
1367  Global2LocalMap_ global2LocalNodeMap;
1368  for ( unsigned ind = 0; ind < isngn.size(); ++ind ) {
1369  global2LocalNodeMap.insert( std::make_pair( static_cast<unsigned>( isngn[ind] ), ind ) );
1370  }
1371 
1372  // renumber nodes in the inet array to locals
1373  int indInet = 0;
1374  for ( unsigned int iEle = 0; iEle < isegn.size(); iEle++ ) {
1375  int nne = nnet[ iEle ];
1376  for ( int ien = 0; ien < nne; ien++ ) {
1377 
1378  int indGlob = inet[indInet];
1379  // map it to local node
1380  Global2LocalMap_::iterator pos = global2LocalNodeMap.find( indGlob );
1381  OLD_ASSERT( pos != global2LocalNodeMap.end(),
1382  "Cannot remap node index %d to local indices. \n ", indGlob );
1383  int indLoc = static_cast<int> ( pos -> second );
1384 
1385  // store the node
1386  inet[ indInet++ ] = indLoc;
1387  }
1388  }
1389 
1390  int numNodes = size;
1391  int numDofsInt = size;
1392  int spaceDim = 3; // TODO: what is the proper value here?
1393  int meshDim = elDimMax;
1394 
1395  /**
1396  * We need:
1397  * - local to global element map (possibly mesh->el_4_loc
1398  * - inet, nnet - local dof numbers per element, local numbering of only those dofs that are on owned elements
1399  * 1. collect DH local dof indices on elements, manage map from DH local indices to BDDC local dof indices
1400  * 2. map collected DH indices to BDDC indices using the map
1401  * - local BDDC dofs to global dofs, use DH to BDDC map with DH local to global map
1402  * - XYZ - permuted, collect in main loop into array of size of all DH local dofs, compress and rearrange latter
1403  * - element_permeability - in main loop
1404  */
1405  bddc_ls -> load_mesh( LinSys_BDDC::BDDCMatrixType::SPD_VIA_SYMMETRICGENERAL, spaceDim, numNodes, numDofsInt, inet, nnet, nndf, isegn, isngn, isngn, xyz, element_permeability, meshDim );
1406 }
1407 
1408 
1409 
1410 
1411 //=============================================================================
1412 // DESTROY WATER MH SYSTEM STRUCTURE
1413 //=============================================================================
1415  if (previous_solution != nullptr) chkerr(VecDestroy(&previous_solution));
1416  if (steady_diagonal != nullptr) chkerr(VecDestroy(&steady_diagonal));
1417  if (new_diagonal != nullptr) chkerr(VecDestroy(&new_diagonal));
1418  if (steady_rhs != nullptr) chkerr(VecDestroy(&steady_rhs));
1419 
1420 
1421  if (schur0 != NULL) {
1422  delete schur0;
1423  }
1424 
1425  if (output_object) delete output_object;
1426 
1427  if(time_ != nullptr)
1428  delete time_;
1429 
1430 }
1431 
1432 
1433 /*
1434 void mat_count_off_proc_values(Mat m, Vec v) {
1435  int n, first, last;
1436  const PetscInt *cols;
1437  Distribution distr(v);
1438 
1439  int n_off = 0;
1440  int n_on = 0;
1441  int n_off_rows = 0;
1442  MatGetOwnershipRange(m, &first, &last);
1443  for (int row = first; row < last; row++) {
1444  MatGetRow(m, row, &n, &cols, PETSC_NULL);
1445  bool exists_off = false;
1446  for (int i = 0; i < n; i++)
1447  if (distr.get_proc(cols[i]) != distr.myp())
1448  n_off++, exists_off = true;
1449  else
1450  n_on++;
1451  if (exists_off)
1452  n_off_rows++;
1453  MatRestoreRow(m, row, &n, &cols, PETSC_NULL);
1454  }
1455 }
1456 */
1457 
1458 
1459 
1460 
1461 
1462 
1463 
1464 
1465 
1466 
1467 
1468 
1470 {
1471  double *local_sol = schur0->get_solution_array();
1472 
1473  // cycle over local element rows
1474 
1475  DebugOut().fmt("Setup with dt: {}\n", time_->dt());
1476  for ( DHCellAccessor dh_cell : eq_data_->dh_->own_range() ) {
1477  ElementAccessor<3> ele = dh_cell.elm();
1478  // set initial condition
1479  // TODO: replace with DHCell getter when available for FESystem component
1480  const IntIdx p_ele_dof = dh_cell.get_loc_dof_indices()[dh_cell.n_dofs()/2];
1481  local_sol[p_ele_dof] = eq_fields_->init_pressure.value(ele.centre(),ele);
1482  }
1483 }
1484 
1486  // save diagonal of steady matrix
1487  MatGetDiagonal(*( schur0->get_matrix() ), steady_diagonal);
1488  // save RHS
1489  VecCopy(*( schur0->get_rhs()), steady_rhs);
1490 
1491 
1492  PetscScalar *local_diagonal;
1493  VecGetArray(new_diagonal,& local_diagonal);
1494 
1495  DebugOut().fmt("Setup with dt: {}\n", time_->dt());
1496 
1497  balance_->start_mass_assembly(eq_data_->water_balance_idx);
1498 
1499  std::vector<LongIdx> dofs;
1500  dofs.reserve(eq_data_->dh_->max_elem_dofs());
1501 
1502  for ( DHCellAccessor dh_cell : eq_data_->dh_->own_range() ) {
1503  ElementAccessor<3> ele = dh_cell.elm();
1504  dofs.resize(dh_cell.n_dofs());
1505  dh_cell.get_dof_indices(dofs);
1506 
1507  // TODO: replace with DHCell getter when available for FESystem component
1508  const uint p_ele_dof = dh_cell.n_dofs() / 2;
1509  // set new diagonal
1510  double diagonal_coeff = eq_fields_->cross_section.value(ele.centre(), ele)
1511  * ( eq_fields_->storativity.value(ele.centre(), ele)
1512  +eq_fields_->extra_storativity.value(ele.centre(), ele))
1513  * ele.measure();
1514  local_diagonal[dh_cell.get_loc_dof_indices()[p_ele_dof]]= - diagonal_coeff / time_->dt();
1515 
1516  balance_->add_mass_values(eq_data_->water_balance_idx, dh_cell,
1517  {dh_cell.get_loc_dof_indices()[p_ele_dof]},
1518  {diagonal_coeff}, 0.0);
1519  }
1520  VecRestoreArray(new_diagonal,& local_diagonal);
1521  MatDiagonalSet(*( schur0->get_matrix() ), new_diagonal, ADD_VALUES);
1522 
1523  schur0->set_matrix_changed();
1524 
1525  balance_->finish_mass_assembly(eq_data_->water_balance_idx);
1526 }
1527 
1529  START_TIMER("modify system");
1530  if (time_->is_changed_dt() && time_->step().index()>0) {
1531  double scale_factor=time_->step(-2).length()/time_->step().length();
1532  if (scale_factor != 1.0) {
1533  // if time step has changed and setup_time_term not called
1534  MatDiagonalSet(*( schur0->get_matrix() ),steady_diagonal, INSERT_VALUES);
1535 
1536  VecScale(new_diagonal, time_->last_dt()/time_->dt());
1537  MatDiagonalSet(*( schur0->get_matrix() ),new_diagonal, ADD_VALUES);
1539  }
1540  }
1541 
1542  // modify RHS - add previous solution
1543  VecPointwiseMult(*( schur0->get_rhs()), new_diagonal, previous_solution);
1544 // VecPointwiseMult(*( schur0->get_rhs()), new_diagonal, schur0->get_solution());
1545  VecAXPY(*( schur0->get_rhs()), 1.0, steady_rhs);
1547 
1548  //VecSwap(previous_solution, schur0->get_solution());
1549 }
1550 
1551 
1552 /// Helper method fills range (min and max) of given component
1553 void dofs_range(unsigned int n_dofs, unsigned int &min, unsigned int &max, unsigned int component) {
1554  if (component==0) {
1555  min = 0;
1556  max = n_dofs/2;
1557  } else if (component==1) {
1558  min = n_dofs/2;
1559  max = (n_dofs+1)/2;
1560  } else {
1561  min = (n_dofs+1)/2;
1562  max = n_dofs;
1563  }
1564 }
1565 
1566 
1568  ASSERT_LT_DBG(component, 3).error("Invalid component!");
1569  unsigned int i, n_dofs, min, max;
1570  std::vector<int> dof_vec;
1571  std::vector<LongIdx> dof_indices(eq_data_->dh_->max_elem_dofs());
1572  for ( DHCellAccessor dh_cell : eq_data_->dh_->own_range() ) {
1573  n_dofs = dh_cell.get_dof_indices(dof_indices);
1574  dofs_range(n_dofs, min, max, component);
1575  for (i=min; i<max; ++i) dof_vec.push_back(dof_indices[i]);
1576  }
1577  return dof_vec;
1578 }
1579 
1580 
1581 //-----------------------------------------------------------------------------
1582 // vim: set cindent:
LimitSide::right
@ right
OLD_ASSERT_EQUAL
#define OLD_ASSERT_EQUAL(a, b)
Definition: global_defs.h:110
Element::n_neighs_vb
unsigned int n_neighs_vb() const
Return number of neighbours.
Definition: elements.h:65
DarcyMH::balance_
std::shared_ptr< Balance > balance_
Definition: darcy_flow_mh.hh:361
EquationBase::mesh_
Mesh * mesh_
Definition: equation.hh:218
linsys_BDDC.hh
Solver based on Multilevel BDDC - using corresponding class of OpenFTL package.
Input::Type::Bool
Class for declaration of the input of type Bool.
Definition: type_base.hh:452
result_zeros
@ result_zeros
Definition: field_algo_base.hh:74
LinSys::get_solution
const Vec & get_solution()
Definition: linsys.hh:282
MPI_MIN
#define MPI_MIN
Definition: mpi.h:198
DarcyMH::previous_solution
Vec previous_solution
Definition: darcy_flow_mh.hh:385
DarcyMH::solution_precision
virtual double solution_precision() const
Definition: darcy_flow_mh.cc:807
DarcyMH::init_eq_data
void init_eq_data()
Definition: darcy_flow_mh.cc:406
LinSys::SolveInfo::n_iterations
int n_iterations
Definition: linsys.hh:110
Armor::vec
ArmaVec< double, N > vec
Definition: armor.hh:885
DarcyMH::solve_nonlinear
void solve_nonlinear()
Solve method common to zero_time_step and update solution.
Definition: darcy_flow_mh.cc:668
DarcyFlowMHOutput::output
void output()
Calculate values for output.
Definition: darcy_flow_mh_output.cc:245
TimeGovernor::dt
double dt() const
Definition: time_governor.hh:558
DarcyMH::use_steady_assembly_
bool use_steady_assembly_
Definition: darcy_flow_mh.hh:370
UnitSI::dimensionless
static UnitSI & dimensionless()
Returns dimensionless unit.
Definition: unit_si.cc:55
SchurComplement::set_complement
void set_complement(LinSys_PETSC *ls)
Set complement LinSys object.
Definition: schur.cc:287
factory.hh
field_constant.hh
LinSys
Definition: la_linsys_new.hh:169
vector_mpi.hh
time_governor.hh
Basic time management class.
field_add_potential.hh
DarcyMH::size
int size
Definition: darcy_flow_mh.hh:365
DarcyMH::steady_rhs
Vec steady_rhs
Definition: darcy_flow_mh.hh:383
field_algo_base.hh
DarcyMH::solve_time_step
void solve_time_step(bool output=true)
Solve the problem without moving to next time and without output.
Definition: darcy_flow_mh.cc:611
MeshBase::region_db
const RegionDB & region_db() const
Definition: mesh.h:171
DarcyMH::update_solution
void update_solution() override
Definition: darcy_flow_mh.cc:596
DarcyMH::EqFields::EqFields
EqFields()
Creation of all fields.
Definition: darcy_flow_mh.cc:190
DarcyMH::EqFields::river
@ river
Definition: darcy_flow_mh.hh:154
LinSys::SolveInfo
Definition: linsys.hh:105
ASSERT
#define ASSERT(expr)
Allow use shorter versions of macro names if these names is not used with external library.
Definition: asserts.hh:347
DarcyMH::type_field_descriptor
static const Input::Type::Record & type_field_descriptor()
Definition: darcy_flow_mh.cc:120
LinSys::set_symmetric
void set_symmetric(bool flag=true)
Definition: linsys.hh:561
DarcyMH::postprocess
virtual void postprocess()
postprocess velocity field (add sources)
Definition: darcy_flow_mh.cc:757
Mesh::n_sides
unsigned int n_sides() const
Definition: mesh.cc:308
DarcyFlowInterface::MortarP1
@ MortarP1
Definition: darcy_flow_interface.hh:33
EquationBase::time_
TimeGovernor * time_
Definition: equation.hh:219
DarcyMH::setup_time_term
virtual void setup_time_term()
Definition: darcy_flow_mh.cc:1485
distribution.hh
Support classes for parallel programing.
LinSys_BDDC::get_input_type
static const Input::Type::Record & get_input_type()
Definition: linsys_BDDC.cc:39
bc_mesh.hh
Input::Type::Integer
Class for declaration of the integral input data.
Definition: type_base.hh:483
Input::Record::val
const Ret val(const string &key) const
Definition: accessors_impl.hh:31
DHCellAccessor::get_dof_indices
unsigned int get_dof_indices(std::vector< LongIdx > &indices) const
Fill vector of the global indices of dofs associated to the cell.
Definition: dh_cell_accessor.hh:80
TimeGovernor::set_upper_constraint
int set_upper_constraint(double upper, std::string message)
Sets upper constraint for the next time step estimating.
Definition: time_governor.cc:552
IntIdx
int IntIdx
Definition: index_types.hh:25
EquationBase::time
TimeGovernor & time()
Definition: equation.hh:149
Input::Type::Selection::close
const Selection & close() const
Close the Selection, no more values can be added.
Definition: type_selection.cc:65
fmt::fprintf
FMT_FUNC int fprintf(std::ostream &os, CStringRef format, ArgList args)
Definition: ostream.cc:56
FilePath
Dedicated class for storing path to input and output files.
Definition: file_path.hh:54
linsys.hh
Wrappers for linear systems based on MPIAIJ and MATIS format.
Input::Type::Double
Class for declaration of the input data that are floating point numbers.
Definition: type_base.hh:534
LinSys::rhs_zero_entries
virtual PetscErrorCode rhs_zero_entries()
Definition: linsys.hh:273
chkerr
void chkerr(unsigned int ierr)
Replacement of new/delete operator in the spirit of xmalloc.
Definition: system.hh:142
DarcyMH::create_linear_system
void create_linear_system(Input::AbstractRecord rec)
Definition: darcy_flow_mh.cc:993
FLOW123D_FORCE_LINK_IN_CHILD
#define FLOW123D_FORCE_LINK_IN_CHILD(x)
Definition: global_defs.h:157
LinSys_PETSC
Definition: linsys_PETSC.hh:43
MeshBase::n_edges
unsigned int n_edges() const
Definition: mesh.h:114
LinSys::mat_zero_entries
virtual PetscErrorCode mat_zero_entries()
Definition: linsys.hh:264
THROW
#define THROW(whole_exception_expr)
Wrapper for throw. Saves the throwing point.
Definition: exceptions.hh:53
LinSys::SolveInfo::converged_reason
int converged_reason
Definition: linsys.hh:109
std::vector< double >
ElementAccessor< 3 >
DarcyMH::output_data
virtual void output_data() override
Write computed fields.
Definition: darcy_flow_mh.cc:791
DarcyMH::~DarcyMH
virtual ~DarcyMH() override
Definition: darcy_flow_mh.cc:1414
system.hh
arma::vec3
Definition: doxy_dummy_defs.hh:17
LinSys::set_rhs_changed
void set_rhs_changed()
Definition: linsys.hh:218
fn_mh_velocity
Definition: assembly_models.hh:29
SchurComplement::make_complement_distribution
Distribution * make_complement_distribution()
get distribution of complement object if complement is defined
Definition: schur.cc:294
assembly_models.hh
Functors of FieldModels used in Darcy flow module.
DHCellAccessor::dim
unsigned int dim() const
Return dimension of element appropriate to cell.
Definition: dh_cell_accessor.hh:101
DarcyMH::get_mh_mortar_selection
static const Input::Type::Selection & get_mh_mortar_selection()
Selection for enum MortarMethod.
Definition: darcy_flow_mh.cc:82
LinSys::solve
virtual SolveInfo solve()=0
field_fe.hh
uint
unsigned int uint
Definition: mh_dofhandler.hh:101
Input::AbstractRecord::type
Input::Type::Record type() const
Definition: accessors.cc:273
linsys_PETSC.hh
Solver based on the original PETSc solver using MPIAIJ matrix and succesive Schur complement construc...
DarcyMH::max_n_it_
unsigned int max_n_it_
Definition: darcy_flow_mh.hh:376
dofs_range
void dofs_range(unsigned int n_dofs, unsigned int &min, unsigned int &max, unsigned int component)
Helper method fills range (min and max) of given component.
Definition: darcy_flow_mh.cc:1553
LinSys::set_negative_definite
void set_negative_definite(bool flag=true)
Definition: linsys.hh:588
MeshBase::elements_range
Range< ElementAccessor< 3 > > elements_range() const
Returns range of mesh elements.
Definition: mesh.cc:1168
index_types.hh
LinSys::set_positive_definite
void set_positive_definite(bool flag=true)
Definition: linsys.hh:576
DarcyMH::allocate_mh_matrix
void allocate_mh_matrix()
Definition: darcy_flow_mh.cc:843
LinSys::set_matrix_changed
void set_matrix_changed()
Definition: linsys.hh:212
fe_p.hh
Definitions of basic Lagrangean finite elements with polynomial shape functions.
DarcyMH::prepare_new_time_step
void prepare_new_time_step()
Definition: darcy_flow_mh.cc:752
DarcyMH::assembly_mh_matrix
void assembly_mh_matrix(MultidimAssembly &assembler)
Definition: darcy_flow_mh.cc:819
LinSys::start_allocation
virtual void start_allocation()
Definition: linsys.hh:333
DarcyFlowMHOutput::get_input_type
static const Input::Type::Instance & get_input_type(FieldSet &eq_data, const std::string &equation_name)
Definition: darcy_flow_mh_output.cc:62
Input::Type::Record::size
unsigned int size() const
Returns number of keys in the Record.
Definition: type_record.hh:602
SchurComplement
Definition: schur.hh:64
TimeGovernor::is_end
bool is_end() const
Returns true if the actual time is greater than or equal to the end time.
Definition: time_governor.hh:588
SchurComplement::set_from_input
void set_from_input(const Input::Record in_rec) override
Definition: schur.cc:138
Input::Type::Default
Class Input::Type::Default specifies default value of keys of a Input::Type::Record.
Definition: type_record.hh:61
DHCellSide
Side accessor allows to iterate over sides of DOF handler cell.
Definition: dh_cell_accessor.hh:176
Input::Type::Record::derive_from
virtual Record & derive_from(Abstract &parent)
Method to derive new Record from an AbstractRecord parent.
Definition: type_record.cc:196
DarcyMH::eq_data_
std::shared_ptr< EqData > eq_data_
Definition: darcy_flow_mh.hh:388
Distribution
Definition: distribution.hh:50
DarcyMH::output_object
DarcyFlowMHOutput * output_object
Definition: darcy_flow_mh.hh:363
Mesh::bc_mesh
BCMesh * bc_mesh() const override
Implement MeshBase::bc_mesh(), getter of boundary mesh.
Definition: mesh.h:559
AddPotentialFactory
Definition: field_add_potential.hh:49
LimitSide::left
@ left
LinSys::compute_residual
virtual double compute_residual()=0
DarcyFlowInterface::NoMortar
@ NoMortar
Definition: darcy_flow_interface.hh:31
accessors.hh
LinSys::set_tolerances
virtual void set_tolerances(double r_tol, double a_tol, unsigned int max_it)=0
Input::Record
Accessor to the data with type Type::Record.
Definition: accessors.hh:291
LinSys::rhs_set_value
void rhs_set_value(int row, double val)
Definition: linsys.hh:381
FieldFlag::equation_result
static constexpr Mask equation_result
Match result fields. These are never given by input or copy of input.
Definition: field_flag.hh:55
sys_profiler.hh
DarcyMH::EqFields::get_bc_type_selection
static const Input::Type::Selection & get_bc_type_selection()
Return a Selection corresponding to enum BC_Type.
Definition: darcy_flow_mh.cc:91
darcy_flow_mh_output.hh
Output class for darcy_flow_mh model.
field_model.hh
DarcyMH::assembly_source_term
virtual void assembly_source_term()
Source term is implemented differently in LMH version.
Definition: darcy_flow_mh.cc:956
DarcyMH::DarcyFlowMHOutput
friend class DarcyFlowMHOutput
Definition: darcy_flow_mh.hh:390
LinSys::get_matrix
virtual const Mat * get_matrix()
Definition: linsys.hh:187
mpi.h
mixed_mesh_intersections.hh
schur.hh
Assembly explicit Schur complement for the given linear system. Provides method for resolution of the...
DarcyMH::modify_system
void modify_system()
Definition: darcy_flow_mh.cc:1528
DarcyMH::EqFields
Definition: darcy_flow_mh.hh:143
DarcyMH::min_n_it_
unsigned int min_n_it_
Definition: darcy_flow_mh.hh:375
TimeGovernor
Basic time management functionality for unsteady (and steady) solvers (class Equation).
Definition: time_governor.hh:310
TimeGovernor::step
const TimeStep & step(int index=-1) const
Definition: time_governor.cc:753
DarcyMH::zero_time_term
virtual bool zero_time_term(bool time_global=false)
Definition: darcy_flow_mh.cc:659
DarcyMH::steady_diagonal
Vec steady_diagonal
Definition: darcy_flow_mh.hh:382
DHCellAccessor::elm
const ElementAccessor< 3 > elm() const
Return ElementAccessor to element of loc_ele_idx_.
Definition: dh_cell_accessor.hh:71
field_values.hh
Input::AbstractRecord
Accessor to the polymorphic input data of a type given by an AbstracRecord object.
Definition: accessors.hh:458
Input::Type::Default::obligatory
static Default obligatory()
The factory function to make an empty default value which is obligatory.
Definition: type_record.hh:110
SchurComplement::IsB
IS IsB
Definition: schur.hh:138
UnitSI
Class for representation SI units of Fields.
Definition: unit_si.hh:40
LinSys_BDDC
Definition: linsys_BDDC.hh:39
fn_mh_piezohead
Definition: assembly_models.hh:37
DarcyMH::print_matlab_matrix
void print_matlab_matrix(string matlab_file)
Print darcy flow matrix in matlab format into a file.
Definition: darcy_flow_mh.cc:1162
EquationBase::input_record_
Input::Record input_record_
Definition: equation.hh:220
RegionDB::get_region_set
RegionSet get_region_set(const std::string &set_name) const
Definition: region.cc:328
FieldCommon::field_descriptor_record_description
static const std::string field_descriptor_record_description(const string &record_name)
Definition: field_common.cc:73
DarcyMH::eq_fields_
std::shared_ptr< EqFields > eq_fields_
Definition: darcy_flow_mh.hh:387
Input::Type::Record::declare_key
Record & declare_key(const string &key, std::shared_ptr< TypeBase > type, const Default &default_value, const string &description, TypeBase::attribute_map key_attributes=TypeBase::attribute_map())
Declares a new key of the Record.
Definition: type_record.cc:503
MPI_INT
#define MPI_INT
Definition: mpi.h:160
DarcyFlowMHOutput::get_input_type_specific
static const Input::Type::Instance & get_input_type_specific()
Definition: darcy_flow_mh_output.cc:69
DarcyMH::schur0
LinSys * schur0
Definition: darcy_flow_mh.hh:380
mesh.h
DHCellAccessor::n_dofs
unsigned int n_dofs() const
Return number of dofs on given cell.
Definition: dh_cell_accessor.hh:420
Input::Type::Selection
Template for classes storing finite set of named values.
Definition: type_selection.hh:65
std::map
Definition: doxy_dummy_defs.hh:11
DarcyFlowInterface::MortarMethod
MortarMethod
Type of experimental Mortar-like method for non-compatible 1d-2d interaction.
Definition: darcy_flow_interface.hh:30
DarcyFlowInterface::get_input_type
static Input::Type::Abstract & get_input_type()
Definition: darcy_flow_interface.hh:23
LinSys::start_add_assembly
virtual void start_add_assembly()
Definition: linsys.hh:341
DarcyMH::EqFields::none
@ none
Definition: darcy_flow_mh.hh:150
DarcyMH::n_schur_compls
int n_schur_compls
Definition: darcy_flow_mh.hh:366
TimeGovernor::view
void view(const char *name="") const
Definition: time_governor.cc:769
FieldFlag::input_copy
static constexpr Mask input_copy
Definition: field_flag.hh:44
Input::Type::Record::close
Record & close() const
Close the Record for further declarations of keys.
Definition: type_record.cc:304
LinSys_BDDC::set_from_input
void set_from_input(const Input::Record in_rec) override
Definition: linsys_BDDC.cc:279
SchurComplement::loc_size_B
int loc_size_B
Definition: schur.hh:137
Input::Type
Definition: balance.hh:41
MixedMeshIntersections::element_intersections_
std::vector< std::vector< ILpair > > element_intersections_
Definition: mixed_mesh_intersections.hh:83
partitioning.hh
Input::Type::Record
Record type proxy class.
Definition: type_record.hh:182
DarcyMH::new_diagonal
Vec new_diagonal
Definition: darcy_flow_mh.hh:384
DarcyMH::get_component_indices_vec
std::vector< int > get_component_indices_vec(unsigned int component) const
Get vector of all DOF indices of given component (0..side, 1..element, 2..edge)
Definition: darcy_flow_mh.cc:1567
LongIdx
int LongIdx
Define type that represents indices of large arrays (elements, nodes, dofs etc.)
Definition: index_types.hh:24
LinSys_PETSC::set_from_input
void set_from_input(const Input::Record in_rec) override
Definition: linsys_PETSC.cc:470
Mesh
Definition: mesh.h:355
DarcyMH::EqFields::total_flux
@ total_flux
Definition: darcy_flow_mh.hh:152
OutputTime::get_input_type
static const Input::Type::Record & get_input_type()
The specification of output stream.
Definition: output_time.cc:38
Element::n_sides
unsigned int n_sides() const
Definition: elements.h:131
DarcyMH::nonlinear_iteration_
unsigned int nonlinear_iteration_
Definition: darcy_flow_mh.hh:377
Input::Type::Record::copy_keys
Record & copy_keys(const Record &other)
Copy keys from other record.
Definition: type_record.cc:216
FieldAlgorithmBase
Definition: field_algo_base.hh:112
Input::Type::Array
Class for declaration of inputs sequences.
Definition: type_base.hh:339
DarcyMH::tolerance_
double tolerance_
Definition: darcy_flow_mh.hh:374
OLD_ASSERT
#define OLD_ASSERT(...)
Definition: global_defs.h:108
DarcyMH::set_mesh_data_for_bddc
void set_mesh_data_for_bddc(LinSys_BDDC *bddc_ls)
Definition: darcy_flow_mh.cc:1235
DarcyMH::get_input_type
static const Input::Type::Record & get_input_type()
Definition: darcy_flow_mh.cc:135
Model
Definition: field_model.hh:338
DHCellAccessor
Cell accessor allow iterate over DOF handler cells.
Definition: dh_cell_accessor.hh:43
LinSys::finish_assembly
virtual void finish_assembly()=0
LinSys::get_rhs
virtual const Vec * get_rhs()
Definition: linsys.hh:203
MPI_Allreduce
#define MPI_Allreduce(sendbuf, recvbuf, count, datatype, op, comm)
Definition: mpi.h:612
Input::Array
Accessor to input data conforming to declared Array.
Definition: accessors.hh:566
DarcyMH::assembly_linear_system
virtual void assembly_linear_system()
Definition: darcy_flow_mh.cc:1106
DarcyMH::DarcyMH
DarcyMH(Mesh &mesh, const Input::Record in_rec, TimeGovernor *tm=nullptr)
CREATE AND FILL GLOBAL MH MATRIX OF THE WATER MODEL.
Definition: darcy_flow_mh.cc:352
WarningOut
#define WarningOut()
Macro defining 'warning' record of log.
Definition: logger.hh:278
ElementAccessor::region
Region region() const
Definition: accessors.hh:201
EquationBase::record_template
static Input::Type::Record & record_template()
Template Record with common keys for derived equations.
Definition: equation.cc:35
LinSys::get_solution_precision
virtual double get_solution_precision()=0
MixedPtr
Definition: mixed.hh:247
SchurComplement
SchurComplement SchurComplement
Definition: linsys.hh:92
TimeGovernor::is_default
bool is_default()
Definition: time_governor.hh:381
darcy_flow_mh.hh
mixed-hybrid model of linear Darcy flow, possibly unsteady.
LinSys::set_solution
void set_solution(Vec sol_vec)
Definition: linsys.hh:290
ASSERT_LT_DBG
#define ASSERT_LT_DBG(a, b)
Definition of comparative assert macro (Less Than) only for debug mode.
Definition: asserts.hh:300
DarcyMH::initialize_specific
virtual void initialize_specific()
Definition: darcy_flow_mh.cc:557
DarcyMH::EqFields::seepage
@ seepage
Definition: darcy_flow_mh.hh:153
std::vector::data
T data
Definition: doxy_dummy_defs.hh:7
LinSys::get_input_type
static Input::Type::Abstract & get_input_type()
Definition: linsys.cc:29
ElementAccessor::idx
unsigned int idx() const
We need this method after replacing Region by RegionIdx, and movinf RegionDB instance into particular...
Definition: accessors.hh:218
FilePath::output_file
@ output_file
Definition: file_path.hh:69
EquationBase::eq_fieldset_
FieldSet * eq_fieldset_
Definition: equation.hh:227
TimeGovernor::is_changed_dt
bool is_changed_dt() const
Definition: time_governor.hh:522
DarcyFlowInterface::MortarP0
@ MortarP0
Definition: darcy_flow_interface.hh:32
balance.hh
local_to_global_map.hh
DarcyMH::data_changed_
bool data_changed_
Definition: darcy_flow_mh.hh:371
MeshBase::n_elements
unsigned int n_elements() const
Definition: mesh.h:111
TimeStep::index
unsigned int index() const
Definition: time_governor.hh:159
IntersectionLocalBase::bulk_ele_idx
unsigned int bulk_ele_idx() const
Returns index of bulk element.
Definition: intersection_local.hh:77
DarcyMH::EqFields::dirichlet
@ dirichlet
Definition: darcy_flow_mh.hh:151
Mesh::mixed_intersections
MixedMeshIntersections & mixed_intersections()
Definition: mesh.cc:849
DebugOut
#define DebugOut()
Macro defining 'debug' record of log.
Definition: logger.hh:284
Input::Type::Selection::add_value
Selection & add_value(const int value, const std::string &key, const std::string &description="", TypeBase::attribute_map attributes=TypeBase::attribute_map())
Adds one new value with name given by key to the Selection.
Definition: type_selection.cc:50
TimeGovernor::next_time
void next_time()
Proceed to the next time according to current estimated time step.
Definition: time_governor.cc:667
TimeStep::length
double length() const
Definition: time_governor.hh:160
LinSys::get_solution_array
double * get_solution_array()
Definition: linsys.hh:325
Input::Type::Default::optional
static Default optional()
The factory function to make an empty default value which is optional.
Definition: type_record.hh:124
DarcyMH::read_initial_condition
virtual void read_initial_condition()
Definition: darcy_flow_mh.cc:1469
RegionIdx::bulk_idx
unsigned int bulk_idx() const
Returns index of the region in the bulk set.
Definition: region.hh:91
START_TIMER
#define START_TIMER(tag)
Starts a timer with specified tag.
Definition: sys_profiler.hh:115
FESystem
Compound finite element on dim dimensional simplex.
Definition: fe_system.hh:101
DarcyMH::registrar
static const int registrar
Registrar of class to factory.
Definition: darcy_flow_mh.hh:396
DarcyMH::initialize
void initialize() override
Definition: darcy_flow_mh.cc:452
LinSys_PETSC::get_input_type
static const Input::Type::Record & get_input_type()
Definition: linsys_PETSC.cc:32
DarcyMH::zero_time_step
void zero_time_step() override
Definition: darcy_flow_mh.cc:560
field.hh
DarcyFlowInterface
Definition: darcy_flow_interface.hh:15
Balance::get_input_type
static const Input::Type::Record & get_input_type()
Main balance input record type.
Definition: balance.cc:53
IntersectionResult::none
@ none
assembly_mh_old.hh
ElementAccessor::measure
double measure() const
Computes the measure of the element.
Definition: accessors_impl.hh:67
END_TIMER
#define END_TIMER(tag)
Ends a timer with specified tag.
Definition: sys_profiler.hh:149
DarcyMH::eq_fields
EqFields & eq_fields()
Definition: darcy_flow_mh.hh:266
TimeGovernor::last_dt
double last_dt() const
Definition: time_governor.hh:541
FieldValue
Definition: field_values.hh:645
range_wrapper.hh
Implementation of range helper class.
ElementAccessor::centre
arma::vec::fixed< spacedim > centre() const
Computes the barycenter.
Definition: accessors_impl.hh:89
IntersectionLocalBase
Common base for intersection object.
Definition: intersection_local.hh:48
Distribution::begin
unsigned int begin(int proc) const
get starting local index
Definition: distribution.hh:109
DarcyMH::EqData::EqData
EqData()
Constructor.
Definition: darcy_flow_mh.cc:332
MessageOut
#define MessageOut()
Macro defining 'message' record of log.
Definition: logger.hh:275
LinSys::mat_set_values
virtual void mat_set_values(int nrow, int *rows, int ncol, int *cols, double *vals)=0
intersection_local.hh
Classes with algorithms for computation of intersections of meshes.