28 #include "petscviewer.h" 29 #include "petscerror.h" 82 .
add_value(
MortarP1,
"P1",
"Mortar space: P1 on intersections, using non-conforming pressures.")
90 "Homogeneous Neumann boundary condition\n(zero normal flux over the boundary).")
92 "Dirichlet boundary condition. " 93 "Specify the pressure head through the ``bc_pressure`` field " 94 "or the piezometric head through the ``bc_piezo_head`` field.")
95 .
add_value(total_flux,
"total_flux",
"Flux boundary condition (combines Neumann and Robin type). " 96 "Water inflow equal to (($ \\delta_d(q_d^N + \\sigma_d (h_d^R - h_d) )$)). " 97 "Specify the water inflow by the ``bc_flux`` field, the transition coefficient by ``bc_robin_sigma`` " 98 "and the reference pressure head or piezometric head through ``bc_pressure`` or ``bc_piezo_head`` respectively.")
100 "Seepage face boundary condition. Pressure and inflow bounded from above. Boundary with potential seepage flow " 101 "is described by the pair of inequalities: " 102 "(($h_d \\le h_d^D$)) and (($ -\\boldsymbol q_d\\cdot\\boldsymbol n \\le \\delta q_d^N$)), where the equality holds in at least one of them. " 103 "Caution: setting (($q_d^N$)) strictly negative " 104 "may lead to an ill posed problem since a positive outflow is enforced. " 105 "Parameters (($h_d^D$)) and (($q_d^N$)) are given by the fields ``bc_switch_pressure`` (or ``bc_switch_piezo_head``) and ``bc_flux`` respectively." 108 "River boundary condition. For the water level above the bedrock, (($H_d > H_d^S$)), the Robin boundary condition is used with the inflow given by: " 109 "(( $ \\delta_d(q_d^N + \\sigma_d(H_d^D - H_d) )$)). For the water level under the bedrock, constant infiltration is used: " 110 "(( $ \\delta_d(q_d^N + \\sigma_d(H_d^D - H_d^S) )$)). Parameters: ``bc_pressure``, ``bc_switch_pressure``, " 111 " ``bc_sigma``, ``bc_flux``." 122 "Boundary piezometric head for BC types: dirichlet, robin, and river." )
124 "Boundary switch piezometric head for BC types: seepage, river." )
126 "Initial condition for the pressure given as the piezometric head." )
128 return field_descriptor;
135 "Linear solver for MH problem.")
137 "Residual tolerance.")
139 "Minimum number of iterations (linear solutions) to use.\nThis is usefull if the convergence criteria " 140 "does not characterize your goal well enough so it converges prematurely, possibly even without a single linear solution." 141 "If greater then 'max_it' the value is set to 'max_it'.")
143 "Maximum number of iterations (linear solutions) of the non-linear solver.")
145 "If a stagnation of the nonlinear solver is detected the solver stops. " 146 "A divergence is reported by default, forcing the end of the simulation. By setting this flag to 'true', the solver " 147 "ends with convergence success on stagnation, but it reports warning about it.")
150 return it::Record(
"Flow_Darcy_MH",
"Mixed-Hybrid solver for saturated Darcy flow.")
153 "Vector of the gravity force. Dimensionless.")
155 "Input data for Darcy flow model.")
157 "Non-linear solver for MH problem.")
159 "Output stream settings.\n Specify file format, precision etc.")
162 "Specification of output fields and output times.")
164 "Output settings specific to Darcy flow model.\n" 165 "Includes raw output and some experimental functionality.")
167 "Settings for computing mass balance.")
169 "Time governor settings for the unsteady Darcy flow model.")
171 "Number of Schur complements to perform when solving MH system.")
173 "Method for coupling Darcy flow between dimensions on incompatible meshes. [Experimental]" )
179 Input::register_class< DarcyMH, Mesh &, const Input::Record >(
"Flow_Darcy_MH") +
188 *
this += anisotropy.name(
"anisotropy")
189 .description(
"Anisotropy of the conductivity tensor.")
190 .input_default(
"1.0")
193 *
this += cross_section.name(
"cross_section")
194 .description(
"Complement dimension parameter (cross section for 1D, thickness for 2D).")
195 .input_default(
"1.0")
196 .units(
UnitSI().m(3).md() );
198 *
this += conductivity.name(
"conductivity")
199 .description(
"Isotropic conductivity scalar.")
200 .input_default(
"1.0")
201 .units(
UnitSI().m().s(-1) )
204 *
this += sigma.name(
"sigma")
205 .description(
"Transition coefficient between dimensions.")
206 .input_default(
"1.0")
209 *
this += water_source_density.name(
"water_source_density")
210 .description(
"Water source density.")
211 .input_default(
"0.0")
214 *
this += bc_type.name(
"bc_type")
215 .description(
"Boundary condition type.")
216 .input_selection( get_bc_type_selection() )
217 .input_default(
"\"none\"")
221 .disable_where(bc_type, {
none, seepage} )
223 .description(
"Prescribed pressure value on the boundary. Used for all values of ``bc_type`` except ``none`` and ``seepage``. " 224 "See documentation of ``bc_type`` for exact meaning of ``bc_pressure`` in individual boundary condition types.")
225 .input_default(
"0.0")
229 .disable_where(bc_type, {
none, dirichlet} )
231 .description(
"Incoming water boundary flux. Used for bc_types : ``total_flux``, ``seepage``, ``river``.")
232 .input_default(
"0.0")
233 .units(
UnitSI().m().s(-1) );
235 *
this += bc_robin_sigma
236 .disable_where(bc_type, {
none, dirichlet, seepage} )
237 .name(
"bc_robin_sigma")
238 .description(
"Conductivity coefficient in the ``total_flux`` or the ``river`` boundary condition type.")
239 .input_default(
"0.0")
242 *
this += bc_switch_pressure
243 .disable_where(bc_type, {
none, dirichlet, total_flux} )
244 .name(
"bc_switch_pressure")
245 .description(
"Critical switch pressure for ``seepage`` and ``river`` boundary conditions.")
246 .input_default(
"0.0")
251 *
this += init_pressure.name(
"init_pressure")
252 .description(
"Initial condition for pressure in time dependent problems.")
253 .input_default(
"0.0")
256 *
this += storativity.name(
"storativity")
257 .description(
"Storativity (in time dependent problems).")
258 .input_default(
"0.0")
304 data_ = make_shared<EqData>();
307 data_->is_linear=
true;
338 gravity_array.copy_to(gvec);
340 data_->gravity_ = arma::vec(gvec);
341 data_->gravity_vec_ =
data_->gravity_.subvec(0,2);
343 data_->bc_pressure.add_factory(
345 (
data_->gravity_,
"bc_piezo_head") );
346 data_->bc_switch_pressure.add_factory(
348 (
data_->gravity_,
"bc_switch_piezo_head") );
349 data_->init_pressure.add_factory(
351 (
data_->gravity_,
"init_piezo_head") );
359 MessageOut() <<
"Missing the key 'time', obligatory for the transient problems." << endl;
381 .val<Input::AbstractRecord>(
"linear_solver");
400 data_->water_balance_idx =
balance_->add_quantity(
"water_volume");
430 if (zero_time_term_from_right) {
461 bool jump_time =
data_->storativity.is_jump_time();
462 if (! zero_time_term_from_left) {
472 WarningOut() <<
"Output of solution discontinuous in time not supported yet.\n";
481 if (! zero_time_term_from_left && ! jump_time)
output_data();
487 if (zero_time_term_from_right) {
492 }
else if (! zero_time_term_from_left && jump_time) {
493 WarningOut() <<
"Discontinuous time term not supported yet.\n";
504 return (
data_->storativity.input_list_size() == 0);
517 MessageOut().fmt(
"[nonlinear solver] norm of initial residual: {}\n", residual_norm);
520 int is_linear_common;
525 this->
max_n_it_ = nl_solver_rec.
val<
unsigned int>(
"max_it");
526 this->
min_n_it_ = nl_solver_rec.
val<
unsigned int>(
"min_it");
527 if (this->min_n_it_ > this->max_n_it_) this->min_n_it_ = this->
max_n_it_;
529 if (! is_linear_common) {
537 while (nonlinear_iteration_ < this->min_n_it_ ||
538 (residual_norm > this->tolerance_ && nonlinear_iteration_ < this->max_n_it_ )) {
540 convergence_history.push_back(residual_norm);
543 if (convergence_history.size() >= 5 &&
544 convergence_history[ convergence_history.size() - 1]/convergence_history[ convergence_history.size() - 2] > 0.9 &&
545 convergence_history[ convergence_history.size() - 1]/convergence_history[ convergence_history.size() - 5] > 0.8) {
551 THROW(ExcSolverDiverge() << EI_Reason(
"Stagnation."));
555 if (! is_linear_common)
561 if (is_linear_common){
564 MessageOut().fmt(
"[nonlinear solver] lin. it: {}, reason: {}, residual: {}\n",
565 si.n_iterations, si.converged_reason, residual_norm);
586 MessageOut().fmt(
"[nonlinear solver] it: {} lin. it: {}, reason: {}, residual: {}\n",
589 chkerr(VecDestroy(&save_solution));
616 if(
data_->mortar_method_ != MortarMethod::NoMortar){
617 auto multidim_assembler = AssemblyBase::create< AssemblyMH >(
data_);
620 unsigned int dim = ele_ac.
dim();
621 multidim_assembler[dim-1]->fix_velocity(ele_ac);
679 vec_size = this->
size;
680 OLD_ASSERT(vec != NULL,
"Requested solution is not allocated!\n");
686 OLD_ASSERT(vec != NULL,
"Requested solution is not allocated!\n");
698 START_TIMER(
"DarcyFlowMH_Steady::assembly_steady_mh_matrix");
709 data_->local_boundary_index=0;
712 unsigned int dim = ele_ac.
dim();
713 assembler[dim-1]->assemble(ele_ac);
724 START_TIMER(
"DarcyFlowMH_Steady::allocate_mh_matrix");
735 double zeros[100000];
736 for(
int i=0; i<100000; i++) zeros[i] = 0.0;
739 tmp_rows.reserve(200);
741 unsigned int nsides, loc_size;
748 loc_size = 1 + 2*nsides;
749 unsigned int i_side = 0;
751 for (; i_side < nsides; i_side++) {
752 local_dofs[i_side] = ele_ac.side_row(i_side);
753 local_dofs[i_side+nsides] = ele_ac.edge_row(i_side);
755 local_dofs[i_side+nsides] = ele_ac.ele_row();
756 int * edge_rows = local_dofs + nsides;
760 ls->
mat_set_values(loc_size, local_dofs, loc_size, local_dofs, zeros);
764 unsigned int n_neighs = ele_ac.element_accessor()->n_neighs_vb();
765 for (
unsigned int i = 0; i < n_neighs; i++) {
768 Neighbour *ngh = ele_ac.element_accessor()->neigh_vb[i];
770 tmp_rows.push_back(neigh_edge_row);
783 for(
auto &isec : isec_list ) {
787 for(
unsigned int i_side=0; i_side < slave_ele->
n_sides(); i_side++) {
834 double cs =
data_->cross_section.value(ele_ac.centre(), ele_ac.element_accessor());
837 double source = ele_ac.measure() * cs *
838 data_->water_source_density.value(ele_ac.centre(), ele_ac.element_accessor());
841 balance_->add_source_vec_values(
data_->water_balance_idx, ele_ac.region().bulk_idx(), {(
LongIdx) ele_ac.ele_row()}, {source});
861 #ifdef FLOW123D_HAVE_BDDCML 862 WarningOut() <<
"For BDDC no Schur complements are used.";
877 xprintf(
Err,
"Flow123d was not build with BDDCML support.\n");
878 #endif // FLOW123D_HAVE_BDDCML 883 WarningOut() <<
"Invalid number of Schur Complements. Using 2.";
896 ls->LinSys::set_from_input(in_rec);
915 ISCreateStride(PETSC_COMM_WORLD,
mh_dh.
el_ds->
lsize(), ls->get_distribution()->begin(), 1, &is);
918 ls1->set_negative_definite();
921 schur2 =
new LinSys_PETSC( ls1->make_complement_distribution() );
923 ls1->set_complement( schur2 );
926 ls->set_complement( schur1 );
942 xprintf(
Err,
"Unknown solver type. Internal error.\n");
956 START_TIMER(
"DarcyFlowMH_Steady::assembly_linear_system");
958 data_->is_linear=
true;
975 auto multidim_assembler = AssemblyBase::create< AssemblyMH >(
data_);
1012 std::string output_file;
1024 PetscViewerASCIIOpen(PETSC_COMM_WORLD, output_file.c_str(), &viewer);
1025 PetscViewerSetFormat(viewer, PETSC_VIEWER_ASCII_MATLAB);
1035 double d_max = std::numeric_limits<double>::max();
1036 double h1 = d_max, h2 = d_max, h3 = d_max;
1037 double he2 = d_max, he3 = d_max;
1040 case 1: h1 = std::min(h1,ele.measure());
break;
1041 case 2: h2 = std::min(h2,ele.measure());
break;
1042 case 3: h3 = std::min(h3,ele.measure());
break;
1045 for (
unsigned int j=0; j<ele->n_sides(); j++) {
1047 case 2: he2 = std::min(he2, ele.side(j)->measure());
break;
1048 case 3: he3 = std::min(he3, ele.side(j)->measure());
break;
1052 if(h1 == d_max) h1 = 0;
1053 if(h2 == d_max) h2 = 0;
1054 if(h3 == d_max) h3 = 0;
1055 if(he2 == d_max) he2 = 0;
1056 if(he3 == d_max) he3 = 0;
1059 file = fopen(output_file.c_str(),
"a");
1063 fprintf(file,
"h1 = %e;\nh2 = %e;\nh3 = %e;\n", h1, h2, h3);
1064 fprintf(file,
"he2 = %e;\nhe3 = %e;\n", he2, he3);
1070 START_TIMER(
"DarcyFlowMH_Steady::set_mesh_data_for_bddc");
1091 for (
unsigned int i_loc = 0; i_loc <
mh_dh.
el_ds->
lsize(); i_loc++ ) {
1095 elDimMax = std::max( elDimMax, ele_ac.dim() );
1096 elDimMin = std::min( elDimMin, ele_ac.dim() );
1098 isegn.push_back( ele_ac.ele_global_idx() );
1101 for (
unsigned int si=0; si<ele_ac.element_accessor()->n_sides(); si++) {
1103 int side_row = ele_ac.side_row(si);
1104 arma::vec3 coord = ele_ac.side(si)->centre();
1106 localDofMap.insert( std::make_pair( side_row, coord ) );
1107 inet.push_back( side_row );
1112 int el_row = ele_ac.ele_row();
1114 localDofMap.insert( std::make_pair( el_row, coord ) );
1115 inet.push_back( el_row );
1118 for (
unsigned int si=0; si<ele_ac.element_accessor()->n_sides(); si++) {
1120 int edge_row = ele_ac.edge_row(si);
1121 arma::vec3 coord = ele_ac.side(si)->centre();
1123 localDofMap.insert( std::make_pair( edge_row, coord ) );
1124 inet.push_back( edge_row );
1129 for (
unsigned int i_neigh = 0; i_neigh < ele_ac.element_accessor()->n_neighs_vb(); i_neigh++) {
1130 int edge_row =
mh_dh.
row_4_edge[ ele_ac.element_accessor()->neigh_vb[i_neigh]->edge_idx() ];
1131 arma::vec3 coord = ele_ac.element_accessor()->neigh_vb[i_neigh]->edge()->side(0)->centre();
1133 localDofMap.insert( std::make_pair( edge_row, coord ) );
1134 inet.push_back( edge_row );
1138 nnet.push_back( nne );
1143 double conduct =
data_->conductivity.value( centre , ele_ac.element_accessor() );
1144 auto aniso =
data_->anisotropy.value( centre, ele_ac.element_accessor() );
1148 for (
int i = 0; i < 3; i++) {
1149 coef = coef + aniso.at(i,i);
1152 coef = conduct*coef / 3;
1155 "Zero coefficient of hydrodynamic resistance %f . \n ", coef );
1156 element_permeability.push_back( 1. / coef );
1160 int numNodeSub = localDofMap.size();
1171 for ( ; itB != localDofMap.end(); ++itB ) {
1172 isngn[ind] = itB -> first;
1175 for (
int j = 0; j < 3; j++ ) {
1176 xyz[ j*numNodeSub + ind ] = coord[j];
1181 localDofMap.clear();
1189 Global2LocalMap_ global2LocalNodeMap;
1190 for (
unsigned ind = 0; ind < isngn.size(); ++ind ) {
1191 global2LocalNodeMap.insert( std::make_pair( static_cast<unsigned>( isngn[ind] ), ind ) );
1196 for (
unsigned int iEle = 0; iEle < isegn.size(); iEle++ ) {
1197 int nne = nnet[ iEle ];
1198 for (
int ien = 0; ien < nne; ien++ ) {
1200 int indGlob = inet[indInet];
1202 Global2LocalMap_::iterator pos = global2LocalNodeMap.find( indGlob );
1203 OLD_ASSERT( pos != global2LocalNodeMap.end(),
1204 "Cannot remap node index %d to local indices. \n ", indGlob );
1205 int indLoc =
static_cast<int> ( pos -> second );
1208 inet[ indInet++ ] = indLoc;
1212 int numNodes =
size;
1213 int numDofsInt =
size;
1215 int meshDim = elDimMax;
1217 bddc_ls -> load_mesh( spaceDim, numNodes, numDofsInt, inet, nnet, nndf, isegn, isngn, isngn, xyz, element_permeability, meshDim );
1245 if(
time_ !=
nullptr)
1265 VecCreateSeqWithArray(PETSC_COMM_SELF,1,
size,
solution,
1270 loc_idx =
new int [
size];
1273 for (
unsigned int si=0; si<ele->n_sides(); si++) {
1280 for(
unsigned int i_edg=0; i_edg <
mesh_->
n_edges(); i_edg++) {
1283 OLD_ASSERT( i==
size,
"Size of array does not match number of fills.\n");
1285 ISCreateGeneral(PETSC_COMM_SELF,
size, loc_idx, PETSC_COPY_VALUES, &(is_loc));
1289 chkerr(ISDestroy(&(is_loc)));
1341 for (
unsigned int i_loc_el = 0; i_loc_el <
mh_dh.
el_ds->
lsize(); i_loc_el++) {
1344 local_sol[ele_ac.ele_local_row()] =
data_->init_pressure.value(ele_ac.centre(),ele_ac.element_accessor());
1358 PetscScalar *local_diagonal;
1366 for (
unsigned int i_loc_el = 0; i_loc_el <
mh_dh.
el_ds->
lsize(); i_loc_el++) {
1370 double diagonal_coeff =
data_->cross_section.value(ele_ac.centre(), ele_ac.element_accessor())
1371 *
data_->storativity.value(ele_ac.centre(), ele_ac.element_accessor())
1373 local_diagonal[ele_ac.ele_local_row()]= - diagonal_coeff /
time_->
dt();
1377 ele_ac.region().bulk_idx(), {
LongIdx(ele_ac.ele_row()) }, {diagonal_coeff});
1392 if (scale_factor != 1.0) {
int LongIdx
Define type that represents indices of large arrays (elements, nodes, dofs etc.)
unsigned int size() const
get global size
void get_solution_vector(double *&vec, unsigned int &vec_size) override
void make_serial_scatter()
static const Input::Type::Record & get_input_type()
Main balance input record type.
Output class for darcy_flow_mh model.
RegionSet get_region_set(const std::string &set_name) const
virtual void initialize_specific()
void get_parallel_solution_vector(Vec &vector) override
SchurComplement SchurComplement
void assembly_mh_matrix(MultidimAssembly &assembler)
void set_symmetric(bool flag=true)
Classes with algorithms for computation of intersections of meshes.
Solver based on the original PETSc solver using MPIAIJ matrix and succesive Schur complement construc...
virtual ~DarcyMH() override
MixedMeshIntersections & mixed_intersections()
static const Input::Type::Record & get_input_type()
The specification of output stream.
Common base for intersection object.
void set_from_input(const Input::Record in_rec) override
unsigned int edge_idx() const
virtual void assembly_source_term()
Source term is implemented differently in LMH version.
friend class DarcyFlowMHOutput
#define MessageOut()
Macro defining 'message' record of log.
virtual void start_add_assembly()
virtual void output_data() override
Write computed fields.
virtual PetscErrorCode mat_zero_entries()
Wrappers for linear systems based on MPIAIJ and MATIS format.
bool is_end() const
Returns true if the actual time is greater than or equal to the end time.
void next_time()
Proceed to the next time according to current estimated time step.
static const int registrar
Registrar of class to factory.
static const Input::Type::Selection & get_mh_mortar_selection()
Selection for enum MortarMethod.
void initialize() override
static const Input::Type::Record & type_field_descriptor()
virtual void start_allocation()
void chkerr(unsigned int ierr)
Replacement of new/delete operator in the spirit of xmalloc.
virtual void finish_assembly()=0
virtual double get_solution_precision()=0
std::vector< std::vector< ILpair > > element_intersections_
SideIter side(const unsigned int loc_index)
const RegionDB & region_db() const
#define ASSERT(expr)
Allow use shorter versions of macro names if these names is not used with external library...
const TimeStep & step(int index=-1) const
static const std::string field_descriptor_record_description(const string &record_name)
Basic time management functionality for unsteady (and steady) solvers (class Equation).
unsigned int bulk_ele_idx() const
Returns index of bulk element.
bool solution_changed_for_scatter
void solve_nonlinear()
Solve method common to zero_time_step and update solution.
static const Input::Type::Record & get_input_type()
std::shared_ptr< EqData > data_
Basic time management class.
virtual void set_tolerances(double r_tol, double a_tol, unsigned int max_it)=0
virtual ElementAccessor< 3 > element_accessor(unsigned int idx) const
Create and return ElementAccessor to element of given idx.
void view(const char *name="") const
std::shared_ptr< LocalToGlobalMap > global_row_4_sub_row
Necessary only for BDDC solver.
unsigned int nonlinear_iteration_
void set_mesh_data_for_bddc(LinSys_BDDC *bddc_ls)
Assembly explicit Schur complement for the given linear system. Provides method for resolution of the...
void update_solution() override
void set_from_input(const Input::Record in_rec) override
virtual void postprocess()
static const Input::Type::Instance & get_input_type_specific()
double * get_solution_array()
std::shared_ptr< Balance > balance_
FLOW123D_FORCE_LINK_IN_CHILD(darcy_flow_mh)
const Vec & get_solution()
FMT_FUNC int fprintf(std::ostream &os, CStringRef format, ArgList args)
unsigned int n_sides() const
bool is_changed_dt() const
#define START_TIMER(tag)
Starts a timer with specified tag.
static const Input::Type::Instance & get_input_type()
unsigned int side_dof(const SideIter side) const
static Input::Type::Abstract & get_input_type()
virtual Range< ElementAccessor< 3 > > elements_range() const
Returns range of bulk elements.
bool use_steady_assembly_
unsigned int n_sides() const
void allocate_mh_matrix()
static const Input::Type::Selection & get_bc_type_selection()
Return a Selection corresponding to enum BC_Type.
virtual void assembly_linear_system()
virtual const Vec * get_rhs()
virtual PetscErrorCode rhs_zero_entries()
void set_solution(Vec sol_vec)
Dedicated class for storing path to input and output files.
DarcyMH(Mesh &mesh, const Input::Record in_rec)
CREATE AND FILL GLOBAL MH MATRIX OF THE WATER MODEL.
Support classes for parallel programing.
#define MPI_Allreduce(sendbuf, recvbuf, count, datatype, op, comm)
int set_upper_constraint(double upper, std::string message)
Sets upper constraint for the next time step estimating.
void create_linear_system(Input::AbstractRecord rec)
Initialize global_row_4_sub_row.
virtual unsigned int n_elements(bool boundary=false) const
Returns count of boundary or bulk elements.
MortarMethod
Type of experimental Mortar-like method for non-compatible 1d-2d interaction.
Input::Record input_record_
std::shared_ptr< Distribution > rows_ds
LocalElementAccessorBase< 3 > accessor(uint local_ele_idx)
static const Input::Type::Record & get_input_type()
#define WarningOut()
Macro defining 'warning' record of log.
virtual SolveInfo solve()=0
#define END_TIMER(tag)
Ends a timer with specified tag.
#define OLD_ASSERT_EQUAL(a, b)
EqData()
Creation of all fields.
void set_matrix_changed()
static const Input::Type::Record & get_input_type()
void print_matlab_matrix(string matlab_file)
Print darcy flow matrix in matlab format into a file.
mixed-hybrid model of linear Darcy flow, possibly unsteady.
unsigned int index() const
void zero_time_step() override
void set_positive_definite(bool flag=true)
virtual void read_initial_condition()
void prepare_parallel_bddc()
static Input::Type::Abstract & get_input_type()
virtual void mat_set_values(int nrow, int *rows, int ncol, int *cols, double *vals)=0
DarcyFlowMHOutput * output_object
unsigned int n_edges() const
virtual void prepare_new_time_step()
postprocess velocity field (add sources)
Class for representation SI units of Fields.
virtual const Mat * get_matrix()
virtual double solution_precision() const
virtual void setup_time_term()
static UnitSI & dimensionless()
Returns dimensionless unit.
#define DebugOut()
Macro defining 'debug' record of log.
virtual double compute_residual()=0
#define THROW(whole_exception_expr)
Wrapper for throw. Saves the throwing point.
Implementation of range helper class.
void rhs_set_value(int row, double val)
static const Input::Type::Record & get_input_type()
Solver based on Multilevel BDDC - using corresponding class of OpenFTL package.
virtual bool zero_time_term(bool time_global=false)
void output()
Calculate values for output.
unsigned int lsize(int proc) const
get local size