Flow123d  release_2.2.0-21-g2806cf6
field_algo_base.hh
Go to the documentation of this file.
1 /*!
2  *
3  * Copyright (C) 2015 Technical University of Liberec. All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify it under
6  * the terms of the GNU General Public License version 3 as published by the
7  * Free Software Foundation. (http://www.gnu.org/licenses/gpl-3.0.en.html)
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
11  * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
12  *
13  *
14  * @file field_algo_base.hh
15  * @brief
16  * @todo
17  * - better tests:
18  * - common set of quantities with different kind of values (scalar, vector, tensor, discrete, ..),
19  * common points and elements for evaluation
20  * - for individual Field implementations have:
21  * - different input
22  * - possibly different EPETCT_EQ tests, but rather have majority common
23  */
24 
25 #ifndef field_algo_base_HH_
26 #define field_algo_base_HH_
27 
28 #include <string>
29 #include <memory>
30 
31 #include <boost/type_traits.hpp>
32 
35 
36 #include "mesh/accessors.hh"
37 #include "mesh/point.hh"
38 #include "fields/field_values.hh"
39 #include "fields/unit_si.hh"
40 #include "tools/time_governor.hh"
41 
42 
43 
44 /**
45  * Indication of special field states. Returned by Field<>::field_result.
46  * Individual states have values corresponding to week ordering of the states according
47  * to the exactness of the value. May possibly be helpful in implementation, e.g.
48  * one can use (field_result >= result_constant) to check that the field is constant on given region.
49  */
50 typedef enum {
51  result_none=0, // field not set
52  result_other=1, // field initialized but no particular result information
53  result_constant=2, // spatially constant result
54  result_zeros=10, // zero scalar, vector, or tensor
55  result_ones=20, // all elements equal to 1.0
56  result_eye=21 // identity tensor
57 
58 } FieldResult;
59 
60 /// Helper struct stores data for initizalize descentants of \p FieldAlgorithmBase.
62  /// Full constructor
63  FieldAlgoBaseInitData(std::string field_name, unsigned int n_comp, const UnitSI &unit_si, std::pair<double, double> limits)
64  : field_name_(field_name), n_comp_(n_comp), unit_si_(unit_si), limits_(limits) {}
65  /// Simplified constructor, set limit values automatically (used in unit tests)
66  FieldAlgoBaseInitData(std::string field_name, unsigned int n_comp, const UnitSI &unit_si)
67  : field_name_(field_name), n_comp_(n_comp), unit_si_(unit_si),
68  limits_( std::make_pair(-std::numeric_limits<double>::max(), std::numeric_limits<double>::max()) ) {}
69 
70  std::string field_name_;
71  unsigned int n_comp_;
72  const UnitSI &unit_si_;
73  std::pair<double, double> limits_;
74 };
75 
76 
77 
78 
79 /**
80  * Base class for space-time function classes.
81  */
82 template <int spacedim, class Value>
84 public:
85  // expose template parameters
86  typedef typename Space<spacedim>::Point Point;
87  static const unsigned int spacedim_=spacedim;
89 
90 
91  /**
92  * Kind of default constructor , with possible setting of the initial time.
93  * Fields that returns variable size vectors accepts number of components @p n_comp.
94  */
95  FieldAlgorithmBase(unsigned int n_comp=0);
96 
97  /**
98  * Returns template parameters as string in order to distinguish name of Abstracts
99  * for initialization of different instances of the FieldBase template.
100  */
101  static std::string template_name();
102 
103  /**
104  * Returns whole tree of input types for FieldBase with all descendants based on element input type (namely for FieldConstant)
105  * given by element_input_type pointer.
106  */
107  static Input::Type::Abstract & get_input_type();
108 
109  /**
110  * Returns parameterized whole tree of input types for FieldBase with all descendants based on element input type (namely
111  * for FieldConstant) given by element_input_type pointer.
112  */
113  static const Input::Type::Instance & get_input_type_instance( Input::Type::Selection value_selection=Input::Type::Selection() );
114 
115  /**
116  * Returns auxiliary record with keys common to all field algorithms.
117  */
118  static const Input::Type::Record & get_field_algo_common_keys();
119 
120  /**
121  * This static method gets accessor to abstract record with function input,
122  * dispatch to correct constructor and initialize appropriate function object from the input.
123  * Returns shared pointer to FunctionBase<>.
124  */
125  static std::shared_ptr< FieldAlgorithmBase<spacedim, Value> >
126  function_factory(const Input::AbstractRecord &rec, const struct FieldAlgoBaseInitData& init_data);
127 
128  /**
129  * Function can provide way to initialize itself from the input data.
130  *
131  * TODO: make protected, should be called through function factory
132  */
133  virtual void init_from_input(const Input::Record &rec, const struct FieldAlgoBaseInitData& init_data);
134 
135  /**
136  * Set new time value. Some Fields may and some may not implement time dependent values and
137  * possibly various types of interpolation. There can not be unified approach to interpolation (at least not on this abstraction level)
138  * since some fields (FieldFormula, FieldPython) provides naturally time dependent functions other fields like (FieldConstant, ...), however,
139  * can be equipped by various time interpolation schemes. In future, we obviously need time interpolation of higher order so that
140  * we can use ODE integrators of higher order.
141  *
142  * The method returns true if the value of the field has changed in the new time step.
143  */
144  virtual bool set_time(const TimeStep &time);
145 
146  /**
147  * Is used only by some Field implementations, but can be used to check validity of incoming ElementAccessor in value methods.
148  *
149  * Optional parameter @p boundary_domain can be used to specify, that the field will be evaluated only on the boundary part of the mesh.
150  * TODO: make separate mesh for the boundary, then we can drop this parameter.
151  */
152  virtual void set_mesh(const Mesh *mesh, bool boundary_domain);
153 
154  /**
155  * Sets @p component_idx_
156  */
157  void set_component_idx(unsigned int idx)
158  { this->component_idx_ = idx; }
159 
160  /**
161  * Returns number of rows, i.e. number of components for variable size vectors. For values of fixed size returns zero.
162  */
163  unsigned int n_comp() const;
164 
165  /**
166  * Special field values spatially constant. Could allow optimization of tensor multiplication and
167  * tensor or vector addition. field_result_ should be set in constructor and in set_time method of particular Field implementation.
168  */
170  { return field_result_;}
171 
172  /**
173  * Method for getting some information about next time where the function change its character.
174  * Used to add appropriate TimeMarks.
175  * TODO: think what kind of information we may need, is the next time value enough?
176  */
177  virtual double next_change_time()
178  { ASSERT(false).error("Not implemented yet."); return 0.0; }
179 
180  /**
181  * Returns one value in one given point @p on an element given by ElementAccessor @p elm.
182  * It returns reference to he actual value in order to avoid temporaries for vector and tensor values.
183  *
184  * This method just call the later one @p value(Point, ElementAccessor, Value) and drops the FieldResult.
185  *
186  * Usual implementation of this method fills @p member r_value_ through unified envelope @p value_ as general tensor
187  * and then returns member @p r_value_. However, some particular Fields may have result stored elsewhere, in such a case
188  * the reference to the result can be returned directly without using the member @p value_. Keeping such wide space for optimization
189  * has drawback in slow generic implementation of the @p value_list method that fills whole vector of values for vector of points.
190  * Its generic implementation has to copy all values instead of directly store them into the vector of result values.
191  *
192  * So the best practice when implementing @p value and @value_list methods in particular FieldBase descendant is
193  * implement some thing like value(point, elm, Value::return_type &value) and using
194  * s having in part
195  *
196  */
197  virtual typename Value::return_type const &value(const Point &p, const ElementAccessor<spacedim> &elm)=0;
198 
199  /**
200  * Returns std::vector of scalar values in several points at once. The base class implements
201  * trivial implementation using the @p value(,,) method. This is not optimal as it involves lot of virtual calls,
202  * but this overhead can be negligible for more complex fields as Python of Formula.
203  *
204  * FieldAlgorithmBase provides a slow implementation using the value() method. Derived Field can implement its value_list method
205  * as call of FieldAlgoritmBase<...>::value_list().
206  */
207  virtual void value_list(const std::vector< Point > &point_list, const ElementAccessor<spacedim> &elm,
209 
210  /**
211  * Virtual destructor.
212  */
213  virtual ~FieldAlgorithmBase() {}
214 
215 
216 protected:
217  /// Init value of @p unit_conversion_coefficient_ from input
218  void init_unit_conversion_coefficient(const Input::Record &rec, const struct FieldAlgoBaseInitData& init_data);
219  /// Actual time level; initial value is -infinity.
221  /// Last value, prevents passing large values (vectors) by value.
222  Value value_;
223  typename Value::return_type r_value_;
224  /// Indicator of particular values (zero, one) constant over space.
226  /// Specify if the field is part of a MultiField and which component it is
227  unsigned int component_idx_;
228  /// Coeficient of conversion of user-defined unit
230 };
231 
232 
233 #endif /* FUNCTION_BASE_HH_ */
TimeStep time_
Actual time level; initial value is -infinity.
virtual double next_change_time()
unsigned int component_idx_
Specify if the field is part of a MultiField and which component it is.
FieldResult field_result_
Indicator of particular values (zero, one) constant over space.
Definition: mesh.h:97
Helper class that stores data of generic types.
Definition: type_generic.hh:89
Helper struct stores data for initizalize descentants of FieldAlgorithmBase.
#define ASSERT(expr)
Allow use shorter versions of macro names if these names is not used with external library...
Definition: asserts.hh:346
Value::return_type r_value_
Basic time management class.
static constexpr bool value
Definition: json.hpp:87
double unit_conversion_coefficient_
Coeficient of conversion of user-defined unit.
FieldResult field_result() const
arma::vec::fixed< spacedim > Point
Definition: point.hh:33
Accessor to the data with type Type::Record.
Definition: accessors.hh:292
FieldAlgoBaseInitData(std::string field_name, unsigned int n_comp, const UnitSI &unit_si)
Simplified constructor, set limit values automatically (used in unit tests)
Space< spacedim >::Point Point
Class for declaration of polymorphic Record.
Accessor to the polymorphic input data of a type given by an AbstracRecord object.
Definition: accessors.hh:459
FieldResult
const UnitSI & unit_si_
Value value_
Last value, prevents passing large values (vectors) by value.
virtual ~FieldAlgorithmBase()
void set_component_idx(unsigned int idx)
std::pair< double, double > limits_
FieldAlgoBaseInitData(std::string field_name, unsigned int n_comp, const UnitSI &unit_si, std::pair< double, double > limits)
Full constructor.
Record type proxy class.
Definition: type_record.hh:182
Class for representation SI units of Fields.
Definition: unit_si.hh:40
Representation of one time step..
Template for classes storing finite set of named values.