Flow123d
darcy_flow_lmh.cc
Go to the documentation of this file.
1 /*!
2  *
3  * Copyright (C) 2015 Technical University of Liberec. All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify it under
6  * the terms of the GNU General Public License version 3 as published by the
7  * Free Software Foundation. (http://www.gnu.org/licenses/gpl-3.0.en.html)
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
11  * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
12  *
13  *
14  * @file darcy_flow_lmh.cc
15  * @ingroup flow
16  * @brief Setup and solve linear system of mixed-hybrid discretization of the linear
17  * porous media flow with possible preferential flow in fractures and chanels.
18  */
19 
20 //#include <limits>
21 #include <vector>
22 //#include <iostream>
23 //#include <iterator>
24 //#include <algorithm>
25 #include <armadillo>
26 
27 #include "petscmat.h"
28 #include "petscviewer.h"
29 #include "petscerror.h"
30 #include "mpi.h"
31 
32 #include "system/system.hh"
33 #include "system/sys_profiler.hh"
34 #include "system/index_types.hh"
35 #include "input/factory.hh"
36 
37 #include "mesh/mesh.h"
38 #include "mesh/bc_mesh.hh"
39 #include "mesh/partitioning.hh"
40 #include "mesh/accessors.hh"
41 #include "mesh/range_wrapper.hh"
42 #include "la/distribution.hh"
43 #include "la/linsys.hh"
44 #include "la/linsys_PETSC.hh"
45 // #include "la/linsys_BDDC.hh"
46 #include "la/schur.hh"
47 //#include "la/sparse_graph.hh"
49 #include "la/vector_mpi.hh"
50 
51 //#include "flow/assembly_lmh_old_.hh"
52 #include "flow/darcy_flow_lmh.hh"
54 #include "flow/assembly_lmh.hh"
55 #include "flow/assembly_models.hh"
56 
57 #include "tools/time_governor.hh"
59 #include "fields/field.hh"
60 #include "fields/field_values.hh"
62 #include "fields/field_fe.hh"
63 #include "fields/field_model.hh"
64 #include "fields/field_constant.hh"
65 
66 #include "coupling/balance.hh"
67 
70 
71 #include "fem/fe_p.hh"
72 
73 
74 FLOW123D_FORCE_LINK_IN_CHILD(darcy_flow_lmh)
75 
76 
77 
78 
79 namespace it = Input::Type;
80 
82  return it::Selection("MH_MortarMethod")
83  .add_value(NoMortar, "None", "No Mortar method is applied.")
84  .add_value(MortarP0, "P0", "Mortar space: P0 on elements of lower dimension.")
85  .add_value(MortarP1, "P1", "Mortar space: P1 on intersections, using non-conforming pressures.")
86  .close();
87 }
88 
90 
91  const it::Record &field_descriptor =
92  it::Record("Flow_Darcy_LMH_Data",FieldCommon::field_descriptor_record_description("Flow_Darcy_LMH_Data") )
93  .copy_keys( DarcyLMH::EqFields().make_field_descriptor_type("Flow_Darcy_LMH_Data_aux") )
94  .declare_key("bc_piezo_head", FieldAlgorithmBase< 3, FieldValue<3>::Scalar >::get_input_type_instance(),
95  "Boundary piezometric head for BC types: dirichlet, robin, and river." )
96  .declare_key("bc_switch_piezo_head", FieldAlgorithmBase< 3, FieldValue<3>::Scalar >::get_input_type_instance(),
97  "Boundary switch piezometric head for BC types: seepage, river." )
98  .declare_key("init_piezo_head", FieldAlgorithmBase< 3, FieldValue<3>::Scalar >::get_input_type_instance(),
99  "Initial condition for the pressure given as the piezometric head." )
100  .close();
101  return field_descriptor;
102 }
103 
105 
106  it::Record ns_rec = Input::Type::Record("NonlinearSolver", "Non-linear solver settings.")
107  .declare_key("linear_solver", LinSys::get_input_type(), it::Default("{}"),
108  "Linear solver for MH problem.")
109  .declare_key("tolerance", it::Double(0.0), it::Default("1E-6"),
110  "Residual tolerance.")
111  .declare_key("min_it", it::Integer(0), it::Default("1"),
112  "Minimum number of iterations (linear solutions) to use.\nThis is usefull if the convergence criteria "
113  "does not characterize your goal well enough so it converges prematurely, possibly even without a single linear solution."
114  "If greater then 'max_it' the value is set to 'max_it'.")
115  .declare_key("max_it", it::Integer(0), it::Default("100"),
116  "Maximum number of iterations (linear solutions) of the non-linear solver.")
117  .declare_key("converge_on_stagnation", it::Bool(), it::Default("false"),
118  "If a stagnation of the nonlinear solver is detected the solver stops. "
119  "A divergence is reported by default, forcing the end of the simulation. By setting this flag to 'true', the solver "
120  "ends with convergence success on stagnation, but it reports warning about it.")
121  .close();
122 
124 
125  return it::Record("Flow_Darcy_LMH", "Lumped Mixed-Hybrid solver for saturated Darcy flow.")
128  .declare_key("gravity", it::Array(it::Double(), 3,3), it::Default("[ 0, 0, -1]"),
129  "Vector of the gravity force. Dimensionless.")
131  "Input data for Darcy flow model.")
132  .declare_key("nonlinear_solver", ns_rec, it::Default("{}"),
133  "Non-linear solver for MH problem.")
134  .declare_key("output_stream", OutputTime::get_input_type(), it::Default("{}"),
135  "Output stream settings.\n Specify file format, precision etc.")
136 
137  .declare_key("output", DarcyFlowMHOutput::get_input_type(eq_fields, "Flow_Darcy_LMH"),
138  IT::Default("{ \"fields\": [ \"pressure_p0\", \"velocity_p0\" ] }"),
139  "Specification of output fields and output times.")
141  "Output settings specific to Darcy flow model.\n"
142  "Includes raw output and some experimental functionality.")
143  .declare_key("balance", Balance::get_input_type(), it::Default("{}"),
144  "Settings for computing mass balance.")
145  .declare_key("mortar_method", get_mh_mortar_selection(), it::Default("\"None\""),
146  "Method for coupling Darcy flow between dimensions on incompatible meshes. [Experimental]" )
147  .close();
148 }
149 
150 
151 const int DarcyLMH::registrar =
152  Input::register_class< DarcyLMH, Mesh &, const Input::Record >("Flow_Darcy_LMH") +
154 
155 
156 
158 {
159  *this += field_ele_pressure.name("pressure_p0")
160  .units(UnitSI().m())
162  .description("Pressure solution - P0 interpolation.");
163 
164  *this += field_edge_pressure.name("pressure_edge")
165  .units(UnitSI().m())
167  .description("Pressure solution - Crouzeix-Raviart interpolation.");
168 
169  *this += field_ele_piezo_head.name("piezo_head_p0")
170  .units(UnitSI().m())
172  .description("Piezo head solution - P0 interpolation.");
173 
174  *this += field_ele_velocity.name("velocity_p0")
175  .units(UnitSI().m().s(-1))
177  .description("Velocity solution - P0 interpolation.");
178 
179  *this += flux.name("flux")
180  .units(UnitSI().m().s(-1))
182  .description("Darcy flow flux.");
183 
184  *this += anisotropy.name("anisotropy")
185  .description("Anisotropy of the conductivity tensor.")
186  .input_default("1.0")
188 
189  *this += cross_section.name("cross_section")
190  .description("Complement dimension parameter (cross section for 1D, thickness for 2D).")
191  .input_default("1.0")
192  .units( UnitSI().m(3).md() );
193 
194  *this += conductivity.name("conductivity")
195  .description("Isotropic conductivity scalar.")
196  .input_default("1.0")
197  .units( UnitSI().m().s(-1) )
198  .set_limits(0.0);
199 
200  *this += sigma.name("sigma")
201  .description("Transition coefficient between dimensions.")
202  .input_default("1.0")
204 
205  *this += water_source_density.name("water_source_density")
206  .description("Water source density.")
207  .input_default("0.0")
208  .units( UnitSI().s(-1) );
209 
210  *this += bc_type.name("bc_type")
211  .description("Boundary condition type.")
213  .input_default("\"none\"")
215 
216  *this += bc_pressure
218  .name("bc_pressure")
219  .description("Prescribed pressure value on the boundary. Used for all values of ``bc_type`` except ``none`` and ``seepage``. "
220  "See documentation of ``bc_type`` for exact meaning of ``bc_pressure`` in individual boundary condition types.")
221  .input_default("0.0")
222  .units( UnitSI().m() );
223 
224  *this += bc_flux
226  .name("bc_flux")
227  .description("Incoming water boundary flux. Used for bc_types : ``total_flux``, ``seepage``, ``river``.")
228  .input_default("0.0")
229  .units( UnitSI().m().s(-1) );
230 
231  *this += bc_robin_sigma
233  .name("bc_robin_sigma")
234  .description("Conductivity coefficient in the ``total_flux`` or the ``river`` boundary condition type.")
235  .input_default("0.0")
236  .units( UnitSI().s(-1) );
237 
238  *this += bc_switch_pressure
240  .name("bc_switch_pressure")
241  .description("Critical switch pressure for ``seepage`` and ``river`` boundary conditions.")
242  .input_default("0.0")
243  .units( UnitSI().m() );
244 
245 
246  //these are for unsteady
247  *this += init_pressure.name("init_pressure")
248  .description("Initial condition for pressure in time dependent problems.")
249  .input_default("0.0")
250  .units( UnitSI().m() );
251 
252  *this += storativity.name("storativity")
253  .description("Storativity (in time dependent problems).")
254  .input_default("0.0")
255  .units( UnitSI().m(-1) );
256 
257  *this += extra_storativity.name("extra_storativity")
258  .description("Storativity added from upstream equation.")
259  .units( UnitSI().m(-1) )
260  .input_default("0.0")
261  .flags( input_copy );
262 
263  *this += extra_source.name("extra_water_source_density")
264  .description("Water source density added from upstream equation.")
265  .input_default("0.0")
266  .units( UnitSI().s(-1) )
267  .flags( input_copy );
268 
269  *this += gravity_field.name("gravity")
270  .description("Gravity vector.")
271  .input_default("0.0")
273 
274  *this += bc_gravity.name("bc_gravity")
275  .description("Boundary gravity vector.")
276  .input_default("0.0")
278 
279  *this += init_piezo_head.name("init_piezo_head")
280  .units(UnitSI().m())
281  .input_default("0.0")
282  .description("Init piezo head.");
283 
284  *this += bc_piezo_head.name("bc_piezo_head")
285  .units(UnitSI().m())
286  .input_default("0.0")
287  .description("Boundary piezo head.");
288 
289  *this += bc_switch_piezo_head.name("bc_switch_piezo_head")
290  .units(UnitSI().m())
291  .input_default("0.0")
292  .description("Boundary switch piezo head.");
293 
294  //time_term_fields = this->subset({"storativity"});
295  //main_matrix_fields = this->subset({"anisotropy", "conductivity", "cross_section", "sigma", "bc_type", "bc_robin_sigma"});
296  //rhs_fields = this->subset({"water_source_density", "bc_pressure", "bc_flux"});
297 }
298 
299 
300 
302  return it::Selection("Flow_Darcy_BC_Type")
303  .add_value(none, "none",
304  "Homogeneous Neumann boundary condition\n(zero normal flux over the boundary).")
305  .add_value(dirichlet, "dirichlet",
306  "Dirichlet boundary condition. "
307  "Specify the pressure head through the ``bc_pressure`` field "
308  "or the piezometric head through the ``bc_piezo_head`` field.")
309  .add_value(total_flux, "total_flux", "Flux boundary condition (combines Neumann and Robin type). "
310  "Water inflow equal to (($ \\delta_d(q_d^N + \\sigma_d (h_d^R - h_d) )$)). "
311  "Specify the water inflow by the ``bc_flux`` field, the transition coefficient by ``bc_robin_sigma`` "
312  "and the reference pressure head or piezometric head through ``bc_pressure`` or ``bc_piezo_head`` respectively.")
313  .add_value(seepage, "seepage",
314  "Seepage face boundary condition. Pressure and inflow bounded from above. Boundary with potential seepage flow "
315  "is described by the pair of inequalities: "
316  "(($h_d \\le h_d^D$)) and (($ -\\boldsymbol q_d\\cdot\\boldsymbol n \\le \\delta q_d^N$)), where the equality holds in at least one of them. "
317  "Caution: setting (($q_d^N$)) strictly negative "
318  "may lead to an ill posed problem since a positive outflow is enforced. "
319  "Parameters (($h_d^D$)) and (($q_d^N$)) are given by the fields ``bc_switch_pressure`` (or ``bc_switch_piezo_head``) and ``bc_flux`` respectively."
320  )
321  .add_value(river, "river",
322  "River boundary condition. For the water level above the bedrock, (($H_d > H_d^S$)), the Robin boundary condition is used with the inflow given by: "
323  "(( $ \\delta_d(q_d^N + \\sigma_d(H_d^D - H_d) )$)). For the water level under the bedrock, constant infiltration is used: "
324  "(( $ \\delta_d(q_d^N + \\sigma_d(H_d^D - H_d^S) )$)). Parameters: ``bc_pressure``, ``bc_switch_pressure``, "
325  " ``bc_sigma``, ``bc_flux``."
326  )
327  .close();
328 }
329 
330 
331 
333 {
334  mortar_method_=NoMortar;
335 }
336 
337 
339 {
340  auto size = dh_p_->get_local_to_global_map().size();
341  save_local_system_.resize(size);
342  bc_fluxes_reconstruted.resize(size);
343  loc_system_.resize(size);
344  postprocess_solution_.resize(size);
345 }
346 
347 
349 {
350  std::fill(save_local_system_.begin(), save_local_system_.end(), false);
351  std::fill(bc_fluxes_reconstruted.begin(), bc_fluxes_reconstruted.end(), false);
352 }
353 
354 
355 
356 
357 
358 
359 //=============================================================================
360 // CREATE AND FILL GLOBAL MH MATRIX OF THE WATER MODEL
361 // - do it in parallel:
362 // - initial distribution of elements, edges
363 //
364 /*! @brief CREATE AND FILL GLOBAL MH MATRIX OF THE WATER MODEL
365  *
366  * Parameters {Solver,NSchurs} number of performed Schur
367  * complements (0,1,2) for water flow MH-system
368  *
369  */
370 //=============================================================================
371 DarcyLMH::DarcyLMH(Mesh &mesh_in, const Input::Record in_rec, TimeGovernor *tm)
372 : DarcyFlowInterface(mesh_in, in_rec),
373  output_object(nullptr),
374  data_changed_(false),
375  read_init_cond_assembly_(nullptr),
376  mh_matrix_assembly_(nullptr),
378 {
379 
380  START_TIMER("Darcy constructor");
381  {
382  auto time_record = input_record_.val<Input::Record>("time");
383  if (tm == nullptr)
384  {
385  time_ = new TimeGovernor(time_record);
386  }
387  else
388  {
389  TimeGovernor tm_from_rec(time_record);
390  if (!tm_from_rec.is_default()) // is_default() == false when time record is present in input file
391  {
392  MessageOut() << "Duplicate key 'time', time in flow equation is already initialized from parent class!";
393  ASSERT_PERMANENT(false);
394  }
395  time_ = tm;
396  }
397  }
398 
399  eq_fields_ = make_shared<EqFields>();
400  eq_data_ = make_shared<EqData>();
401  this->eq_fieldset_ = eq_fields_.get();
402 
403  eq_fields_->set_mesh(*mesh_);
404 
405  eq_data_->is_linear=true;
406 
407  size = mesh_->n_elements() + mesh_->n_sides() + mesh_->n_edges();
408  eq_data_->mortar_method_= in_rec.val<MortarMethod>("mortar_method");
409  if (eq_data_->mortar_method_ != NoMortar) {
411  }
412 
413 
414  //side_ds->view( std::cout );
415  //el_ds->view( std::cout );
416  //edge_ds->view( std::cout );
417  //rows_ds->view( std::cout );
418 
419 }
420 
422 {
423  // DebugOut() << "t = " << time_->t() << " step_end " << time_->step().end() << "\n";
424  if(eq_data_->use_steady_assembly_)
425  {
426  // In steady case, the solution is computed with the data present at time t,
427  // and the steady state solution is valid until another change in data,
428  // which should correspond to time (t+dt).
429  // "The data change appears immediatly."
430  double next_t = time_->t() + time_->estimate_dt();
431  // DebugOut() << "STEADY next_t = " << next_t << "\n";
432  return next_t * (1 - 2*std::numeric_limits<double>::epsilon());
433  }
434  else
435  {
436  // In unsteady case, the solution is computed with the data present at time t,
437  // and the solution is valid at the time t+dt.
438  // "The data change does not appear immediatly, it is integrated over time interval dt."
439  // DebugOut() << "UNSTEADY\n";
440  return time_->t();
441  }
442 }
443 
445 //connecting data fields with mesh
446 {
447 
448  START_TIMER("data init");
449  eq_data_->mesh = mesh_;
450 
451  auto gravity_array = input_record_.val<Input::Array>("gravity");
452  std::vector<double> gvec;
453  gravity_array.copy_to(gvec);
454  gvec.push_back(0.0); // zero pressure shift
455  eq_data_->gravity_ = arma::vec(gvec);
456  eq_data_->gravity_vec_ = eq_data_->gravity_.subvec(0,2);
457 
458  FieldValue<3>::VectorFixed gvalue(eq_data_->gravity_vec_);
459  auto field_algo=std::make_shared<FieldConstant<3, FieldValue<3>::VectorFixed>>();
460  field_algo->set_value(gvalue);
461  eq_fields_->gravity_field.set(field_algo, 0.0);
462  eq_fields_->bc_gravity.set(field_algo, 0.0);
463 
464  eq_fields_->bc_pressure.add_factory(
465  std::make_shared<AddPotentialFactory<3, FieldValue<3>::Scalar> >
466  (eq_fields_->bc_gravity, eq_fields_->X(), eq_fields_->bc_piezo_head) );
467  eq_fields_->bc_switch_pressure.add_factory(
468  std::make_shared<AddPotentialFactory<3, FieldValue<3>::Scalar> >
469  (eq_fields_->bc_gravity, eq_fields_->X(), eq_fields_->bc_switch_piezo_head) );
470  eq_fields_->init_pressure.add_factory(
471  std::make_shared<AddPotentialFactory<3, FieldValue<3>::Scalar> >
472  (eq_fields_->gravity_field, eq_fields_->X(), eq_fields_->init_piezo_head) );
473 
474 
475  eq_fields_->set_input_list( this->input_record_.val<Input::Array>("input_fields"), *time_ );
476  // Check that the time step was set for the transient simulation.
477  if (! zero_time_term(true) && time_->is_default() ) {
478  //THROW(ExcAssertMsg());
479  //THROW(ExcMissingTimeGovernor() << input_record_.ei_address());
480  MessageOut() << "Missing the key 'time', obligatory for the transient problems." << endl;
481  ASSERT_PERMANENT(false);
482  }
483 
484  eq_fields_->mark_input_times(*time_);
485 }
486 
488 
489  { // init DOF handler for pressure fields
490 // std::shared_ptr< FiniteElement<0> > fe0_rt = std::make_shared<FE_RT0_disc<0>>();
491  std::shared_ptr< FiniteElement<1> > fe1_rt = std::make_shared<FE_RT0_disc<1>>();
492  std::shared_ptr< FiniteElement<2> > fe2_rt = std::make_shared<FE_RT0_disc<2>>();
493  std::shared_ptr< FiniteElement<3> > fe3_rt = std::make_shared<FE_RT0_disc<3>>();
494  std::shared_ptr< FiniteElement<0> > fe0_disc = std::make_shared<FE_P_disc<0>>(0);
495  std::shared_ptr< FiniteElement<1> > fe1_disc = std::make_shared<FE_P_disc<1>>(0);
496  std::shared_ptr< FiniteElement<2> > fe2_disc = std::make_shared<FE_P_disc<2>>(0);
497  std::shared_ptr< FiniteElement<3> > fe3_disc = std::make_shared<FE_P_disc<3>>(0);
498  std::shared_ptr< FiniteElement<0> > fe0_cr = std::make_shared<FE_CR<0>>();
499  std::shared_ptr< FiniteElement<1> > fe1_cr = std::make_shared<FE_CR<1>>();
500  std::shared_ptr< FiniteElement<2> > fe2_cr = std::make_shared<FE_CR<2>>();
501  std::shared_ptr< FiniteElement<3> > fe3_cr = std::make_shared<FE_CR<3>>();
502 // static FiniteElement<0> fe0_sys = FE_P_disc<0>(0); //TODO fix and use solution with FESystem<0>( {fe0_rt, fe0_disc, fe0_cr} )
503  FESystem<0> fe0_sys( {fe0_disc, fe0_disc, fe0_cr} );
504  FESystem<1> fe1_sys( {fe1_rt, fe1_disc, fe1_cr} );
505  FESystem<2> fe2_sys( {fe2_rt, fe2_disc, fe2_cr} );
506  FESystem<3> fe3_sys( {fe3_rt, fe3_disc, fe3_cr} );
507  MixedPtr<FESystem> fe_sys( std::make_shared<FESystem<0>>(fe0_sys), std::make_shared<FESystem<1>>(fe1_sys),
508  std::make_shared<FESystem<2>>(fe2_sys), std::make_shared<FESystem<3>>(fe3_sys) );
509  std::shared_ptr<DiscreteSpace> ds = std::make_shared<EqualOrderDiscreteSpace>( mesh_, fe_sys);
510  eq_data_->dh_ = std::make_shared<DOFHandlerMultiDim>(*mesh_);
511  eq_data_->dh_->distribute_dofs(ds);
512  }
513 
514  init_eq_data();
516 
517  eq_fields_->add_coords_field();
518 
519  { // construct pressure, velocity and piezo head fields
520  uint rt_component = 0;
521  eq_data_->full_solution = eq_data_->dh_->create_vector();
522  auto ele_flux_ptr = create_field_fe<3, FieldValue<3>::VectorFixed>(eq_data_->dh_, &eq_data_->full_solution, rt_component);
523  eq_fields_->flux.set(ele_flux_ptr, 0.0);
524 
525  eq_fields_->field_ele_velocity.set(Model<3, FieldValue<3>::VectorFixed>::create(fn_mh_velocity(), eq_fields_->flux, eq_fields_->cross_section), 0.0);
526 
527  uint p_ele_component = 1;
528  auto ele_pressure_ptr = create_field_fe<3, FieldValue<3>::Scalar>(eq_data_->dh_, &eq_data_->full_solution, p_ele_component);
529  eq_fields_->field_ele_pressure.set(ele_pressure_ptr, 0.0);
530 
531  uint p_edge_component = 2;
532  auto edge_pressure_ptr = create_field_fe<3, FieldValue<3>::Scalar>(eq_data_->dh_, &eq_data_->full_solution, p_edge_component);
533  eq_fields_->field_edge_pressure.set(edge_pressure_ptr, 0.0);
534 
535  eq_fields_->field_ele_piezo_head.set(
536  Model<3, FieldValue<3>::Scalar>::create(fn_mh_piezohead(), eq_fields_->gravity_field, eq_fields_->X(), eq_fields_->field_ele_pressure),
537  0.0
538  );
539  }
540 
541  { // init DOF handlers represents element pressure DOFs
542  uint p_element_component = 1;
543  eq_data_->dh_p_ = std::make_shared<SubDOFHandlerMultiDim>(eq_data_->dh_,p_element_component);
544  }
545 
546  { // init DOF handlers represents edge DOFs
547  uint p_edge_component = 2;
548  eq_data_->dh_cr_ = std::make_shared<SubDOFHandlerMultiDim>(eq_data_->dh_,p_edge_component);
549  }
550 
551  { // init DOF handlers represents side DOFs
552  MixedPtr<FE_CR_disc> fe_cr_disc;
553  std::shared_ptr<DiscreteSpace> ds_cr_disc = std::make_shared<EqualOrderDiscreteSpace>( mesh_, fe_cr_disc);
554  eq_data_->dh_cr_disc_ = std::make_shared<DOFHandlerMultiDim>(*mesh_);
555  eq_data_->dh_cr_disc_->distribute_dofs(ds_cr_disc);
556  }
557 
558  eq_data_->init();
559 
560  // create solution vector for 2. Schur complement linear system
561 // p_edge_solution = new VectorMPI(eq_data_->dh_cr_->distr()->lsize());
562 // full_solution = new VectorMPI(eq_data_->dh_->distr()->lsize());
563  // this creates mpi vector from DoFHandler, including ghost values
564  eq_data_->p_edge_solution = eq_data_->dh_cr_->create_vector();
565  eq_data_->p_edge_solution_previous = eq_data_->dh_cr_->create_vector();
566  eq_data_->p_edge_solution_previous_time = eq_data_->dh_cr_->create_vector();
567 
568  // Initialize bc_switch_dirichlet to size of global boundary.
569  eq_data_->bc_switch_dirichlet.resize(mesh_->n_elements()+mesh_->bc_mesh()->n_elements(), 1);
570 
571 
572  eq_data_->nonlinear_iteration_=0;
574  .val<Input::Record>("nonlinear_solver")
575  .val<Input::AbstractRecord>("linear_solver");
576 
578 
579  // auxiliary set_time call since allocation assembly evaluates fields as well
580  //time_->step().use_fparser_ = true;
583 
584 
585  // initialization of balance object
586  balance_ = std::make_shared<Balance>("water", mesh_);
587  balance_->init_from_input(input_record_.val<Input::Record>("balance"), time());
588  eq_data_->water_balance_idx = balance_->add_quantity("water_volume");
589  balance_->allocate(eq_data_->dh_, 1);
590  balance_->units(UnitSI().m(3));
591 
592  eq_data_->balance_ = this->balance_;
593 
594  this->initialize_asm();
595 }
596 
598 {
599  //eq_data_->multidim_assembler = AssemblyFlowBase::create< AssemblyLMH >(eq_fields_, eq_data_);
600 }
601 
602 //void DarcyLMH::read_initial_condition()
603 //{
604 // DebugOut().fmt("Read initial condition\n");
605 //
606 // for ( DHCellAccessor dh_cell : eq_data_->dh_->own_range() ) {
607 //
608 // LocDofVec p_indices = dh_cell.cell_with_other_dh(eq_data_->dh_p_.get()).get_loc_dof_indices();
609 // ASSERT_DBG(p_indices.n_elem == 1);
610 // LocDofVec l_indices = dh_cell.cell_with_other_dh(eq_data_->dh_cr_.get()).get_loc_dof_indices();
611 // ElementAccessor<3> ele = dh_cell.elm();
612 //
613 // // set initial condition
614 // double init_value = eq_fields_->init_pressure.value(ele.centre(),ele);
615 // unsigned int p_idx = eq_data_->dh_p_->parent_indices()[p_indices[0]];
616 // eq_data_->full_solution.set(p_idx, init_value);
617 //
618 // for (unsigned int i=0; i<ele->n_sides(); i++) {
619 // uint n_sides_of_edge = ele.side(i)->edge().n_sides();
620 // unsigned int l_idx = eq_data_->dh_cr_->parent_indices()[l_indices[i]];
621 // eq_data_->full_solution.add(l_idx, init_value/n_sides_of_edge);
622 //
623 // eq_data_->p_edge_solution.add(l_indices[i], init_value/n_sides_of_edge);
624 // }
625 // }
626 //
627 // initial_condition_postprocess();
628 //
629 // eq_data_->full_solution.ghost_to_local_begin();
630 // eq_data_->full_solution.ghost_to_local_end();
631 //
632 // eq_data_->p_edge_solution.ghost_to_local_begin();
633 // eq_data_->p_edge_solution.ghost_to_local_end();
634 // eq_data_->p_edge_solution_previous_time.copy_from(eq_data_->p_edge_solution);
635 //}
636 //
637 //void DarcyLMH::initial_condition_postprocess()
638 //{}
639 
641 {
642 
643  /* TODO:
644  * - Allow solution reconstruction (pressure and velocity) from initial condition on user request.
645  * - Steady solution as an intitial condition may be forced by setting inti_time =-1, and set data for the steady solver in that time.
646  * Solver should be able to switch from and to steady case depending on the zero time term.
647  */
648 
649  //time_->step().use_fparser_ = true;
651 
652  // zero_time_term means steady case
653  eq_data_->use_steady_assembly_ = zero_time_term();
654 
655  eq_data_->p_edge_solution.zero_entries();
656 
657  if (eq_data_->use_steady_assembly_) { // steady case
658  MessageOut() << "Flow zero time step - steady case\n";
659  //read_initial_condition(); // Possible solution guess for steady case.
660  solve_nonlinear(); // with right limit data
661  } else {
662  MessageOut() << "Flow zero time step - unsteady case\n";
663  eq_data_->time_step_ = time_->dt();
665  this->read_init_cond_asm();
666  accept_time_step(); // accept zero time step, i.e. initial condition
667 
668  // we reconstruct the initial solution here
669  // during the reconstruction assembly:
670  // - the balance objects are actually allocated
671  // - the full solution vector is computed
672  START_TIMER("DarcyFlowMH::reconstruct_solution_from_schur");
674  END_TIMER("DarcyFlowMH::reconstruct_solution_from_schur");
675  }
676  //solution_output(T,right_limit); // data for time T in any case
677  output_data();
678 }
679 
680 //=============================================================================
681 // COMPOSE and SOLVE WATER MH System possibly through Schur complements
682 //=============================================================================
684 {
685  START_TIMER("Solving MH system");
686 
687  time_->next_time();
688 
689  time_->view("DARCY"); //time governor information output
690 
691  solve_time_step();
692 
693  eq_data_->full_solution.local_to_ghost_begin();
694  eq_data_->full_solution.local_to_ghost_end();
695 }
696 
697 void DarcyLMH::solve_time_step(bool output)
698 {
699  //time_->step().use_fparser_ = true;
701  bool zero_time_term_from_left=zero_time_term();
702 
703  bool jump_time = eq_fields_->storativity.is_jump_time();
704  if (! zero_time_term_from_left) {
705  MessageOut() << "Flow time step - unsteady case\n";
706  // time term not treated as zero
707  // Unsteady solution up to the T.
708 
709  // this flag is necesssary for switching BC to avoid setting zero neumann on the whole boundary in the steady case
710  eq_data_->use_steady_assembly_ = false;
711 
712  solve_nonlinear(); // with left limit data
713  if(output)
715  if (jump_time) {
716  WarningOut() << "Output of solution discontinuous in time not supported yet.\n";
717  //solution_output(T, left_limit); // output use time T- delta*dt
718  //output_data();
719  }
720  }
721 
722  if (time_->is_end()) {
723  // output for unsteady case, end_time should not be the jump time
724  // but rether check that
725  if (! zero_time_term_from_left && ! jump_time && output)
726  output_data();
727  return;
728  }
729 
730  //time_->step().use_fparser_ = true;
732  bool zero_time_term_from_right=zero_time_term();
733  if (zero_time_term_from_right) {
734  MessageOut() << "Flow time step - steady case\n";
735  // this flag is necesssary for switching BC to avoid setting zero neumann on the whole boundary in the steady case
736  eq_data_->use_steady_assembly_ = true;
737  solve_nonlinear(); // with right limit data
738  if(output)
740 
741  } else if (! zero_time_term_from_left && jump_time) {
742  WarningOut() << "Discontinuous time term not supported yet.\n";
743  //solution_transfer(); // internally call set_time(T, left) and set_time(T,right) again
744  //solve_nonlinear(); // with right limit data
745  }
746  //solution_output(T,right_limit); // data for time T in any case
747  if (output)
748  output_data();
749 }
750 
751 bool DarcyLMH::zero_time_term(bool time_global) {
752  if (time_global) {
753  return (eq_fields_->storativity.input_list_size() == 0);
754  } else {
755  return eq_fields_->storativity.field_result(mesh_->region_db().get_region_set("BULK")) == result_zeros;
756  }
757 }
758 
759 
761 {
762 
764  double residual_norm = lin_sys_schur().compute_residual();
765  eq_data_->nonlinear_iteration_ = 0;
766  MessageOut().fmt("[nonlinear solver] norm of initial residual: {}\n", residual_norm);
767 
768  // Reduce is_linear flag.
769  int is_linear_common;
770  MPI_Allreduce(&(eq_data_->is_linear), &is_linear_common,1, MPI_INT ,MPI_MIN,PETSC_COMM_WORLD);
771 
772  Input::Record nl_solver_rec = input_record_.val<Input::Record>("nonlinear_solver");
773  this->tolerance_ = nl_solver_rec.val<double>("tolerance");
774  this->max_n_it_ = nl_solver_rec.val<unsigned int>("max_it");
775  this->min_n_it_ = nl_solver_rec.val<unsigned int>("min_it");
776  if (this->min_n_it_ > this->max_n_it_) this->min_n_it_ = this->max_n_it_;
777 
778  if (! is_linear_common) {
779  // set tolerances of the linear solver unless they are set by user.
780  lin_sys_schur().set_tolerances(0.1*this->tolerance_, 0.01*this->tolerance_, 100);
781  }
782  vector<double> convergence_history;
783 
784  while (eq_data_->nonlinear_iteration_ < this->min_n_it_ ||
785  (residual_norm > this->tolerance_ && eq_data_->nonlinear_iteration_ < this->max_n_it_ )) {
786  ASSERT_EQ( convergence_history.size(), eq_data_->nonlinear_iteration_ );
787  convergence_history.push_back(residual_norm);
788 
789  // print_matlab_matrix("matrix_" + std::to_string(time_->step().index()) + "_it_" + std::to_string(nonlinear_iteration_));
790  // stagnation test
791  if (convergence_history.size() >= 5 &&
792  convergence_history[ convergence_history.size() - 1]/convergence_history[ convergence_history.size() - 2] > 0.9 &&
793  convergence_history[ convergence_history.size() - 1]/convergence_history[ convergence_history.size() - 5] > 0.8) {
794  // stagnation
795  if (input_record_.val<Input::Record>("nonlinear_solver").val<bool>("converge_on_stagnation")) {
796  WarningOut().fmt("Accept solution on stagnation. Its: {} Residual: {}\n", eq_data_->nonlinear_iteration_, residual_norm);
797  break;
798  } else {
799  THROW(ExcSolverDiverge() << EI_Reason("Stagnation."));
800  }
801  }
802 
803  if (! is_linear_common){
804  eq_data_->p_edge_solution_previous.copy_from(eq_data_->p_edge_solution);
805  eq_data_->p_edge_solution_previous.local_to_ghost_begin();
806  eq_data_->p_edge_solution_previous.local_to_ghost_end();
807  }
808 
810  MessageOut().fmt("[schur solver] lin. it: {}, reason: {}, residual: {}\n",
811  si.n_iterations, si.converged_reason, lin_sys_schur().compute_residual());
812 
813  eq_data_->nonlinear_iteration_++;
814 
815  // hack to make BDDC work with empty compute_residual
816  if (is_linear_common){
817  // we want to print this info in linear (and steady) case
818  residual_norm = lin_sys_schur().compute_residual();
819  MessageOut().fmt("[nonlinear solver] lin. it: {}, reason: {}, residual: {}\n",
820  si.n_iterations, si.converged_reason, residual_norm);
821  break;
822  }
823  data_changed_=true; // force reassembly for non-linear case
824 
825  double alpha = 1; // how much of new solution
826  VecAXPBY(eq_data_->p_edge_solution.petsc_vec(), (1-alpha), alpha, eq_data_->p_edge_solution_previous.petsc_vec());
827 
828  //LogOut().fmt("Linear solver ended with reason: {} \n", si.converged_reason );
829  //ASSERT_PERMANENT_GE( si.converged_reason, 0).error("Linear solver failed to converge.\n");
831 
832  residual_norm = lin_sys_schur().compute_residual();
833  MessageOut().fmt("[nonlinear solver] it: {} lin. it: {}, reason: {}, residual: {}\n",
834  eq_data_->nonlinear_iteration_, si.n_iterations, si.converged_reason, residual_norm);
835  }
836 
837 // reconstruct_solution_from_schur(eq_data_->multidim_assembler);
838  START_TIMER("DarcyFlowMH::reconstruct_solution_from_schur");
840  END_TIMER("DarcyFlowMH::reconstruct_solution_from_schur");
841 
842  // adapt timestep
843  if (! this->zero_time_term()) {
844  double mult = 1.0;
845  if (eq_data_->nonlinear_iteration_ < 3) mult = 1.6;
846  if (eq_data_->nonlinear_iteration_ > 7) mult = 0.7;
847  time_->set_upper_constraint(time_->dt() * mult, "Darcy adaptivity.");
848  // int result = time_->set_upper_constraint(time_->dt() * mult, "Darcy adaptivity.");
849  //DebugOut().fmt("time adaptivity, res: {} it: {} m: {} dt: {} edt: {}\n", result, nonlinear_iteration_, mult, time_->dt(), time_->estimate_dt());
850  }
851 }
852 
853 
855 {
856  eq_data_->p_edge_solution_previous_time.copy_from(eq_data_->p_edge_solution);
857  eq_data_->p_edge_solution_previous_time.local_to_ghost_begin();
858  eq_data_->p_edge_solution_previous_time.local_to_ghost_end();
859 }
860 
861 
863  START_TIMER("Darcy output data");
864 
865  // print_matlab_matrix("matrix_" + std::to_string(time_->step().index()));
866 
867  //time_->view("DARCY"); //time governor information output
868  this->output_object->output();
869 
870 
871  START_TIMER("Darcy balance output");
872  balance_->calculate_cumulative(eq_data_->water_balance_idx, eq_data_->full_solution.petsc_vec());
873  balance_->calculate_instant(eq_data_->water_balance_idx, eq_data_->full_solution.petsc_vec());
874  balance_->output();
875 }
876 
877 
878 //double DarcyLMH::solution_precision() const
879 //{
880 // return eq_data_->lin_sys_schur->get_solution_precision();
881 //}
882 
883 
884 // ===========================================================================================
885 //
886 // MATRIX ASSEMBLY - we use abstract assembly routine, where LS Mat/Vec SetValues
887 // are in fact pointers to allocating or filling functions - this is governed by Linsystem roitunes
888 //
889 // =======================================================================================
890 //void DarcyLMH::assembly_mh_matrix(FMT_UNUSED MultidimAssembly& assembler)
891 //{
892 // START_TIMER("DarcyLMH::assembly_steady_mh_matrix");
893 //
894 // // DebugOut() << "assembly_mh_matrix \n";
895 // // set auxiliary flag for switchting Dirichlet like BC
896 // eq_data_->force_no_neumann_bc = eq_data_->use_steady_assembly_ && (eq_data_->nonlinear_iteration_ == 0);
897 //
898 // balance_->start_flux_assembly(eq_data_->water_balance_idx);
899 // balance_->start_source_assembly(eq_data_->water_balance_idx);
900 // balance_->start_mass_assembly(eq_data_->water_balance_idx);
901 //
902 // // TODO: try to move this into balance, or have it in the generic assembler class, that should perform the cell loop
903 // // including various pre- and post-actions
904 //// for ( DHCellAccessor dh_cell : eq_data_->dh_->own_range() ) {
905 //// unsigned int dim = dh_cell.dim();
906 //// assembler[dim-1]->assemble(dh_cell);
907 //// }
908 // this->mh_matrix_assembly_->assemble(eq_data_->dh_);
909 //
910 //
911 // balance_->finish_mass_assembly(eq_data_->water_balance_idx);
912 // balance_->finish_source_assembly(eq_data_->water_balance_idx);
913 // balance_->finish_flux_assembly(eq_data_->water_balance_idx);
914 //
915 //}
916 
917 
919 {
920  START_TIMER("DarcyLMH::allocate_mh_matrix");
921 
922  // to make space for second schur complement, max. 10 neighbour edges of one el.
923  double zeros[100000];
924  for(int i=0; i<100000; i++) zeros[i] = 0.0;
925 
926  std::vector<LongIdx> tmp_rows;
927  tmp_rows.reserve(200);
928 
929  std::vector<LongIdx> dofs, dofs_ngh;
930  dofs.reserve(eq_data_->dh_cr_->max_elem_dofs());
931  dofs_ngh.reserve(eq_data_->dh_cr_->max_elem_dofs());
932 
933  // DebugOut() << "Allocate new schur\n";
934  for ( DHCellAccessor dh_cell : eq_data_->dh_cr_->own_range() ) {
935  ElementAccessor<3> ele = dh_cell.elm();
936 
937  const uint ndofs = dh_cell.n_dofs();
938  dofs.resize(dh_cell.n_dofs());
939  dh_cell.get_dof_indices(dofs);
940 
941  int* dofs_ptr = dofs.data();
942  lin_sys_schur().mat_set_values(ndofs, dofs_ptr, ndofs, dofs_ptr, zeros);
943 
944  tmp_rows.clear();
945 
946  // compatible neighborings rows
947  unsigned int n_neighs = ele->n_neighs_vb();
948  for ( DHCellSide neighb_side : dh_cell.neighb_sides() ) {
949  // every compatible connection adds a 2x2 matrix involving
950  // current element pressure and a connected edge pressure
951 
952  // read neighbor dofs (dh_cr dofhandler)
953  // neighbor cell owning neighb_side
954  DHCellAccessor dh_neighb_cell = neighb_side.cell();
955 
956  const uint ndofs_ngh = dh_neighb_cell.n_dofs();
957  dofs_ngh.resize(ndofs_ngh);
958  dh_neighb_cell.get_dof_indices(dofs_ngh);
959 
960  // local index of pedge dof on neighboring cell
961  tmp_rows.push_back(dofs_ngh[neighb_side.side().side_idx()]);
962  }
963 
964  lin_sys_schur().mat_set_values(ndofs, dofs_ptr, n_neighs, tmp_rows.data(), zeros); // (edges) x (neigh edges)
965  lin_sys_schur().mat_set_values(n_neighs, tmp_rows.data(), ndofs, dofs_ptr, zeros); // (neigh edges) x (edges)
966  lin_sys_schur().mat_set_values(n_neighs, tmp_rows.data(), n_neighs, tmp_rows.data(), zeros); // (neigh edges) x (neigh edges)
967 
968  tmp_rows.clear();
969 // if (eq_data_->mortar_method_ != NoMortar) {
970 // auto &isec_list = mesh_->mixed_intersections().element_intersections_[ele.idx()];
971 // for(auto &isec : isec_list ) {
972 // IntersectionLocalBase *local = isec.second;
973 // DHCellAccessor dh_cell_slave = eq_data_->dh_cr_->cell_accessor_from_element(local->bulk_ele_idx());
974 //
975 // const uint ndofs_slave = dh_cell_slave.n_dofs();
976 // dofs_ngh.resize(ndofs_slave);
977 // dh_cell_slave.get_dof_indices(dofs_ngh);
978 //
979 // //DebugOut().fmt("Alloc: {} {}", ele.idx(), local->bulk_ele_idx());
980 // for(unsigned int i_side=0; i_side < dh_cell_slave.elm()->n_sides(); i_side++) {
981 // tmp_rows.push_back( dofs_ngh[i_side] );
982 // //DebugOut() << "aedge" << print_var(tmp_rows[tmp_rows.size()-1]);
983 // }
984 // }
985 // }
986 
987  lin_sys_schur().mat_set_values(ndofs, dofs_ptr, tmp_rows.size(), tmp_rows.data(), zeros); // master edges x slave edges
988  lin_sys_schur().mat_set_values(tmp_rows.size(), tmp_rows.data(), ndofs, dofs_ptr, zeros); // slave edges x master edges
989  lin_sys_schur().mat_set_values(tmp_rows.size(), tmp_rows.data(), tmp_rows.size(), tmp_rows.data(), zeros); // slave edges x slave edges
990  }
991  // DebugOut() << "end Allocate new schur\n";
992 
993  // int local_dofs[10];
994  // unsigned int nsides;
995  // for ( DHCellAccessor dh_cell : eq_data_->dh_->own_range() ) {
996  // LocalElementAccessorBase<3> ele_ac(dh_cell);
997  // nsides = ele_ac.n_sides();
998 
999  // //allocate at once matrix [sides,ele,edges]x[sides,ele,edges]
1000  // loc_size = 1 + 2*nsides;
1001  // unsigned int i_side = 0;
1002 
1003  // for (; i_side < nsides; i_side++) {
1004  // local_dofs[i_side] = ele_ac.side_row(i_side);
1005  // local_dofs[i_side+nsides] = ele_ac.edge_row(i_side);
1006  // }
1007  // local_dofs[i_side+nsides] = ele_ac.ele_row();
1008  // int * edge_rows = local_dofs + nsides;
1009  // //int ele_row = local_dofs[0];
1010 
1011  // // whole local MH matrix
1012  // ls->mat_set_values(loc_size, local_dofs, loc_size, local_dofs, zeros);
1013 
1014 
1015  // // compatible neighborings rows
1016  // unsigned int n_neighs = ele_ac.element_accessor()->n_neighs_vb();
1017  // unsigned int i=0;
1018  // for ( DHCellSide neighb_side : dh_cell.neighb_sides() ) {
1019  // //for (unsigned int i = 0; i < n_neighs; i++) {
1020  // // every compatible connection adds a 2x2 matrix involving
1021  // // current element pressure and a connected edge pressure
1022  // Neighbour *ngh = ele_ac.element_accessor()->neigh_vb[i];
1023  // DHCellAccessor cell_higher_dim = eq_data_->dh_->cell_accessor_from_element(neighb_side.elem_idx());
1024  // LocalElementAccessorBase<3> acc_higher_dim( cell_higher_dim );
1025  // for (unsigned int j = 0; j < neighb_side.element().dim()+1; j++)
1026  // if (neighb_side.element()->edge_idx(j) == ngh->edge_idx()) {
1027  // int neigh_edge_row = acc_higher_dim.edge_row(j);
1028  // tmp_rows.push_back(neigh_edge_row);
1029  // break;
1030  // }
1031  // //DebugOut() << "CC" << print_var(tmp_rows[i]);
1032  // ++i;
1033  // }
1034 
1035  // // allocate always also for schur 2
1036  // ls->mat_set_values(nsides+1, edge_rows, n_neighs, tmp_rows.data(), zeros); // (edges, ele) x (neigh edges)
1037  // ls->mat_set_values(n_neighs, tmp_rows.data(), nsides+1, edge_rows, zeros); // (neigh edges) x (edges, ele)
1038  // ls->mat_set_values(n_neighs, tmp_rows.data(), n_neighs, tmp_rows.data(), zeros); // (neigh edges) x (neigh edges)
1039 
1040  // tmp_rows.clear();
1041 
1042  // if (eq_data_->mortar_method_ != NoMortar) {
1043  // auto &isec_list = mesh_->mixed_intersections().element_intersections_[ele_ac.ele_global_idx()];
1044  // for(auto &isec : isec_list ) {
1045  // IntersectionLocalBase *local = isec.second;
1046  // LocalElementAccessorBase<3> slave_acc( eq_data_->dh_->cell_accessor_from_element(local->bulk_ele_idx()) );
1047  // //DebugOut().fmt("Alloc: {} {}", ele_ac.ele_global_idx(), local->bulk_ele_idx());
1048  // for(unsigned int i_side=0; i_side < slave_acc.dim()+1; i_side++) {
1049  // tmp_rows.push_back( slave_acc.edge_row(i_side) );
1050  // //DebugOut() << "aedge" << print_var(tmp_rows[tmp_rows.size()-1]);
1051  // }
1052  // }
1053  // }
1054  // /*
1055  // for(unsigned int i_side=0; i_side < ele_ac.element_accessor()->n_sides(); i_side++) {
1056  // DebugOut() << "aedge:" << print_var(edge_rows[i_side]);
1057  // }*/
1058 
1059  // ls->mat_set_values(nsides, edge_rows, tmp_rows.size(), tmp_rows.data(), zeros); // master edges x neigh edges
1060  // ls->mat_set_values(tmp_rows.size(), tmp_rows.data(), nsides, edge_rows, zeros); // neigh edges x master edges
1061  // ls->mat_set_values(tmp_rows.size(), tmp_rows.data(), tmp_rows.size(), tmp_rows.data(), zeros); // neigh edges x neigh edges
1062 
1063  // }
1064 /*
1065  // alloc edge diagonal entries
1066  if(rank == 0)
1067  for( vector<Edge>::iterator edg = mesh_->edges.begin(); edg != mesh_->edges.end(); ++edg) {
1068  int edg_idx = mh_dh.row_4_edge[edg->side(0)->edge_idx()];
1069 
1070 // for( vector<Edge>::iterator edg2 = mesh_->edges.begin(); edg2 != mesh_->edges.end(); ++edg2){
1071 // int edg_idx2 = mh_dh.row_4_edge[edg2->side(0)->edge_idx()];
1072 // if(edg_idx == edg_idx2){
1073 // DBGCOUT(<< "P[ " << rank << " ] " << "edg alloc: " << edg_idx << " " << edg_idx2 << "\n");
1074  ls->mat_set_value(edg_idx, edg_idx, 0.0);
1075 // }
1076 // }
1077  }
1078  */
1079  /*
1080  if (mortar_method_ == MortarP0) {
1081  P0_CouplingAssembler(*this).assembly(*ls);
1082  } else if (mortar_method_ == MortarP1) {
1083  P1_CouplingAssembler(*this).assembly(*ls);
1084  }*/
1085 }
1086 
1087 
1088 
1089 /*******************************************************************************
1090  * COMPOSE WATER MH MATRIX WITHOUT SCHUR COMPLEMENT
1091  ******************************************************************************/
1092 
1094 
1095  START_TIMER("preallocation");
1096 
1097  // if (schur0 == NULL) { // create Linear System for MH matrix
1098 
1099 // if (in_rec.type() == LinSys_BDDC::get_input_type()) {
1100 // #ifdef FLOW123D_HAVE_BDDCML
1101 // WarningOut() << "For BDDC no Schur complements are used.";
1102 // n_schur_compls = 0;
1103 // LinSys_BDDC *ls = new LinSys_BDDC(&(*eq_data_->dh_->distr()),
1104 // true); // swap signs of matrix and rhs to make the matrix SPD
1105 // ls->set_from_input(in_rec);
1106 // ls->set_solution( eq_data_->full_solution.petsc_vec() );
1107 // // possible initialization particular to BDDC
1108 // START_TIMER("BDDC set mesh data");
1109 // set_mesh_data_for_bddc(ls);
1110 // schur0=ls;
1111 // END_TIMER("BDDC set mesh data");
1112 // #else
1113 // Exception
1114 // THROW( ExcBddcmlNotSupported() );
1115 // #endif // FLOW123D_HAVE_BDDCML
1116 // }
1117 // else
1118  if (in_rec.type() == LinSys_PETSC::get_input_type()) {
1119  // use PETSC for serial case even when user wants BDDC
1120 
1121  eq_data_->lin_sys_schur = std::make_shared<LinSys_PETSC>( &(*eq_data_->dh_cr_->distr()) );
1122  lin_sys_schur().set_from_input(in_rec);
1124  lin_sys_schur().set_solution( eq_data_->p_edge_solution.petsc_vec() );
1126 
1127 // LinSys_PETSC *schur1, *schur2;
1128 
1129 // if (n_schur_compls == 0) {
1130 // LinSys_PETSC *ls = new LinSys_PETSC( &(*eq_data_->dh_->distr()) );
1131 
1132 // // temporary solution; we have to set precision also for sequantial case of BDDC
1133 // // final solution should be probably call of direct solver for oneproc case
1134 // // if (in_rec.type() != LinSys_BDDC::get_input_type()) ls->set_from_input(in_rec);
1135 // // else {
1136 // // ls->LinSys::set_from_input(in_rec); // get only common options
1137 // // }
1138 // ls->set_from_input(in_rec);
1139 
1140 // // ls->set_solution( eq_data_->full_solution.petsc_vec() );
1141 // schur0=ls;
1142 // } else {
1143 // IS is;
1144 // auto side_dofs_vec = get_component_indices_vec(0);
1145 
1146 // ISCreateGeneral(PETSC_COMM_SELF, side_dofs_vec.size(), &(side_dofs_vec[0]), PETSC_COPY_VALUES, &is);
1147 // //ISView(is, PETSC_VIEWER_STDOUT_SELF);
1148 // //ASSERT_PERMANENT(err == 0).error("Error in ISCreateStride.");
1149 
1150 // SchurComplement *ls = new SchurComplement(&(*eq_data_->dh_->distr()), is);
1151 
1152 // // make schur1
1153 // Distribution *ds = ls->make_complement_distribution();
1154 // if (n_schur_compls==1) {
1155 // schur1 = new LinSys_PETSC(ds);
1156 // schur1->set_positive_definite();
1157 // } else {
1158 // IS is;
1159 // auto elem_dofs_vec = get_component_indices_vec(1);
1160 
1161 // const PetscInt *b_indices;
1162 // ISGetIndices(ls->IsB, &b_indices);
1163 // uint b_size = ls->loc_size_B;
1164 // for(uint i_b=0, i_bb=0; i_b < b_size && i_bb < elem_dofs_vec.size(); i_b++) {
1165 // if (b_indices[i_b] == elem_dofs_vec[i_bb])
1166 // elem_dofs_vec[i_bb++] = i_b + ds->begin();
1167 // }
1168 // ISRestoreIndices(ls->IsB, &b_indices);
1169 
1170 
1171 // ISCreateGeneral(PETSC_COMM_SELF, elem_dofs_vec.size(), &(elem_dofs_vec[0]), PETSC_COPY_VALUES, &is);
1172 // //ISView(is, PETSC_VIEWER_STDOUT_SELF);
1173 // //ASSERT_PERMANENT(err == 0).error("Error in ISCreateStride.");
1174 // SchurComplement *ls1 = new SchurComplement(ds, is); // is is deallocated by SchurComplement
1175 // ls1->set_negative_definite();
1176 
1177 // // make schur2
1178 // schur2 = new LinSys_PETSC( ls1->make_complement_distribution() );
1179 // schur2->set_positive_definite();
1180 // ls1->set_complement( schur2 );
1181 // schur1 = ls1;
1182 // }
1183 // ls->set_complement( schur1 );
1184 // ls->set_from_input(in_rec);
1185 // // ls->set_solution( eq_data_->full_solution.petsc_vec() );
1186 // schur0=ls;
1187  // }
1188 
1189  START_TIMER("PETSC PREALLOCATION");
1191 
1193 
1194  eq_data_->full_solution.zero_entries();
1195  eq_data_->p_edge_solution.zero_entries();
1196  END_TIMER("PETSC PREALLOCATION");
1197  }
1198  else {
1199  THROW( ExcUnknownSolver() );
1200  }
1201 
1202  END_TIMER("preallocation");
1203 }
1204 
1206 {}
1207 
1208 //void DarcyLMH::reconstruct_solution_from_schur(MultidimAssembly& assembler)
1209 //{
1210 // START_TIMER("DarcyFlowMH::reconstruct_solution_from_schur");
1211 //
1212 // eq_data_->full_solution.zero_entries();
1213 // eq_data_->p_edge_solution.local_to_ghost_begin();
1214 // eq_data_->p_edge_solution.local_to_ghost_end();
1215 //
1216 // balance_->start_flux_assembly(eq_data_->water_balance_idx);
1217 // balance_->start_source_assembly(eq_data_->water_balance_idx);
1218 // balance_->start_mass_assembly(eq_data_->water_balance_idx);
1219 //
1220 // for ( DHCellAccessor dh_cell : eq_data_->dh_->own_range() ) {
1221 // unsigned int dim = dh_cell.dim();
1222 // assembler[dim-1]->assemble_reconstruct(dh_cell);
1223 // }
1224 //
1225 // eq_data_->full_solution.local_to_ghost_begin();
1226 // eq_data_->full_solution.local_to_ghost_end();
1227 //
1228 // balance_->finish_mass_assembly(eq_data_->water_balance_idx);
1229 // balance_->finish_source_assembly(eq_data_->water_balance_idx);
1230 // balance_->finish_flux_assembly(eq_data_->water_balance_idx);
1231 //}
1232 
1234  START_TIMER("DarcyFlowMH::assembly_linear_system");
1235 // DebugOut() << "DarcyLMH::assembly_linear_system\n";
1236 
1237  eq_data_->p_edge_solution.local_to_ghost_begin();
1238  eq_data_->p_edge_solution.local_to_ghost_end();
1239 
1240  eq_data_->is_linear=true;
1241  //DebugOut() << "Assembly linear system\n";
1242 // if (data_changed_) {
1243 // data_changed_ = false;
1244  {
1245  //DebugOut() << "Data changed\n";
1246  // currently we have no optimization for cases when just time term data or RHS data are changed
1247  START_TIMER("full assembly");
1248 // if (typeid(*schur0) != typeid(LinSys_BDDC)) {
1249 // schur0->start_add_assembly(); // finish allocation and create matrix
1250 // schur_compl->start_add_assembly();
1251 // }
1252 
1254 
1257 
1258  eq_data_->time_step_ = time_->dt();
1259 
1260  START_TIMER("DarcyLMH::assembly_steady_mh_matrix");
1261  this->mh_matrix_assembly_->assemble(eq_data_->dh_);; // fill matrix
1262  END_TIMER("DarcyLMH::assembly_steady_mh_matrix");
1263 // assembly_mh_matrix( eq_data_->multidim_assembler ); // fill matrix
1264 
1267 
1268  // print_matlab_matrix("matrix");
1269  }
1270 }
1271 
1272 
1273 void DarcyLMH::print_matlab_matrix(std::string matlab_file)
1274 {
1275  std::string output_file;
1276 
1277  // compute h_min for different dimensions
1278  double d_max = std::numeric_limits<double>::max();
1279  double h1 = d_max, h2 = d_max, h3 = d_max;
1280  double he2 = d_max, he3 = d_max;
1281  for (auto ele : mesh_->elements_range()) {
1282  switch(ele->dim()){
1283  case 1: h1 = std::min(h1,ele.measure()); break;
1284  case 2: h2 = std::min(h2,ele.measure()); break;
1285  case 3: h3 = std::min(h3,ele.measure()); break;
1286  }
1287 
1288  for (unsigned int j=0; j<ele->n_sides(); j++) {
1289  switch(ele->dim()){
1290  case 2: he2 = std::min(he2, ele.side(j)->measure()); break;
1291  case 3: he3 = std::min(he3, ele.side(j)->measure()); break;
1292  }
1293  }
1294  }
1295  if(h1 == d_max) h1 = 0;
1296  if(h2 == d_max) h2 = 0;
1297  if(h3 == d_max) h3 = 0;
1298  if(he2 == d_max) he2 = 0;
1299  if(he3 == d_max) he3 = 0;
1300 
1301  FILE * file;
1302  file = fopen(output_file.c_str(),"a");
1303  fprintf(file, "nA = %d;\n", eq_data_->dh_cr_disc_->distr()->size());
1304  fprintf(file, "nB = %d;\n", eq_data_->dh_->mesh()->get_el_ds()->size());
1305  fprintf(file, "nBF = %d;\n", eq_data_->dh_cr_->distr()->size());
1306  fprintf(file, "h1 = %e;\nh2 = %e;\nh3 = %e;\n", h1, h2, h3);
1307  fprintf(file, "he2 = %e;\nhe3 = %e;\n", he2, he3);
1308  fclose(file);
1309 
1310  {
1311  output_file = FilePath(matlab_file + "_sch_new.m", FilePath::output_file);
1312  PetscViewer viewer;
1313  PetscViewerASCIIOpen(PETSC_COMM_WORLD, output_file.c_str(), &viewer);
1314  PetscViewerSetFormat(viewer, PETSC_VIEWER_ASCII_MATLAB);
1315  MatView( *const_cast<Mat*>(lin_sys_schur().get_matrix()), viewer);
1316  VecView( *const_cast<Vec*>(lin_sys_schur().get_rhs()), viewer);
1317  VecView( *const_cast<Vec*>(&(lin_sys_schur().get_solution())), viewer);
1318  VecView( *const_cast<Vec*>(&(eq_data_->full_solution.petsc_vec())), viewer);
1319  }
1320 }
1321 
1322 
1323 //template <int dim>
1324 //std::vector<arma::vec3> dof_points(DHCellAccessor cell, const Mapping<dim, 3> &mapping) {
1325 //
1326 //
1327 // vector<arma::vec::fixed<dim+1>> bary_dof_points = cell->fe()->dof_points();
1328 //
1329 // std::vector<arma::vec3> points(20);
1330 // points.resize(0);
1331 //
1332 //}
1333 //
1334 
1335 // void DarcyLMH::set_mesh_data_for_bddc(LinSys_BDDC * bddc_ls) {
1336 // START_TIMER("DarcyFlowMH_Steady::set_mesh_data_for_bddc");
1337 // // prepare mesh for BDDCML
1338 // // initialize arrays
1339 // // auxiliary map for creating coordinates of local dofs and global-to-local numbering
1340 // std::map<int, arma::vec3> localDofMap;
1341 // // connectivity for the subdomain, i.e. global dof numbers on element, stored element-by-element
1342 // // Indices of Nodes on Elements
1343 // std::vector<int> inet;
1344 // // number of degrees of freedom on elements - determines elementwise chunks of INET array
1345 // // Number of Nodes on Elements
1346 // std::vector<int> nnet;
1347 // // Indices of Subdomain Elements in Global Numbering - for local elements, their global indices
1348 // std::vector<int> isegn;
1349 //
1350 // // This array is currently not used in BDDCML, it was used as an interface scaling alternative to scaling
1351 // // by diagonal. It corresponds to the rho-scaling.
1352 // std::vector<double> element_permeability;
1353 //
1354 // // maximal and minimal dimension of elements
1355 // uint elDimMax = 1;
1356 // uint elDimMin = 3;
1357 // std::vector<LongIdx> cell_dofs_global(10);
1358 //
1359 //
1360 //
1361 // for ( DHCellAccessor dh_cell : eq_data_->dh_->own_range() ) {
1362 // // LocalElementAccessorBase<3> ele_ac(dh_cell);
1363 // // for each element, create local numbering of dofs as fluxes (sides), pressure (element centre), Lagrange multipliers (edges), compatible connections
1364 //
1365 // dh_cell.get_dof_indices(cell_dofs_global);
1366 //
1367 // inet.insert(inet.end(), cell_dofs_global.begin(), cell_dofs_global.end());
1368 // uint n_inet = cell_dofs_global.size();
1369 //
1370 //
1371 // uint dim = dh_cell.elm().dim();
1372 // elDimMax = std::max( elDimMax, dim );
1373 // elDimMin = std::min( elDimMin, dim );
1374 //
1375 // // TODO: this is consistent with previous implementation, but may be wrong as it use global element numbering
1376 // // used in sequential mesh, do global numbering of distributed elements.
1377 // isegn.push_back( dh_cell.elm_idx());
1378 //
1379 // // TODO: use FiniteElement::dof_points
1380 // for (unsigned int si=0; si<dh_cell.elm()->n_sides(); si++) {
1381 // arma::vec3 coord = dh_cell.elm().side(si)->centre();
1382 // // flux dof points
1383 // localDofMap.insert( std::make_pair( cell_dofs_global[si], coord ) );
1384 // // pressure trace dof points
1385 // localDofMap.insert( std::make_pair( cell_dofs_global[si+dim+2], coord ) );
1386 // }
1387 // // pressure dof points
1388 // arma::vec3 elm_centre = dh_cell.elm().centre();
1389 // localDofMap.insert( std::make_pair( cell_dofs_global[dim+1], elm_centre ) );
1390 //
1391 // // insert dofs related to compatible connections
1392 // //const Element *ele = dh_cell.elm().element();
1393 // for(DHCellSide side : dh_cell.neighb_sides()) {
1394 // uint neigh_dim = side.cell().elm().dim();
1395 // side.cell().get_dof_indices(cell_dofs_global);
1396 // int edge_row = cell_dofs_global[neigh_dim+2+side.side_idx()];
1397 // localDofMap.insert( std::make_pair( edge_row, side.centre() ) );
1398 // inet.push_back( edge_row );
1399 // n_inet++;
1400 // }
1401 // nnet.push_back(n_inet);
1402 //
1403 //
1404 // // version for rho scaling
1405 // // trace computation
1406 // double conduct = eq_fields_->conductivity.value( elm_centre , dh_cell.elm() );
1407 // auto aniso = eq_fields_->anisotropy.value( elm_centre , dh_cell.elm() );
1408 //
1409 // // compute mean on the diagonal
1410 // double coef = 0.;
1411 // for ( int i = 0; i < 3; i++) {
1412 // coef = coef + aniso.at(i,i);
1413 // }
1414 // // Maybe divide by cs
1415 // coef = conduct*coef / 3;
1416 //
1417 // ASSERT_PERMANENT_GT(coef, 0).error("Zero coefficient of hydrodynamic resistance.\n");
1418 // element_permeability.push_back( 1. / coef );
1419 // }
1420 // // uint i_inet = 0;
1421 // // for(int n_dofs : nnet) {
1422 // // DebugOut() << "nnet: " << n_dofs;
1423 // // for(int j=0; j < n_dofs; j++, i_inet++) {
1424 // // DebugOut() << "inet: " << inet[i_inet];
1425 // // }
1426 // // }
1427 //
1428 // auto distr = eq_data_->dh_->distr();
1429 // // for(auto pair : localDofMap) {
1430 // // DebugOut().every_proc() << "r: " << distr->myp() << " gi: " << pair.first << "xyz: " << pair.second[0];
1431 // //
1432 // // }
1433 //
1434 //
1435 // //convert set of dofs to vectors
1436 // // number of nodes (= dofs) on the subdomain
1437 // int numNodeSub = localDofMap.size();
1438 // //ASSERT_PERMANENT_EQ( (unsigned int)numNodeSub, eq_data_->dh_->lsize() );
1439 // // Indices of Subdomain Nodes in Global Numbering - for local nodes, their global indices
1440 // std::vector<int> isngn( numNodeSub );
1441 // // pseudo-coordinates of local nodes (i.e. dofs)
1442 // // they need not be exact, they are used just for some geometrical considerations in BDDCML,
1443 // // such as selection of corners maximizing area of a triangle, bounding boxes fro subdomains to
1444 // // find candidate neighbours etc.
1445 // std::vector<double> xyz( numNodeSub * 3 ) ;
1446 // int ind = 0;
1447 // std::map<int,arma::vec3>::iterator itB = localDofMap.begin();
1448 // for ( ; itB != localDofMap.end(); ++itB ) {
1449 // isngn[ind] = itB -> first;
1450 //
1451 // arma::vec3 coord = itB -> second;
1452 // for ( int j = 0; j < 3; j++ ) {
1453 // xyz[ j*numNodeSub + ind ] = coord[j];
1454 // }
1455 //
1456 // ind++;
1457 // }
1458 // localDofMap.clear();
1459 //
1460 // // Number of Nodal Degrees of Freedom
1461 // // nndf is trivially one - dofs coincide with nodes
1462 // std::vector<int> nndf( numNodeSub, 1 );
1463 //
1464 // // prepare auxiliary map for renumbering nodes
1465 // typedef std::map<int,int> Global2LocalMap_; //! type for storage of global to local map
1466 // Global2LocalMap_ global2LocalNodeMap;
1467 // for ( unsigned ind = 0; ind < isngn.size(); ++ind ) {
1468 // global2LocalNodeMap.insert( std::make_pair( static_cast<unsigned>( isngn[ind] ), ind ) );
1469 // }
1470 //
1471 // // renumber nodes in the inet array to locals
1472 // int indInet = 0;
1473 // for ( unsigned int iEle = 0; iEle < isegn.size(); iEle++ ) {
1474 // int nne = nnet[ iEle ];
1475 // for ( int ien = 0; ien < nne; ien++ ) {
1476 //
1477 // int indGlob = inet[indInet];
1478 // // map it to local node
1479 // Global2LocalMap_::iterator pos = global2LocalNodeMap.find( indGlob );
1480 // ASSERT_PERMANENT( pos != global2LocalNodeMap.end())(indGlob).error("Cannot remap node index to local indices. \n " );
1481 // int indLoc = static_cast<int> ( pos -> second );
1482 //
1483 // // store the node
1484 // inet[ indInet++ ] = indLoc;
1485 // }
1486 // }
1487 //
1488 // int numNodes = size;
1489 // int numDofsInt = size;
1490 // int spaceDim = 3; // TODO: what is the proper value here?
1491 // int meshDim = elDimMax;
1492 //
1493 // /**
1494 // * We need:
1495 // * - local to global element map (possibly mesh->el_4_loc
1496 // * - inet, nnet - local dof numbers per element, local numbering of only those dofs that are on owned elements
1497 // * 1. collect DH local dof indices on elements, manage map from DH local indices to BDDC local dof indices
1498 // * 2. map collected DH indices to BDDC indices using the map
1499 // * - local BDDC dofs to global dofs, use DH to BDDC map with DH local to global map
1500 // * - XYZ - permuted, collect in main loop into array of size of all DH local dofs, compress and rearrange latter
1501 // * - element_permeability - in main loop
1502 // */
1503 // bddc_ls -> load_mesh( LinSys_BDDC::BDDCMatrixType::SPD_VIA_SYMMETRICGENERAL, spaceDim, numNodes, numDofsInt, inet, nnet, nndf, isegn, isngn, isngn, xyz, element_permeability, meshDim );
1504 // }
1505 
1506 
1507 
1508 
1509 //=============================================================================
1510 // DESTROY WATER MH SYSTEM STRUCTURE
1511 //=============================================================================
1513  if (output_object) delete output_object;
1514 
1515  if(time_ != nullptr)
1516  delete time_;
1517 
1518  if (read_init_cond_assembly_!=nullptr) {
1519  delete read_init_cond_assembly_;
1520  read_init_cond_assembly_ = nullptr;
1521  }
1522  if (mh_matrix_assembly_!=nullptr) {
1523  delete mh_matrix_assembly_;
1524  mh_matrix_assembly_ = nullptr;
1525  }
1526  if (reconstruct_schur_assembly_!=nullptr) {
1528  reconstruct_schur_assembly_ = nullptr;
1529  }
1530 }
1531 
1532 
1533 /// Helper method fills range (min and max) of given component
1534 void dofs_range(unsigned int n_dofs, unsigned int &min, unsigned int &max, unsigned int component) {
1535  if (component==0) {
1536  min = 0;
1537  max = n_dofs/2;
1538  } else if (component==1) {
1539  min = n_dofs/2;
1540  max = (n_dofs+1)/2;
1541  } else {
1542  min = (n_dofs+1)/2;
1543  max = n_dofs;
1544  }
1545 }
1546 
1547 
1549  ASSERT_LT(component, 3).error("Invalid component!");
1550  unsigned int i, n_dofs, min, max;
1551  std::vector<int> dof_vec;
1552  std::vector<LongIdx> dof_indices(eq_data_->dh_->max_elem_dofs());
1553  for ( DHCellAccessor dh_cell : eq_data_->dh_->own_range() ) {
1554  n_dofs = dh_cell.get_dof_indices(dof_indices);
1555  dofs_range(n_dofs, min, max, component);
1556  for (i=min; i<max; ++i) dof_vec.push_back(dof_indices[i]);
1557  }
1558  return dof_vec;
1559 }
1560 
1561 
1566 }
1567 
1568 
1570  this->read_init_cond_assembly_->assemble(eq_data_->dh_cr_);
1571 }
1572 
1573 
1574 //-----------------------------------------------------------------------------
1575 // vim: set cindent:
FieldCommon::units
FieldCommon & units(const UnitSI &units)
Set basic units of the field.
Definition: field_common.hh:153
LimitSide::right
@ right
Element::n_neighs_vb
unsigned int n_neighs_vb() const
Return number of neighbours.
Definition: elements.h:65
EquationBase::mesh_
Mesh * mesh_
Definition: equation.hh:219
Input::Type::Bool
Class for declaration of the input of type Bool.
Definition: type_base.hh:452
result_zeros
@ result_zeros
Definition: field_algo_base.hh:74
MPI_MIN
#define MPI_MIN
Definition: mpi.h:198
DarcyLMH::EqFields::bc_flux
BCField< 3, FieldValue< 3 >::Scalar > bc_flux
Definition: darcy_flow_lmh.hh:182
DarcyLMH::EqFields::conductivity
Field< 3, FieldValue< 3 >::Scalar > conductivity
Definition: darcy_flow_lmh.hh:175
DarcyLMH::print_matlab_matrix
void print_matlab_matrix(string matlab_file)
Print darcy flow matrix in matlab format into a file.
Definition: darcy_flow_lmh.cc:1273
LinSys::SolveInfo::n_iterations
int n_iterations
Definition: linsys.hh:109
DarcyLMH::zero_time_term
virtual bool zero_time_term(bool time_global=false)
Definition: darcy_flow_lmh.cc:751
Armor::vec
ArmaVec< double, N > vec
Definition: armor.hh:885
DarcyFlowMHOutput::output
void output()
Calculate values for output.
Definition: darcy_flow_mh_output.cc:239
TimeGovernor::dt
double dt() const
Definition: time_governor.hh:565
DarcyLMH::EqData::reset
void reset()
Reset data members.
Definition: darcy_flow_lmh.cc:348
UnitSI::dimensionless
static UnitSI & dimensionless()
Returns dimensionless unit.
Definition: unit_si.cc:55
factory.hh
field_constant.hh
vector_mpi.hh
DarcyLMH::output_object
DarcyFlowMHOutput * output_object
Definition: darcy_flow_lmh.hh:406
time_governor.hh
Basic time management class.
field_add_potential.hh
field_algo_base.hh
MeshBase::region_db
const RegionDB & region_db() const
Definition: mesh.h:175
DarcyLMH::accept_time_step
virtual void accept_time_step()
postprocess velocity field (add sources)
Definition: darcy_flow_lmh.cc:854
LinSys::SolveInfo
Definition: linsys.hh:104
LinSys::set_symmetric
void set_symmetric(bool flag=true)
Definition: linsys.hh:560
DarcyLMH::create_linear_system
void create_linear_system(Input::AbstractRecord rec)
Definition: darcy_flow_lmh.cc:1093
Mesh::n_sides
unsigned int n_sides() const
Definition: mesh.cc:308
DarcyFlowInterface::MortarP1
@ MortarP1
Definition: darcy_flow_interface.hh:33
EquationBase::time_
TimeGovernor * time_
Definition: equation.hh:220
assembly_lmh.hh
distribution.hh
Support classes for parallel programing.
bc_mesh.hh
DarcyLMH::DarcyFlowMHOutput
friend class DarcyFlowMHOutput
Definition: darcy_flow_lmh.hh:421
Input::Type::Integer
Class for declaration of the integral input data.
Definition: type_base.hh:483
DarcyLMH::init_eq_data
void init_eq_data()
Definition: darcy_flow_lmh.cc:444
Input::Record::val
const Ret val(const string &key) const
Definition: accessors_impl.hh:31
DHCellAccessor::get_dof_indices
unsigned int get_dof_indices(std::vector< LongIdx > &indices) const
Fill vector of the global indices of dofs associated to the cell.
Definition: dh_cell_accessor.hh:80
TimeGovernor::set_upper_constraint
int set_upper_constraint(double upper, std::string message)
Sets upper constraint for the next time step estimating.
Definition: time_governor.cc:555
EquationBase::time
TimeGovernor & time()
Definition: equation.hh:148
Input::Type::Selection::close
const Selection & close() const
Close the Selection, no more values can be added.
Definition: type_selection.cc:65
DarcyLMH::EqFields::EqFields
EqFields()
Creation of all fields.
Definition: darcy_flow_lmh.cc:157
fmt::fprintf
FMT_FUNC int fprintf(std::ostream &os, CStringRef format, ArgList args)
Definition: ostream.cc:56
FilePath
Dedicated class for storing path to input and output files.
Definition: file_path.hh:54
linsys.hh
Wrappers for linear systems based on MPIAIJ and MATIS format.
Input::Type::Double
Class for declaration of the input data that are floating point numbers.
Definition: type_base.hh:534
LinSys::rhs_zero_entries
virtual PetscErrorCode rhs_zero_entries()
Definition: linsys.hh:272
FLOW123D_FORCE_LINK_IN_CHILD
#define FLOW123D_FORCE_LINK_IN_CHILD(x)
Definition: global_defs.h:104
MeshBase::n_edges
unsigned int n_edges() const
Definition: mesh.h:114
LinSys::mat_zero_entries
virtual PetscErrorCode mat_zero_entries()
Definition: linsys.hh:263
DarcyLMH::max_n_it_
unsigned int max_n_it_
Definition: darcy_flow_lmh.hh:415
THROW
#define THROW(whole_exception_expr)
Wrapper for throw. Saves the throwing point.
Definition: exceptions.hh:53
LinSys::SolveInfo::converged_reason
int converged_reason
Definition: linsys.hh:108
std::vector< double >
ElementAccessor< 3 >
DarcyLMH::data_changed_
bool data_changed_
Definition: darcy_flow_lmh.hh:410
system.hh
FieldCommon::set_limits
FieldCommon & set_limits(double min, double max=std::numeric_limits< double >::max())
Definition: field_common.hh:159
fn_mh_velocity
Definition: assembly_models.hh:29
assembly_models.hh
Functors of FieldModels used in Darcy flow module.
FieldCommon::flags
FieldCommon & flags(FieldFlag::Flags::Mask mask)
Definition: field_common.hh:192
DarcyLMH::solve_time_step
void solve_time_step(bool output=true)
Solve the problem without moving to next time and without output.
Definition: darcy_flow_lmh.cc:697
DarcyLMH::update_solution
void update_solution() override
Definition: darcy_flow_lmh.cc:683
DarcyLMH::EqFields
Definition: darcy_flow_lmh.hh:149
LinSys::solve
virtual SolveInfo solve()=0
field_fe.hh
uint
unsigned int uint
Definition: mh_dofhandler.hh:101
DarcyLMH::get_input_type
static const Input::Type::Record & get_input_type()
Definition: darcy_flow_lmh.cc:104
Input::AbstractRecord::type
Input::Type::Record type() const
Definition: accessors.cc:273
linsys_PETSC.hh
Solver based on the original PETSc solver using MPIAIJ matrix and succesive Schur complement construc...
DarcyLMH::initialize_asm
virtual void initialize_asm()
Create and initialize assembly objects.
Definition: darcy_flow_lmh.cc:1562
darcy_flow_lmh.hh
Lumped mixed-hybrid model of linear Darcy flow, possibly unsteady.
DarcyLMH::postprocess
virtual void postprocess()
Definition: darcy_flow_lmh.cc:1205
DarcyLMH::assembly_linear_system
virtual void assembly_linear_system()
Definition: darcy_flow_lmh.cc:1233
MeshBase::elements_range
Range< ElementAccessor< 3 > > elements_range() const
Returns range of mesh elements.
Definition: mesh.cc:1174
index_types.hh
LinSys::set_positive_definite
void set_positive_definite(bool flag=true)
Definition: linsys.hh:575
DarcyLMH::mh_matrix_assembly_
GenericAssemblyBase * mh_matrix_assembly_
Definition: darcy_flow_lmh.hh:427
DarcyLMH::min_n_it_
unsigned int min_n_it_
Definition: darcy_flow_lmh.hh:414
GenericAssemblyBase::assemble
virtual void assemble(std::shared_ptr< DOFHandlerMultiDim > dh)=0
GenericAssembly::assemble
void assemble(std::shared_ptr< DOFHandlerMultiDim > dh) override
General assemble methods.
Definition: generic_assembly.hh:209
DarcyLMH::EqFields::cross_section
Field< 3, FieldValue< 3 >::Scalar > cross_section
Definition: darcy_flow_lmh.hh:176
ASSERT_LT
#define ASSERT_LT(a, b)
Definition of comparative assert macro (Less Than) only for debug mode.
Definition: asserts.hh:301
DarcyLMH::EqFields::bc_switch_pressure
BCField< 3, FieldValue< 3 >::Scalar > bc_switch_pressure
Definition: darcy_flow_lmh.hh:184
LinSys::set_matrix_changed
void set_matrix_changed()
Definition: linsys.hh:211
fe_p.hh
Definitions of basic Lagrangean finite elements with polynomial shape functions.
DarcyLMH::type_field_descriptor
static const Input::Type::Record & type_field_descriptor()
Definition: darcy_flow_lmh.cc:89
DarcyLMH::zero_time_step
void zero_time_step() override
Definition: darcy_flow_lmh.cc:640
LinSys::start_allocation
virtual void start_allocation()
Definition: linsys.hh:332
DarcyFlowMHOutput::get_input_type
static const Input::Type::Instance & get_input_type(FieldSet &eq_data, const std::string &equation_name)
Definition: darcy_flow_mh_output.cc:60
Input::Type::Record::size
unsigned int size() const
Returns number of keys in the Record.
Definition: type_record.hh:602
TimeGovernor::is_end
bool is_end() const
Returns true if the actual time is greater than or equal to the end time.
Definition: time_governor.hh:595
Input::Type::Default
Class Input::Type::Default specifies default value of keys of a Input::Type::Record.
Definition: type_record.hh:61
DHCellSide
Side accessor allows to iterate over sides of DOF handler cell.
Definition: dh_cell_accessor.hh:176
Input::Type::Record::derive_from
virtual Record & derive_from(Abstract &parent)
Method to derive new Record from an AbstractRecord parent.
Definition: type_record.cc:196
DarcyLMH::EqFields::bc_robin_sigma
BCField< 3, FieldValue< 3 >::Scalar > bc_robin_sigma
Definition: darcy_flow_lmh.hh:183
Mesh::bc_mesh
BCMesh * bc_mesh() const override
Implement MeshBase::bc_mesh(), getter of boundary mesh.
Definition: mesh.h:567
AddPotentialFactory
Definition: field_add_potential.hh:49
LimitSide::left
@ left
LinSys::compute_residual
virtual double compute_residual()=0
DarcyLMH::EqFields::bc_gravity
BCField< 3, FieldValue< 3 >::VectorFixed > bc_gravity
Holds gravity vector acceptable in FieldModel.
Definition: darcy_flow_lmh.hh:198
DarcyLMH::EqFields::bc_switch_piezo_head
BCField< 3, FieldValue< 3 >::Scalar > bc_switch_piezo_head
Definition: darcy_flow_lmh.hh:201
DarcyFlowInterface::NoMortar
@ NoMortar
Definition: darcy_flow_interface.hh:31
DarcyLMH::EqFields::total_flux
@ total_flux
Definition: darcy_flow_lmh.hh:157
accessors.hh
LinSys::set_tolerances
virtual void set_tolerances(double r_tol, double a_tol, unsigned int max_it)=0
DarcyLMH::eq_fields
EqFields & eq_fields()
Definition: darcy_flow_lmh.hh:308
Input::Record
Accessor to the data with type Type::Record.
Definition: accessors.hh:291
FieldFlag::equation_result
static constexpr Mask equation_result
Match result fields. These are never given by input or copy of input.
Definition: field_flag.hh:55
DarcyLMH::EqFields::bc_piezo_head
BCField< 3, FieldValue< 3 >::Scalar > bc_piezo_head
Definition: darcy_flow_lmh.hh:200
sys_profiler.hh
darcy_flow_mh_output.hh
Output class for darcy_flow_mh model.
ASSERT_PERMANENT
#define ASSERT_PERMANENT(expr)
Allow use shorter versions of macro names if these names is not used with external library.
Definition: asserts.hh:348
field_model.hh
DarcyLMH::solve_nonlinear
void solve_nonlinear()
Solve method common to zero_time_step and update solution.
Definition: darcy_flow_lmh.cc:760
mpi.h
mixed_mesh_intersections.hh
schur.hh
Assembly explicit Schur complement for the given linear system. Provides method for resolution of the...
DarcyLMH::balance_
std::shared_ptr< Balance > balance_
Definition: darcy_flow_lmh.hh:404
DarcyLMH::registrar
static const int registrar
Registrar of class to factory.
Definition: darcy_flow_lmh.hh:431
TimeGovernor
Basic time management functionality for unsteady (and steady) solvers (class Equation).
Definition: time_governor.hh:317
DarcyLMH::EqData::EqData
EqData()
Definition: darcy_flow_lmh.cc:332
TimeGovernor::step
const TimeStep & step(int index=-1) const
Definition: time_governor.cc:756
DarcyLMH::EqFields::get_bc_type_selection
static const Input::Type::Selection & get_bc_type_selection()
Return a Selection corresponding to enum BC_Type.
Definition: darcy_flow_lmh.cc:301
DarcyLMH::solved_time
virtual double solved_time() override
Definition: darcy_flow_lmh.cc:421
DarcyLMH::EqFields::init_piezo_head
Field< 3, FieldValue< 3 >::Scalar > init_piezo_head
Same as previous but used in boundary fields.
Definition: darcy_flow_lmh.hh:199
field_values.hh
Input::AbstractRecord
Accessor to the polymorphic input data of a type given by an AbstracRecord object.
Definition: accessors.hh:458
Input::Type::Default::obligatory
static Default obligatory()
The factory function to make an empty default value which is obligatory.
Definition: type_record.hh:110
DarcyLMH::EqFields::anisotropy
Field< 3, FieldValue< 3 >::TensorFixed > anisotropy
Definition: darcy_flow_lmh.hh:174
DarcyLMH::EqFields::flux
Field< 3, FieldValue< 3 >::VectorFixed > flux
Definition: darcy_flow_lmh.hh:194
UnitSI
Class for representation SI units of Fields.
Definition: unit_si.hh:40
fn_mh_piezohead
Definition: assembly_models.hh:37
ASSERT_EQ
#define ASSERT_EQ(a, b)
Definition of comparative assert macro (EQual) only for debug mode.
Definition: asserts.hh:333
EquationBase::input_record_
Input::Record input_record_
Definition: equation.hh:221
RegionDB::get_region_set
RegionSet get_region_set(const std::string &set_name) const
Definition: region.cc:328
FieldCommon::field_descriptor_record_description
static const std::string field_descriptor_record_description(const string &record_name)
Definition: field_common.cc:73
Input::Type::Record::declare_key
Record & declare_key(const string &key, std::shared_ptr< TypeBase > type, const Default &default_value, const string &description, TypeBase::attribute_map key_attributes=TypeBase::attribute_map())
Declares a new key of the Record.
Definition: type_record.cc:503
DarcyLMH::EqFields::bc_pressure
BCField< 3, FieldValue< 3 >::Scalar > bc_pressure
Definition: darcy_flow_lmh.hh:181
MPI_INT
#define MPI_INT
Definition: mpi.h:160
DarcyFlowMHOutput::get_input_type_specific
static const Input::Type::Instance & get_input_type_specific()
Definition: darcy_flow_mh_output.cc:67
mesh.h
DHCellAccessor::n_dofs
unsigned int n_dofs() const
Return number of dofs on given cell.
Definition: dh_cell_accessor.hh:420
Input::Type::Selection
Template for classes storing finite set of named values.
Definition: type_selection.hh:65
DarcyLMH::initialize_specific
virtual void initialize_specific()
Definition: darcy_flow_lmh.cc:597
DarcyFlowInterface::MortarMethod
MortarMethod
Type of experimental Mortar-like method for non-compatible 1d-2d interaction.
Definition: darcy_flow_interface.hh:30
DarcyFlowInterface::get_input_type
static Input::Type::Abstract & get_input_type()
Definition: darcy_flow_interface.hh:23
LinSys::start_add_assembly
virtual void start_add_assembly()
Definition: linsys.hh:340
DarcyLMH::eq_data_
std::shared_ptr< EqData > eq_data_
Definition: darcy_flow_lmh.hh:418
TimeGovernor::estimate_dt
double estimate_dt() const
Estimate choice of next time step according to actual setting of constraints.
Definition: time_governor.cc:631
TimeGovernor::view
void view(const char *name="") const
Definition: time_governor.cc:772
FieldFlag::input_copy
static constexpr Mask input_copy
Definition: field_flag.hh:44
DarcyLMH::~DarcyLMH
virtual ~DarcyLMH() override
Definition: darcy_flow_lmh.cc:1512
Input::Type::Record::close
Record & close() const
Close the Record for further declarations of keys.
Definition: type_record.cc:304
Input::Type
Definition: balance.hh:41
partitioning.hh
DarcyLMH::initialize
void initialize() override
Definition: darcy_flow_lmh.cc:487
DarcyLMH::EqFields::field_ele_pressure
Field< 3, FieldValue< 3 >::Scalar > field_ele_pressure
Externally added water source.
Definition: darcy_flow_lmh.hh:191
Input::Type::Record
Record type proxy class.
Definition: type_record.hh:182
DarcyLMH::get_component_indices_vec
std::vector< int > get_component_indices_vec(unsigned int component) const
Get vector of all DOF indices of given component (0..side, 1..element, 2..edge)
Definition: darcy_flow_lmh.cc:1548
DarcyLMH::EqFields::dirichlet
@ dirichlet
Definition: darcy_flow_lmh.hh:156
DarcyLMH::EqData::init
void init()
Initialize vectors, ...
Definition: darcy_flow_lmh.cc:338
DarcyLMH::EqFields::extra_source
Field< 3, FieldValue< 3 >::Scalar > extra_source
Externally added storativity.
Definition: darcy_flow_lmh.hh:189
DarcyLMH::lin_sys_schur
LinSys & lin_sys_schur()
Getter for the linear system of the 2. Schur complement.
Definition: darcy_flow_lmh.hh:395
LinSys::set_from_input
virtual void set_from_input(const Input::Record in_rec)
Definition: linsys.hh:640
FieldCommon::input_default
FieldCommon & input_default(const string &input_default)
Definition: field_common.hh:140
DarcyLMH::EqFields::field_ele_velocity
Field< 3, FieldValue< 3 >::VectorFixed > field_ele_velocity
Definition: darcy_flow_lmh.hh:193
DarcyLMH::EqFields::sigma
Field< 3, FieldValue< 3 >::Scalar > sigma
Definition: darcy_flow_lmh.hh:178
Mesh
Definition: mesh.h:362
OutputTime::get_input_type
static const Input::Type::Record & get_input_type()
The specification of output stream.
Definition: output_time.cc:38
DarcyLMH::tolerance_
double tolerance_
Definition: darcy_flow_lmh.hh:413
Input::Type::Record::copy_keys
Record & copy_keys(const Record &other)
Copy keys from other record.
Definition: type_record.cc:216
FieldAlgorithmBase
Definition: field_algo_base.hh:112
Input::Type::Array
Class for declaration of inputs sequences.
Definition: type_base.hh:339
Model
Definition: field_model.hh:338
DHCellAccessor
Cell accessor allow iterate over DOF handler cells.
Definition: dh_cell_accessor.hh:43
LinSys::finish_assembly
virtual void finish_assembly()=0
DarcyLMH::get_mh_mortar_selection
static const Input::Type::Selection & get_mh_mortar_selection()
Selection for enum MortarMethod.
Definition: darcy_flow_lmh.cc:81
MPI_Allreduce
#define MPI_Allreduce(sendbuf, recvbuf, count, datatype, op, comm)
Definition: mpi.h:612
Input::Array
Accessor to input data conforming to declared Array.
Definition: accessors.hh:566
WarningOut
#define WarningOut()
Macro defining 'warning' record of log.
Definition: logger.hh:278
DarcyLMH::EqFields::field_ele_piezo_head
Field< 3, FieldValue< 3 >::Scalar > field_ele_piezo_head
Definition: darcy_flow_lmh.hh:192
DarcyLMH::allocate_mh_matrix
void allocate_mh_matrix()
Definition: darcy_flow_lmh.cc:918
EquationBase::record_template
static Input::Type::Record & record_template()
Template Record with common keys for derived equations.
Definition: equation.cc:35
MixedPtr
Definition: mixed.hh:247
TimeGovernor::is_default
bool is_default()
Definition: time_governor.hh:388
LinSys::set_solution
void set_solution(Vec sol_vec)
Definition: linsys.hh:289
DarcyLMH::EqFields::init_pressure
Field< 3, FieldValue< 3 >::Scalar > init_pressure
Definition: darcy_flow_lmh.hh:186
DarcyLMH::reconstruct_schur_assembly_
GenericAssemblyBase * reconstruct_schur_assembly_
Definition: darcy_flow_lmh.hh:428
std::vector::data
T data
Definition: doxy_dummy_defs.hh:7
DarcyLMH::EqFields::water_source_density
Field< 3, FieldValue< 3 >::Scalar > water_source_density
Definition: darcy_flow_lmh.hh:177
LinSys::get_input_type
static Input::Type::Abstract & get_input_type()
Definition: linsys.cc:29
DarcyLMH::size
int size
Definition: darcy_flow_lmh.hh:408
DarcyLMH::EqFields::none
@ none
Definition: darcy_flow_lmh.hh:155
FilePath::output_file
@ output_file
Definition: file_path.hh:69
EquationBase::eq_fieldset_
FieldSet * eq_fieldset_
Definition: equation.hh:228
DarcyLMH::read_init_cond_assembly_
GenericAssembly< ReadInitCondAssemblyLMH > * read_init_cond_assembly_
general assembly objects, hold assembly objects of appropriate dimension
Definition: darcy_flow_lmh.hh:426
DarcyLMH::EqFields::gravity_field
Field< 3, FieldValue< 3 >::VectorFixed > gravity_field
Definition: darcy_flow_lmh.hh:197
DarcyFlowInterface::MortarP0
@ MortarP0
Definition: darcy_flow_interface.hh:32
balance.hh
local_to_global_map.hh
DarcyLMH::EqFields::seepage
@ seepage
Definition: darcy_flow_lmh.hh:158
MeshBase::n_elements
unsigned int n_elements() const
Definition: mesh.h:111
DarcyLMH::EqFields::field_edge_pressure
Field< 3, FieldValue< 3 >::Scalar > field_edge_pressure
Definition: darcy_flow_lmh.hh:195
FieldCommon::input_selection
FieldCommon & input_selection(Input::Type::Selection element_selection)
Definition: field_common.hh:172
FieldCommon::description
FieldCommon & description(const string &description)
Definition: field_common.hh:128
DarcyLMH::EqFields::storativity
Field< 3, FieldValue< 3 >::Scalar > storativity
Definition: darcy_flow_lmh.hh:187
DarcyLMH::read_init_cond_asm
virtual void read_init_cond_asm()
Call assemble of read_init_cond_assembly_.
Definition: darcy_flow_lmh.cc:1569
dofs_range
void dofs_range(unsigned int n_dofs, unsigned int &min, unsigned int &max, unsigned int component)
Helper method fills range (min and max) of given component.
Definition: darcy_flow_lmh.cc:1534
DarcyLMH::EqFields::bc_type
BCField< 3, FieldValue< 3 >::Enum > bc_type
Definition: darcy_flow_lmh.hh:180
Mesh::mixed_intersections
MixedMeshIntersections & mixed_intersections()
Definition: mesh.cc:849
Input::Type::Selection::add_value
Selection & add_value(const int value, const std::string &key, const std::string &description="", TypeBase::attribute_map attributes=TypeBase::attribute_map())
Adds one new value with name given by key to the Selection.
Definition: type_selection.cc:50
Field::disable_where
auto disable_where(const Field< spacedim, typename FieldValue< spacedim >::Enum > &control_field, const vector< FieldEnum > &value_list) -> Field &
Definition: field.impl.hh:195
TimeGovernor::next_time
void next_time()
Proceed to the next time according to current estimated time step.
Definition: time_governor.cc:670
DarcyLMH::eq_fields_
std::shared_ptr< EqFields > eq_fields_
Definition: darcy_flow_lmh.hh:417
Input::Type::Default::optional
static Default optional()
The factory function to make an empty default value which is optional.
Definition: type_record.hh:124
DarcyLMH::EqFields::extra_storativity
Field< 3, FieldValue< 3 >::Scalar > extra_storativity
Definition: darcy_flow_lmh.hh:188
DarcyLMH::output_data
virtual void output_data() override
Write computed fields.
Definition: darcy_flow_lmh.cc:862
START_TIMER
#define START_TIMER(tag)
Starts a timer with specified tag.
Definition: sys_profiler.hh:115
GenericAssembly< ReadInitCondAssemblyLMH >
FESystem
Compound finite element on dim dimensional simplex.
Definition: fe_system.hh:101
DarcyLMH::DarcyLMH
DarcyLMH(Mesh &mesh, const Input::Record in_rec, TimeGovernor *tm=nullptr)
CREATE AND FILL GLOBAL MH MATRIX OF THE WATER MODEL.
Definition: darcy_flow_lmh.cc:371
LinSys_PETSC::get_input_type
static const Input::Type::Record & get_input_type()
Definition: linsys_PETSC.cc:32
field.hh
DarcyFlowInterface
Definition: darcy_flow_interface.hh:15
Balance::get_input_type
static const Input::Type::Record & get_input_type()
Main balance input record type.
Definition: balance.cc:53
IntersectionResult::none
@ none
END_TIMER
#define END_TIMER(tag)
Ends a timer with specified tag.
Definition: sys_profiler.hh:149
FieldCommon::name
FieldCommon & name(const string &name)
Definition: field_common.hh:121
FieldValue
Definition: field_values.hh:645
range_wrapper.hh
Implementation of range helper class.
MessageOut
#define MessageOut()
Macro defining 'message' record of log.
Definition: logger.hh:275
LinSys::mat_set_values
virtual void mat_set_values(int nrow, int *rows, int ncol, int *cols, double *vals)=0
intersection_local.hh
Classes with algorithms for computation of intersections of meshes.
TimeGovernor::t
double t() const
Definition: time_governor.hh:542