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Chapter 1

Getting Started

1.1 Introduction

Flow123D is a software for simulation of water flow, reactionary solute transport and
heat transfer in a heterogeneous porous and fractured medium. In particular it is suited
for simulation of underground processes in a granite rock massive. The program is
able to describe explicitly processes in 3D medium, 2D fractures, and 1D channels and
exchange between domains of different dimensions. The computational mesh is therefore
a collection of tetrahedra, triangles and line segments.

The water flow model assumes a saturated medium described by the Darcy law. For
discretization, we use lumped mixed-hybrid finite element method. We support both
steady and unsteady water flow. The water flow model can be sequentially coupled with
two different models for a solute transport or with a heat transfer model.

The first solute transport model can deal only with pure advection of several substances
without any diffusion-dispersion term. It uses explicit Euler method for time discretiza-
tion and finite volume method for space discretization and operator splitting method
to couple with various processes described by the reaction term. The reaction term
can treat any meaningful combination of the dual porosity, sorptions, decays and linear
reactions. Alternatively, one can use interface to the experimental SEMCHEM package
for more complex geochemistry.

The second solute transport model describes general advection with hydrodynamic dis-
persion for several substances. It uses implicit Euler method for time discretization and
discontinuous Galerkin method of the first, second or third order for the discretization in
space. Currently there is no support for reaction term, the operator splitting approach
(although it is not suited for implicit time schemes) is planned for the next version.

The heat transfer model assumes equilibrium between temperature of the rock and the
fluid phase. It uses the same numerical scheme as the second transport model.

The program support output of all input and many output fields into two file formats.
You can use file format of GMSH mesh generator and post-processor or you can use out-
put into widely supported VTK format. In particular we recommend Paraview software
for visualization and post-processing of the VT'K data.

The program is implemented in C/C++ using essentially PETSC library for linear
algebra. All models can run in parallel using MPI environment, however, the scalability



of the whole program is limited due to serial mesh and serial outputs.

The program is distributed under GNU GPL v. 3 license and is available on the project
web page: http://flowl23d.github.io

with sources on the GitHub: https://github.com/flow123d/flowl23d.

1.2 Reading Documentation

The Flow123d documentation has two main parts. The first three chapters form a user
manual which starts with getting and running the program and tutorial problem in
chapter 1. The second chapter 2 provides detailed description of mathematical models
of physical reality. The third chapter 4 documents all file types used by Flow123d,
including mesh files, input and output files.

The second main part, consisting only of the chapter 5, is automatically generated.
It mirrors directly the code and contains the whole input tree of the main input file.
Description of input records, their structure and default values are supplied there and
bidirectional links to the user manual are provided.

1.3 Running Flow123d

On the Linux system the program can be started either directly or through a script
flow123d.sh, both placed in the bin directory of the installation package or of the
source tree. When started directly, e.g. by the command

> flowl23d -s example.con

the program requires one argument after switch —-s which is the name of the principal
input file. Full list of possible command line arguments is as follows.

--help
Parameters interpreted by Flow123d. Remaining parameters are passed to PETSC.

-s, —-solve <file>
Set principal CON input file. All relative paths in the CON file are relative against
current directory.

-i, ——input_dir <directory>
The placeholder ${INPUT} used in the path of an input file will be replaced by the
<directory>. Default value is input.

-0, —-output_dir <directory>
All paths for output files will be relative to this <directory>. Default value is
output.

-1, —-log <file_name>

Set base name of log files. Default value is flow123d. The log files are individual
for every MPI process, placed in the output directory. The MPI rank of the process
and the log suffix are appended to the base name.
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--no_log
Turn off logging.

--no_profiler
Turn off profiler output.

--full_doc
Prints full structure of the main input file.

--latex_doc
Prints a description of the main input file in LaTeX format using particular macros.

All other parameters will be passed to the PETSC library. An advanced user can
influence lot of parameters of linear solvers. In order to get list of supported options use
parameter —help together with some valid input. Options for various PETSC modules
are displayed when the module is used for the first time.

Alternatively, you can use script flow123d.sh to start parallel jobs or limit resources
used by the program. The syntax is as follows:

flow123d.sh [OPTIONS] -- [FLOW_PARAMS]

where everything after double dash is passed as parameters to the flow123d binary. The
script accepts following options:

-h, —-help
Usage overview.

--host <hostname>
Default value is the host name obtained by system hostname command, this ar-
gument can be used to override it. Resulting value is used to select a backend
script config/<hostname>.sh, which describes particular method how to start
parallel jobs, usually through some sort of PBS job queue system. If the script is
not found, we try to start parallel processes directly on the actual host.”

-t, ——walltime <timeout>
Upper estimate for real running time of the calculation. Kill calculation after
timeout seconds. Can also be used by PBS to choose appropriate job queue.

-np <number of processes>
Specify number of MPI parallel processes for calculation.

-m, --mem <memory limit>
Limits total available memory to <memory limit> bytes per process.

-n, -—nice <niceness>
Change priority of the calculation, higher values means lower priority. See the
nice command.

-ppn <processes per node>
Set number of processes started on one node for multicore systems. Number of
processes set by —np parameter should be divisible by <processes per node>.
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-q, —-queue <queue>
Select particular job queue on PBS systems. If running without PBS, it redirects
stdout and stderr to the file <queue>.<date>, which appended date and time of
the start of the job.

On the windows operating systems, we use Cygwin libraries in order to emulate Linux
API. Therefore you have to keep the Cygwin libraries within the same directory as the
program executable. The Windows package that can be downloaded from project web
page contains both the Cygwin libraries and the mpiexec command for starting parallel
jobs on the windows based workstations.

Then you can start the sequential run by the command:
> flowl23d.exe -s example.con
or the parallel run by the command:
> mpiexec.exe —np 2 flowl23d.exe -s example.con

The program accepts the same parameters as the Linux version, but there is no script
similar to flow123d.sh for the windows operating systems.

1.4 Tutorial Problem

In the following section, we shall provide an example cook book for preparing and
running a model. It is one of the test problem with the main input file:

tests/03_transport_small_12d/flow_vtk.con

We shall start with preparation of the geometry using an external software and then
we shall go thoroughly through the commented main input file. The problem includes
steady Darcy flow, transport of two substances with explicit time discretization and a
reaction term consisting of dual porosity and sorption model.

1.4.1 Geometry

We consider a simple 2D problem with a branching 1D fracture (see Figure 1.1 for the
geometry). To prepare a mesh file we use the GMSH software. First, we construct
a geometry file. In our case the geometry consists of:

e one physical 2D domain corresponding to the whole square
e three 1D physical domains of the fracture
e four 1D boundary physical domains of the 2D domain

e three 0D boundary physical domains of the 1D domain
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In this simple example, we can in fact combine physical domains in every group, however
we use this more complex setting for demonstration purposes. Using GMSH graphical
interface we can prepare the GEQO file where physical domains are referenced by numbers,
then we use any text editor and replace numbers with string labels in such a way that
the labels of boundary physical domains start with the dot character. These are the
domains where we will not do any calculations but we will use them for setting boundary
conditions. Finally, we get the GEO file like this:

cll = 0.16; 20 Line Loop(30) = {20, -19, 24, 25};
Point(1) = {0, 1, 0, cli}; 21 Plane Surface(30) = {30%};

Point(2) = {1, 1, 0, cli}; 22 Line Loop(32) = {23, 19, 21, 28, -22};
Point(3) = {1, 0, 0, cli}; 23 Plane Surface(32) = {32};

Point(4) = {0, 0, 0, cli}; 24 Line Loop(34) = {26, 27, -21, -20};
Point(6) = {0.25, -0, 0, cli}; 25 Plane Surface(34) = {34};

Point(7) = {0, 0.25, 0, cli}; 26 Physical Point(".1d_top") = {9};
Point(8) = {0.5, 0.5, -0, cli}; 27 Physical Point(".1d_left") = {7};
Point(9) = {0.75, 1, 0, cli}; 2s Physical Point(".1d_bottom") = {63};
Line(19) = {9, 8%}; 20 Physical Line("1d_upper") = {19};
Line(20) = {7, 8}; 30 Physical Line("1d_lower") = {21};
Line(21) = {8, 6}; 31 Physical Line("1d_left_branch") = {20};
Line(22) = {2, 3}; 32 Physical Line(".2d_top") = {23, 24};
Line(23) = {2, 9}; 33 Physical Line(".2d_right") = {22};
Line(24) = {9, 1}; sa  Physical Line(".2d_bottom") = {27, 28};
Line(25) = {1, 7}; 35 Physical Line(".2d_left") = {25, 26};
Line(26) = {7, 4}; 36 Physical Surface("2d") = {30, 32, 34};

Line(27) = {4, 6};
Line(28) = {6, 3};

Notice the labeled physical domains on lines 26 — 36. Then we just set the discretization
step c11 and use GMSH to create the mesh file. The mesh file contains both the "bulk’
elements where we perform calculations and the 'boundary’ elements (on the boundary
physical domains) where we only set the boundary conditions.

1.4.2 CON File Format

The main input file uses a slightly extended JSON file format which together with some
particular constructs forms a CON (C++ object notation) file format. Main extensions
of the JSON are unquoted key names (as long as they do not contain whitespaces),
possibility to use = instead of : and C++ comments, i.e. // for a one line and /* */
for a multi-line comment. In CON file format, we prefer to call JSON objects “records”
and we introduce also “abstract records” that mimic C++ abstract classes, arrays of a
CON file have only elements of the same type (possibly using abstract record types for
polymorphism). The usual keys are in lower case and without spaces (using underscores
instead), there are few special upper case keys that are interpreted by the reader: REF
key for references, TYPE key for specifing actual type of an abstract record. For detailed
description see Section 4.1.

Having the computational mesh from the previous step, we can create the main input
file with the description of our problem.
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problem = {
TYPE = "SequentialCoupling",
description = "Tutorial problem:
Transport 1D-2D (convection, dual porosity, sorption, sources).",
mesh = {
mesh_file = "./input/mesh_with_boundary.msh",
sets = [

{ name="1d_domain",
region_labels = [ "1d_upper", "1d_lower", "1d_left_branch" ]
}
]
}, // mesh

The file starts with a selection of problem type (SequentialCoupling), and a textual
problem description. Next, we specify the computational mesh, here it consists of the
name of the mesh file and the declaration of one region set composed of all 1D regions
i.e. representing the whole fracture. Other keys of the mesh record allow labeling regions
given only by numbers, defining new regions in terms of element numbers (e.g to have
leakage on single element), defining boundary regions, and set operations with region
sets, see Section 4.2.1 for details.

1.4.3 Flow Setting

Next, we setup the flow problem. We shall consider a flow driven only by the pressure
gradient (no gravity), setting the Dirichlet boundary condition on the whole boundary
with the pressure head equal to 2 + 3. The conductivity will be ky = 1077 ms™!
on the 2D domain and k& = 107 ms™" on the 1D domain. Both 2D domain and 1D
domain cross section will be set by default, meaning that the thickness of 2D domain
is 05 = 1 m and the fracture cross section is 9; = 1 m?. The transition coefficient oy
between dimensions can be scaled by setting the dimensionless parameter oy (sigma).
This can be used for simulating additional effects which prevent the liquid transition
from/to a fracture, like a thin resistance layer. Read Section 2.3 for more details.

primary_equation = {
TYPE = "Steady_MH",

input_fields = [
{ r_set = "1d_domain", conductivity = le-6,
cross_section = 0.04,
sigma = 0.9 1},
{ region = "24", conductivity = le-7 },
{ r_set = "BOUNDARY",
bc_type = "dirichlet",
bc_pressure = { TYPE="FieldFormula", value = "x+y" }
}
1,
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output = {
output_stream = {
file = "flow.pvd",
format = { TYPE = "vtk", variant = "ascii" }
1,
output_fields = [ "pressure_p0", "pressure_pl", "velocity_p0" ]

}’

solver = {
TYPE = "Petsc",
a_tol = l1le-12,
r_tol = 1e-12
}

}, // primary equation

On line 15, we specify particular implementation (numerical method) of the flow solver,
in this case the Mixed-Hybrid solver for steady problems. On lines 17 — 24, we set
both mathematical fields that live on the computational domain and those defining the
boundary conditions. We set only the conductivity field since other input fields have
appropriate default values. We use implicitly defined set “BOUNDARY” that contains
all boundary regions and set there dirichlet boundary condition in terms of the pressure
head. In this case, the field is not of the implicit type FieldConstant, so we must
specify the type of the field TYPE="FieldFormula". See Section 4.2.2 for other field
types. On lines 26 — 32, we specify which output fields should be written to the output
stream (that means particular output file, with given format). Currently, we support
only one output stream per equation, so this allows at least switching individual output
fields on or off. See Section 4.4 for the list of available output_fields. Finally, we
specify type of the linear solver and its tolerances.

1.4.4 Transport Setting

The flow model is followed by a transport model in the solute equation beginning on

line 40. For the transport problem, we use an implementation called Solute_Advection FV
which stands for an explicit finite volume solver of the convection equation (without dif-

fusion). The operator splitting method is used for equilibrium sorption as well as for

dual porosity model and first order reactions simulation.

secondary_equation = {
TYPE = "Solute-Advection-FV",

substances = [
{name = "age", molar_mass = 0.018}, // water age
{name = "U235", molar_mass = 0.235} // uranium 235
1,

input_fields= [
{ r_set = "ALL",

init_conc = O,
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porosity= 0.25,
sources_density = [1.0, 0]
},
{ r_set = "BOUNDARY",
bc_conc = [0.0, 1.0]
}
1,

time = { end_time = 1e6 },
mass_balance = { cumulative = true 7},

On lines 43 — 46, we set the transported substances, which are identified by their
names. Here, the first one is the age of the water, with the molar mass of water, and
the second one U235 is the uranium isotope 235. On lines 48 — 57, we set the input
fields, in particular zero initial concentration for all substances, porosity 6 = 0.25 and
sources of concentration by sources density. Notice line 50 where we can see only
single value since an automatic conversion is applied to turn the scalar zero into the
zero vector (of size 2 according to the number of substances).

The boundary fields are set on lines 54 — 56. We need not to specify the type of the
condition since there is only one type in the current transport model. The boundary
condition is equal to 1 for the uranium 235 and 0 for the age of the water and is
automatically applied only on the inflow part of the boundary.

We also have to prescribe the time setting, here only the end time of the simulation (in
seconds: 10°s a2 11.57 days) is required since the step size is determined from the CFL
condition. However, a smaller time step can be enforced if necessary.

Reaction term of the transport model is described in the next subsection, including dual
porosity and sorption.

1.4.5 Reaction Term

The input information for dual porosity, equilibrial sorption and possibly first order
reations are enclosed in the record reaction_term, lines 61 — 100. Go to section 2.5 to
see how the models can be chained.

The type of the first process is determined by TYPE="DualPorosity", on line 62. The
input_fields of dual porosity model are set on lines 64 — 71 and the output is disabled
by setting an empty array on line 73.

reaction_term = {
TYPE = "DualPorosity",

input_fields= [
{
r_set="ALL",
diffusion_rate_immobile = [0.01,0.01],
porosity_immobile = 0.25,
init_conc_immobile = [0.0, 0.0]

12
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}
],

output_fields = [],

reaction_mobile = {
TYPE = "SorptionMobile",
solvent_density = 1000.0, // water
substances = ["age", "U235"],
solubility = [1.0, 1.0],

input_fields= [

{
r_set="ALL",
rock_density = 2800.0, // granit
sorption_type = ["none", "freundlich"],

isotherm_mult [0, 0.68],
isotherm_other = [0, 1.0]
}
1,
output_fields = []
},
reaction_immobile = {
TYPE = "SorptionImmobile",
solvent_density = 1000.0, // water
substances = ["age", "U235"],
solubility = [1.0, 1.0],
input_fields = { REF="../../reaction_mobile/input_fields" },
output_fields = []
}
1,

output_stream = {
file = "transport.pvd",
format = { TYPE = "vtk", variant = "ascii" },
time_step = 1leb

}

} // secondary_equation
} // problem
}

Next, we define the equilibrial sorption model such that SorptionMobile type takes
place in the mobile zone of the dual porosity model while SorptionImmobile type
takes place in its immobile zone, see lines 76 and 93. Isothermally described sorption
simulation can be used in the case of low concentrated solutions without competition
between multiple dissolved species.

On lines 77 — 89, we set the sorption related input information. The solvent is water so
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the solvent density is supposed to be constant all over the simulated area. The vector
substances contains the list of names of soluted substances which are considered to be
affected by the sorption. Solubility is a material characteristic of a sorbing substance
related to the solvent. Elements of the vector solubility define the upper bound of
aqueous concentration which can appear. This constrain is necessary because some
substances might have limited solubility and if the solubility exceeds its limit they start
to precipitate. solubility is a crucial parameter for solving a set of nonlinear equations,
described further.

The record input fields covers the region specific parameters. All implemented types
of sorption can take the rock density in the region into account. The value of rock density
is a constant in our case. The sorption_type represents the empirically determined
isotherm type and can have one of four possible values: {"none", "linear", "freundlich",
"langmuir"}. Linear isotherm needs just one parameter given whereas Freundlichs’ and
Langmuirs’ isotherms require two parameters. We will use Freundlich’s isotherm for
demonstration but we will set the other parameter (exponent) o = 1 which means it
will be the same as the linear type.

Let suppose we have a sorption coefficient for uranium K; = 1.6-10~* kg™ 'm? (www.skb.se,
report R-10-48 by James Crawford, 2010) and we want to use. We need to convert it to
dimensionless value of isotherm mult in the following way: k = KM 1p = Kq22% ~

0.235
0.68. For further details, see mathematical description in Section 2.5.2.

On line 97, notice the reference pointing to the definition of input fields on lines 81 —
89. Only entire records can be referenced which is why we have to repeat parts of the
input such as solvent density and solubility (records for reaction mobile and reaction
immobile have different types).

On lines 90 and 98, we define which sorption specific outputs are to be written to the
output file. An implicit set of outputs exists. In this case we define an empty set of
outputs thus overriding the implicit one. This means that no sorption specific outputs
will be written to the output file. On lines 102 — 106 we specify which output fields
should be written to the output stream. Currently, we support output into VI'K and
GMSH data format. In the output record for time-dependent process we have to specify
the time_step (line 105) which determines the frequency of saving.

1.4.6 Results

In Figure 1.1 one can see the results: the pressure and the velocity field on the left
and the concentration of U235 at time ¢t = 9 - 10° s on the right. Even if the pressure
gradient is the same in the 2D domain and in the fracture, due to higher conductivity
the velocity field is ten times faster in the fracture. Since porosity is the same, the
substance is transported faster by the fracture and then appears in the bottom left 2D
domain before the main wave propagating solely through the 2D domain.

In the following chapter we describe mathematical models used in Flow123d. Then in
chapter 4 we briefly describe structure of individual input files, in particular the main
CON file. The complete description of the CON format is given in chapter 5.

14
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Figure 1.1: Results of the tutorial problem.
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Chapter 2

Mathematical Models
of Physical Reality

Flow123d provides models for Darcy flow in porous media as well as for the transport
and reactions of solutes. In this section, we describe mathematical formulations of these
models together with physical meaning and units of all involved quantities. In the first
section we present basic notation and assumptions about computational domains and
meshes that combine different dimensions. In the next section we derive approximation
of thin fractures by lower dimensional interfaces for a general transport process. Latter
sections describe details for models of particular physical processes.

2.1 Meshes of Mixed Dimension

Unique feature common to all models in Flow123d is the support of domains with
mixed dimension. Let 3 C R® be an open set representing continuous approximation
of porous and fractured medium. Similarly, we consider a set of 2D manifolds Q, C Qs,
representing the 2D fractures and a set of 1D manifolds Q; C €, representing the 1D
channels or preferential paths (see Fig 2.1). We assume that Qy and €; are polytopic
(i.e. polygonal and piecewise linear, respectively). For every dimension d = 1,2,3, we
introduce a triangulation 73 of the open set Q4 that consists of finite elements T, i =
1,...,Ng&. The elements are simplices, i.e. lines, triangles and tetrahedra, respectively.

Figure 2.1: Scheme of a problem with domains of multiple dimensions.

Present numerical methods used by the software require meshes satisfying the compat-
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ibility conditions
T: , NTy C Fy, where Fy = U T} (2.1)
k

and ' .
T, N Fyis either T ; or ) (2.2)

for every i € {1,...,N&e '}, j € {1,...,N&}, and d = 2,3. That is, the (d — 1)-
dimensional elements are either between d-dimensional elements and match their sides
or they poke out of €2;. Support for a coupling between non-compatible meshes of
different dimesion is in developement and partly supported by the Darcy Flow model.

2.2 Advection-Diffusion Processes on Fractures

This section presents derivation of an abstract advection-diffusion process on 2D and
1D manifolds and its coupling with the higher dimensional domains. The reader not
interested in the details of this approximation may skip directly to the later sections
describing mathematical models of individual physical processes.

As was already mentioned, the unique feature of Flow123d is support of models living
on 2D and 1D manifolds. The aim is to capture features significantly influencing the
solution despite of their small cross-section. Such a tiny features are challenging for
numerical simulations since a direct discretization requires highly refined computational
mesh. One possible solution is to model these features (fractures, channels) as lower
dimensional objects (2D and 1D manifolds) and introduce their coupling with the sur-
rounding continuum. The equations modeling a physical process on a manifold as well
as its coupling to the model in the surrounding continuum has to be derived from the
model on the 3D continuum. This section presents such a procedure for the case of the
abstract advection-diffusion process inspired by the paper [3]. Later, we this abstract
approach to particular advection-diffusion processes: Darcian flow, solute transport, and
heat transfer.

Let us consider a fracture as a strip domain
Qp C [0,0] x R!
for d = 2 or d = 3 and surrounding continuum domains
Q) C (—00,0) x R Qy C (6,00) x R

Further, we denote by ~;, ¢ = 1,2 the fracture faces common with domains €2; and €2,
respectively. By z, y we denote normal and tangential coordinate of a point in ;. We
consider the normal vector n = n; = —ny = (1,0,0)". An advection-diffusion process
is given by equations:

Oyw; +divy, = f; on Q;, i=1,2,f, (2.3)
3, = —A;Vu, + bw; on €y, i=12,f, (2.4)

u; = Uy on~;, 1=1,2, (2.5)
Jim=j;n ony;, i=1,2, (2.6)

where w; = w;(u;) is the conservative quantity and w; is the principal unknown, j, is
the flux of w;, f; is the source term, A; is the diffusivity tensor and b; is the velocity
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field. We assume that the tensor A is symmetric positive definite with one eigenvector
in the direction n. Consequently the tensor has the form:

a, O
Ap = (0 At)

Furthermore, we assume that Ay(x,y) = Ay(y) is constant in the normal direction.

Our next aim is to integrate equations on the fracture €2 in the normal direction and
obtain their approximations on the surface v = Q; N {z = §/2} running through the
middle of the fracture. For the sake of clarity, we will not write subscript f for quantities
on the fracture. To make the following procedure mathematicaly correct we have to
assume that functions d,w, 9, Vyu, d,b, are continuous and bounded on €2;. Here and
later on b, = (b - n)n is the normal part of the velocity field and b, = b — b, is the
tangential part. The same notation will be used for normal and tangential part of the

field q.
We integrate (2.3) over the fracture opening [0, d] and use approximations to get
O, (6W) — Fo - 1o — 4, - 1y + divd = OF, (2.7)

where for the first term, we have used mean value theorem, first order Taylor expansion,
and boundedness of J,w to obtain approximation:

)
/0 w(z,y) de = 6w (&y, y) = OW (y) + O(82|9,u)),

where
W(y) =w(0/2,y) = w(u(6/2,y)) = w(U(y)).
Next two terms in (2.7) come from the exact integration of the divergence of the normal

flux j,. Integration of the divergence of the tangential flux j, gives the fourth term,
where we introduced

d
J(y) = /0 Jy(7,y)da.

In fact, this flux on + is scalar for the case d = 2. Finally, we integrate the right-hand
side to get

/0 f(r.y)de = 6F(y) + OO, 1), Fly) = [(5/2.9).

Due to the particular form of the tensor Ay, we can separately integrate tangential
and normal part of the flux given by (2.4). Integrating the tangential part and using
approximations

5
/ Vyu(z,y)dz = 6Vyu(&y, y) = 0V, U(y) + O(6%|0,Vyul)
0

and
/0 (byw) (z,y) de = SB(y)W(y) + 0(52/0, (byw)|)

where

B(y) = by(0/2,y),
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we obtain

J = —A0V,U + 6BW + O(6°(|0.Vyu| + [0, (byw)])). (2.8)

So far, we have derived equations for the state quantities U and J on the fracture
manifold . In order to get a well possed problem, we have to prescribe two conditions
for boundaries v;, « = 1,2. To this end, we perform integration of the normal flux j,,
given by (2.4), separately for the left and right half of the fracture. Similarly as before
we use approximations

6/2 5
| dede =G m)} + 06 0.4, )
0

and

5/2
/ b,wdx = (by - ’n1)7111g + O(8%0, b ||w| + 62|b,||0w])
0

and their counter parts on the interval (0/2,4) to get

) 2a, N
J1-N1 = —T(U—ul)—i-bynlwl (29)
. 2a,, .
Jo Mo = —T(U—u2)+b2-n2w2 (210)

where w; can be any convex combination of w; and W. Equations (2.9) and (2.10) have
meaning of a semi-discretized flux from domains €2; into fracture. In order to get a
stable numerical scheme, we introduce a kind of upwind already on this level using a
different convex combination for each flow direction:

jz"ni :_Ui(U_ui)
+ [bi-n]  (wi + (1 — W)

+ [bi-m] (1= Qw; + EW), i=1,2 (2.11)
where o0; = ”% is the transition coefficient and the parameter £ € [%7 1] can be used to
interpolate between upwind ({ = 1) and central difference (£ = 1) scheme. Equations

(2.7), (2.8), and (2.11) describe the general form of the advection-diffusion process on
the fracture and its communication with the surrounding continuum which we shall later
apply to individual processes.

2.3 Darcy Flow Model

We consider the simplest model for the velocity of the steady or unsteady flow in porous
and fractured medium given by the Darcy flow:

w=-KVH inQy ford=1,2,3. (2.12)

Here and later on, we drop the dimension index d of the quantities if it can be deduced
from the context. In (2.12), w [ms™!] is the superficial velocity, K4 is the conductivity
tensor, and H [m] is the piezometric head. The velocity wy is related to the flux g,
[m*~?s~!] through

q, = 0qwy,
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where d4 [m3~9] is the cross section coefficient, in particular d3 = 1, d, [m] is the thickness
of a fracture, and d; [m?] is the cross-section of a channel. The flux g, - n is the volume
of the liquid (water) that passes through a unit square (d = 3), unit line (d = 2), or
through a point (d = 1) per one second. The conductivity tensor is given by the product
Ky = kgAq, where kg > 0 [ms™!] is the hydraulic conductivity and A4 is the 3 x 3
dimensionless anisotropy tensor which has to be symmetric and positive definite. The
piezometric-head H, is related to the pressure head hy through

assuming that the gravity force acts in the negative direction of the z-axis. Combining
these relations, we get the Darcy law in the form:

q = —0kAV(h + 2) in Q4, ford=1,2,3. (2.14)

Next, we employ the continuity equation for saturated porous medium and the dimen-
sional reduction from the preceding section (with w = u := H, j := w, A := K and

b := 0), which yields:
0(0Sh)+divg=F in Qg, ford=1,2,3, (2.15)

where Sy [m™'] is the storativity and Fj; [m®*~9s7!] is the source term. In our setting the
principal unknowns of the system (2.14, 2.15) are the pressure head hy and the flux q,.

The storativity (or the volumetric specific storage) S; > 0 can be expressed as

Sd = ’Yw(ﬁr + ﬁﬁw)a (216)

where 7, [kgm—2?s72] is the specific weight of water, 1 [—] is the porosity, 3, is compress-
ibility of the bulk material of the pores (rock) and f,, is compressibility of the water,
both with units [kg 'ms~2]. For steady problems, we set Sy = 0 for all dimensions
d =1,2,3. The source term F,; on the right hand side of (2.15) consists of the volume
density of the water source fy[s™!] and flux from the from the higher dimension. Precise
form of Fy slightly differs for every dimension and will be discussed presently.

In Q3 we simply have F3 = f3 [s7!].

In the set 25 N Q3 the fracture is surrounded by at most one 3D surface from every side.
On 0§23 Ny we prescribe a boundary condition of the Robin type:

q;-n' = g3y = 03(h3 — ha),

Q3 M~ = gz = 03(hg — hy),

where g, - n*/~ [ms™!] is the outflow from s, h;/_ is a trace of the pressure head in
Q3, hy is the pressure head in Oy, and o3 [s7!] is the transition coefficient given by (see
section 2.2 and [3])
2K2 1Mo Q@ Mo

2 '

Here n, is the unit normal to the fracture (sign does not matter). On the other hand,

03 = 032

the sum of the interchange fluxes qz?,;/ ~ forms a volume source in £2y. Therefore Fy [ms™]
on the right hand side of (2.15) is given by

Fy = 02fs + (q35 + q52)- (2.17)
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The communication between 25 and €2 is similar. However, in the 3D ambient space,
a 1D channel can join multiple 2D fractures 1,...,n. Therefore, we have n independent
outflows from €s:

@y n' =gy = 0a(hy — hy),
where o, [ms™!] is the transition coefficient integrated over the width of the fracture i:
202K, : ni @n}
01 '

02 = 021

Here n} is the unit normal to the channel that is tangential to the fracture . Sum of
the fluxes forms a part of Fy [m2s™1]:

i=1

We remark that the direct communication between 3D and 1D (e.g. model of a well) is
not supported yet. The transition coefficients o35 [—] and 091 [—] are independent scaling
parameters which represent the ratio of the crosswind and the tangential conductivity
in the fracture. For example, in the case of impermeable film on the fracture walls one
may choice o35 < 1.

In order to obtain unique solution we have to prescribe boundary conditions. Currently
we consider a disjoint decomposition of the boundary

00, =TPuTTFursPuTh

where we support the following types of boundary conditions:
Dirichlet boundary condition
hg =hY on 'Y,
where hf [m] is the boundary pressure head . Alternatively one can prescribe the

boundary piezometric head H? [m] related to the pressure head through (2.13).

Total flux boundary condition (combination of Neumann and Robin type)

—qq-n =gy +0g(hi —ha) on T;",

where ¢} [m*~?s71] is the surface density of the water inflow, A% is the boundary pressure
head and ot [m®~9s71] is the transition coefficient. As before one can also prescribe the

boundary piezo head HJ to specify hl.
Seepage face This condition is used to model surface with possible springs:
hdﬁhg and g, n>q)
while the equality holds in at least one inequality. The switch pressure head h5 [kg] can

alternatively be given by switch piezometric head.

The former inequality (usually with default value b = 0) disallow non-zero water height
on the surface, the later inequality (again with default value ¢} = 0) allows only outflow
from the domain (i.e. spring). In practice one may want to allow given water height h2
or given infiltration (e.g. precipitation-evaporation) ¢}’
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River boundary condition This boundary condition models free water surface with
bedrock of given conductivity. We prescribe:

g, n=ocf(Hy— HP)+ ¢y, forHy; > H, (2.19)

q, n=ocf(H] —HY)+q), forH,; < HJ, (2.20)
where H, is piezometric head. The parameters of the condition are given by similar fields
of other boundary conditions: the transition coefficient of the bedrock o [m3~%s~!], the
piezometric head of the water surface given as boundary piezometric head H? [m], the
head of the bottom of the river given as the switch piezometric head h [kg]. The
boundary flux ¢} is zero by default, but can be used to express approximation of the

seepage face condition (see discussion below). The piezometric heads HY and HE may
be alternatively given by pressure heads h and h%, respectively.

The physical interpretation of the condition is as follows. For the water level H; above
the bottom of the river HY the infiltration is given as Robin boundary condition with
respect to the surface of the river HY. For the water level below the bottom the
infiltration is given by the water column of the river and transition coefficient of the
bedrock.

The river could be used to approximate the seepage face condition in the similar way
as the Robin boundary condition with large o can approximate Dirichlet boundary
condition. We rewrite the condition as follows

qy-n=0f(ha—hi)+q), forgi-n>of(h§—hl)+q), (2.21)
q, - n =0l —h)+q), forhg <hj. (2.22)
Now if we take hj = h¥, we obtain
q; n= Ut?(hd - hg) + qzjiva fOIQd n > qé\f? (223)
q;-n=q), forhg<hj. (2.24)
where the first equation approximates hy = h5 as long as off is large.

TODO: mixing seepage and river condition on single element using weighting.
g, n=ack(Hy— HY)+ (1 — a)oy,(Hy — HY), forHy; > HY, (2.25)
q, n=act(H; — H?)+ (1 -a)¢), forH; < H7, (2.26)
Since « is small and o, > o} the first equation can be simplified to
q; m = opg(Hy — HY) + acl(H] — HY)+ (1 —a)q), forH; > Hj,

where the additional terms are to preserve continuity of the condition in the switch
point.

For unsteady problems one has to specify an initial condition in terms of the initial
pressure head hY [m] or the initial piezometric head HY [m].

Volume balance. The equation (2.15) satisfies the volume balance of the liquid in
the following form:

V(O)+/O S(T)dT+/0 f(r)ydr =V(t)
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for any instant ¢ in the computational time interval. Here

v =Y /Q (55h)(t,) da.

s(t) = ;/ﬂdm,m) de,

0==3 [ ata) nia)de

d=1

is the volume [m?3], the volume source [m3s~!] and the volume flux [m3s™!] of the liquid
at time t, respectively. The volume, flux and source on every geometrical region is
calculated at each output time and the values together with the control sums are written
to the file water balance.{dat|txt}. If, in addition, cumulative is set to true then the
time-integrated flux and source is written.

2.3.1 Richards Equation

This section contains a preliminary documentation to the unsaturated water low model.
We use the Richards equation in the form:

0;00; +divg=F €y, ford=1,2,3 (2.27)

where the total water content 6;(h) [—] is a function of the principal unknown h and the
water flux g is given by (2.14) in which the conductivity k, is function of the pressure
head h as well. Currently the total water content is given as:

0,(h) = O(h) + Sh (2.28)

where S is the storativity and 6(h) is the water content. The functions 6(h) and k(h)
are given by the choosen soil model. Two soil models are currently supported.

van Genuchen
Classical van Genuchten model use:
O(h)=(0s —0,.)0.+0,, 0.=(1+ (ah)™)™

for the negative pressure head h < 0 and 6 = 6, for h > 0.

The model parameters are: 0, [—| the saturated water content, 6, [—] the residual water
content, o [kg™!] the pressure scaling parameter, n [—] the exponent parameter. The
exponent m is taken as 1/n — 1 and 6. [—] is called the effective water content.

The conductivity function k(h) is then derived from the capilary model due to Mualem
with result:
1— F(0)

0 =0 [ =)

]2, F(9) = [1—0/m]"
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In fact we use slight modification due to Vogel and Cslerov where the saturation happens
at some preassure head slightly smaller then zero. Then the water content curve is given
by

0(h> = (em - 97’)06 + Hr)

for h < hs and 6 = 60, for h > hs. Currently the fraction 6,,/6; is fixed to 0.001.

Irmay

The model used for bentonite is due to Irmay and use simple power relation for the
conductivity:

Irmay

2.4 Transport of Substances

The motion of substances dissolved in water is governed by the advection, and the
hydrodynamic dispersion. In Qq, d € {1,2,3}, we consider the following system of mass
balance equations':

0,(69c") + div(qc’) — div(96D'Ve') = Fi + F& + Fr(ch, ..., c%). (2.29)

The principal unknown is the concentration ¢’ [kgm™] of a substance i € {1,...,s},
which means the weight of the substance in the unit volume of water. Other quantities
are:

e The porosity ¢ [—], i.e. the fraction of space occupied by water and the total
volume.

e The hydrodynamic dispersivity tensor D’ [m?s~!] has the form

D' = D! 71 + |v| (a/‘T]I + (o — a%)%) : (2.30)
which represents (isotropic) molecular diffusion, and mechanical dispersion in lon-
gitudal and transversal direction to the flow. Here D! [m?s~!] is the molecular
diffusion coefficient of the i-th substance (usual magnitude in clear water is 1077),
T = 9/ is the tortuosity (by [9]), o [m] and o [m] is the longitudal disper-
sivity and the transverse dispersivity, respectively. Note that although we allow
dispersivities to have different values for different substances, it is often assumed
that they are intrinsic parameters of the porous medium. Finally, v [ms™!] is the
microscopic water velocity, also called seepage velocity, related to the Darcy flux
q by the relation g = ¥év. The value of D! for specific substances can be found

in literature (see e.g. [2]). For instructions on how to determine a%, ol we refer
to [3, 1].

For d € {1,2} this form can be derived as in Section 2.2 using w := §9¢c’, u := ¢, A := §ID,

gy — 4
b:=v=4.
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o F% [kgm~?s™!] represents the density of concentration sources in the porous medium.
Its form is:
Fi=0ft+6(cs — ). (2.31)
Here fi [kgm™3s7!] is the density of concentration sources, cf [kgm™] is an
equilibrium concentration and ¢% [s7!] is the concentration flux. One has to pay
attention when prescribing the source, namely to determine whether it is related
to the liquid or the porous medium. We mention several examples:

— extraction of solution: fi =0, ¢4 = 0, o > 0 is the intensity of extraction,
i.e. volume of liquid extracted from a unit volume of porous medium per
second;

— injection of solution: f% = 0, ¢ is the concentration of the substance in the
injected liquid, o% > 0 is the intensity of injection (volume of liquid injected
into a unit volume of porous medium per second);

— production or degradation of substances due to bacteria present in liquid:
f& = 9p', where p' is the production/degradation rate in a unit volume of
liquid,;

— age of liquid: if fi =1 then ¢’ is the age of liquid, i.e. the time spent in the
domain.

o F¢ [kgm™9s7!] is the density of concentration sources due to exchange between
regions with different dimensions, see (2.33) below.

e The reaction term Fg(...) [kgm~9s7!] is thoroughly described in the next section
2.5, see also paragraph ”Two transport models” below.

Initial and boundary conditions. At time ¢t = 0 the concentration is determined
by the initial condition
(0, x) = cy(x).

The physical boundary 9€),; is decomposed into the parts I';UT' pUT'rpUT pr, which may
change during simulation time. The first part ['; is further divided into two segments:

—

7 (1) ={= € 0| q(t, @) - n(x) <0},
1 (t) ={z € 0Q|q(t, z) - n(z) > 0},

where n stands for the unit outward normal vector to 0€2;. We prescribe the following
boundary conditions:

e inflow Default transport boundary condition. On the inflow I'J the reference
concentration ¢4 [kgm™3] is enforced through total flux:

(gc' —96D'Ve') - n = q-ncp, on TT,
while on the outflow I, we prescribe zero diffusive flux:

—9D'Veé -m =0 on I;.
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e dirichlet On I'p, the Dirichlet condition is imposed via prescribed concentration
i
CD. ) )
¢ =cpHonl'p.

e total_flux On I'rr we impose total mass flux condition:
(—qc +95D'V ') - = §(fy + ok(ch — ),

with user-defined incoming concentration flux f§ [kgm=2s7!], transition parameter
ol [ms™'], and reference concentration cf, [kgm™3].

e diffusive_flux Finally on I'pr we prescribe diffusive mass flux (analogously to the
previous case):

POV - m = 0(fy + ok(ch — ).
We mention several typical uses of boundary conditions:

e natural inflow: Use dirichlet or inflow b.c. (the later type is useful when the
location of liquid inflow is not known a priori) and specify c%,.

e natural outflow: The substance leaves the domain only due to advection by the lig-
uid. Use zero diffusive_flux or inflow (the latter in case that the outflow boundary
is not known a priori).

e boundary with known mass flux: Use total flux and f}.
e impermeable boundary: Use zero total flux.

e partially permeable boundary: When the exterior of the domain represents a reser-
voir with known concentration and the Darcy flux is reasonably small, the mass
exchange is proportional to the concentration difference inside and outside the
domain. Use diffusive flux, ¢, and o¥,.

Communication between dimensions. Transport of substances is considered also
on interfaces of physical domains with adjacent dimensions (i.e. 3D-2D and 2D-1D, but
not 3D-1D). Denoting ¢4 1, ¢q the concentration of a given substance in Q4,1 and €y,
respectively, the comunication on the interface between 2,1 and €24 is described by the
quantity

Qat1,a = 02+17d%219d]1)d ' @n(car1 — ca) + {q‘ijﬂ’dcjlg_:l i q%“’d 20, (2.32)
d Qat1.d9,5Cd 1 dgq <0,
where
® 5,14 [kem™9s7'] is the density of concentration flux from Qg1 to €y,
® 07,4 [—]is a transition parameter. Its value determines the mass exchange be-

tween dimensions whenever the concentrations differ. In general, it is recom-
mended to leave the default value ¢ = 1 or to set 0¢ = 0 (when exchange is due
to water flux only).
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3—d

! -17 e
® (14 [M°%7] is the water flux from Qqy1 to Qq, i€, ¢4y 4= Qai1 - Nas1-

The communication between dimensions is incorporated as the total flux boundary con-
dition for the problem on Q4 :

—06DVe-n + ¢'c = ¢° (2.33)
and a source term in 24:

Fe3 =0, Fgo=0qs5, Fo1=0q5- (2.34)

Two transport models. Within the above presented model, Flow123d presents two
possible approaches to solute transport.

e For modelling pure advection (ID = 0) one can choose TransportOperatorSplitting
method, which represents an explicit in time finite volume solver. Only the in-
flow /outflow boundary condition is available and the source term has the form

Fi=6fi+6(cy — ¢)rol,.

The solution process for one time step is faster, but the maximal time step is re-
stricted. The resulting concentration is piecewise constant on mesh elements. This
solver supports reaction term (involving simple chemical reactions, dual porosity
and sorption).

e The full model including dispersion is solved by SoluteTransport_DG, an implicit
in time discontinuous Galerkin solver. It has no restriction of the computational
time step and the space approximation is piecewise polynomial, currently up to
order 3. Reaction term is implemented only for the case of linear sorption, i.e.

FIZ% = _at ((1 - ﬁ)aMZQscls) ) Cé = Q—lC,
!
where ¢! [molkg™'] is the concentration of sorbed substance, ki [molkg™'] is the
sorption coefficient, g, and g; [kgm™3] is the density of the solid (rock) and of the
liquid (solvent), respectively, and M* [kgmol '] denotes the molar mass of the i-th
substance. The initial concentration in solid is assumed to be in equilibrium with
the concentration in liquid.

Mass balance. The advection-dispersion equation satisfies the balance of mass in the
following form:

m'(0) + /Ot s'(1) dr + /Ot fi(r)dr = m'(t)

for any instant ¢ in the computational time interval and any substance ¢. Here

mi) =3 /Q (01, )

Si(t) = Z/Qd Fi(t,x) d,
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3
it) = —qc' + 90DV (t,z) -nd
£t ;/m(q” &) (t.@)-nde

is the mass [kg], the volume source [kgs™'| and the mass flux [kgs™!] of i-th substance at
time t, respectively. The mass, flux and source on every geometrical region is calculated
at each output time and the values are written to the file mass_balance.{dat|txt}. If]
in addition, cumulative is set to true then the time-integrated flux and source is written.
In that case the cumulative source contains also contribution due to reactions.

2.5 Reaction Term in Transport

The TransportOperatorSplitting method supports the reaction term Fg(c',...,c*)
on the right hand side of the equation (2.29). It can represent several models of chemical
or physical nature. Figure 2.2 shows all possible reactional models that we support
in combination with the transport process. The Operator Splitting method enables
us to deal with the convection part and reaction term side by side. The convected
quantities do not influence each other in the convectional process and are balanced over
the elements. On the other hand the reaction term relates the convected quantities and
can be computed separately on each element.

We move now to the description of the reaction models which can be seen again in
Figure 2.2. The convected quantity is considered to be the concentration of substances.
Up to now we can have dual porosity, sorption (these two are more of a physical nature)
and (chemical) reaction models in the reaction term.

The reaction model acts only on the specified substances and computes exchange of
concentration among them. It does not have its own output because it only changes the
concentration of substances in the specified zone where the reaction takes place.

The sorption model describes the exchange of concentration of the substances between
liquid and solid. It can be followed by another reaction that can run in both phases.
The concentration in solid is an additional output of this model. See Subsection 2.5.2.

The dual porosity model, described in Subsection 2.5.1, introduces the so called immo-
bile (or dead-end) pores in the matrix. The convection process operates only on the
concentration of the substances in the mobile zone (open pores) and the exchange of
concentrations from/to immobile zone is governed by molecular diffusion. This pro-
cess can be followed by sorption model and/or chemical reaction, both in mobile and
immobile zone. The immobile concentration is an additional output.

2.5.1 Dual Porosity

Up to now, we have described the transport equation for the single porosity model. The
dual porosity model splits the mass into two zones — the mobile zone and the immobile
zone. Both occupy the same macroscopic volume, however on the microscopic scale, the
immobile zone is formed by the dead-end pores, where the liquid is trapped and cannot
pass through. The rest of the pore volume is occupied by the mobile zone. Since the
liquid in the immobile pores is immobile, the exchange of the substance is only due to
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Operator Splitting

Transport process Reaction term

- independent substances - independent elements (dofs)

‘ Dual Porosity ‘

Dual Porosity Sorption Reaction
_ - - | Decay |
Mobile Immobile Liquid Solid L.

__Reaction __Reaction

Figure 2.2: The scheme of the reaction term objects. The lines represents connections
between different models. The tables under model name include the possible models
which can be connected to the model above.
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molecular diffusion. We consider simple nonequilibrium linear model:

UmOiCrm = Dagp(ci — Cm), (2.35a)
19z»8tci = de(Cm - Ci)7 (235b)

where ¢, is the concentration in the mobile zone, ¢; is the concentration in the immobile
zone and Dy, is a diffusion rate between the zones. ¥; denotes porosity of the immobile
zone and ¥, = ¥ the mobile porosity from transport equation (2.29). One can also set
non-zero initial concentration in the immobile zone ¢;(0).

To solve the system of first order differential equation, we use analytic solution or Euler’s
method, which are switched according to a given error tolerance. See subsection 3.4.1
in numerical methods.

2.5.2 Equilibrial Sorption

The simulation of monolayer, equilibrial sorption is based on the solution of two algebraic
equations, namely the mass balance (in unit volume)

voic + (1 — ) psMscs = ep = const. (2.36)

and an empirical sorption law

cs = f(a), (2.37)

given in terms of the so-called isotherm f. Its form is determined by the parameter
sorption type:

e “none”: f(¢) =0 (the sorption model returns zero concentration in solid);
o “linear”: f(c) = ki;

o “freundlich”: f(¢) = kpc};

o “langmuir”: f(c) = kg lj_‘;’q. Langmuir isotherm has been derived from thermo-

dynamic laws. k; denotes the maximal amount of sorbing specie which can be
kept in an unit volume of a bulk matrix. Coefficient « is a fraction of sorption

and desorption rate constant o = Z—Z

Notation:

e In solid, ¢, = 2~ [mol kg '] is the fraction of the molar amount of the solute

adsorbed n and the amount of the adsorbent m, (mass of solid), all in unit volume.
The concentration in solid can be selected for output.

e In liquid, ¢ = ;* [-] is the fraction of the amount of the solute m and the mass
of liquid my, all in unit volume. The relation between ¢; and the concentration ¢
from transport equation (2.29) is ¢ = ¢0;.

® 0, 0s is the liquid (solvent) density and the solid (rock) density, respectively.

o M, denotes the molar mass of a substance.
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e Multiplication parameters are k;,i € {I, F, L} [molkg™'].

e Additional parameter [a] = 1 can be set.

Non-zero initial concentration in the solid phase ¢4(0) can be set in the input record.
Now, further denoting
My = Qlﬁv Hs = MSQS ' (1 - 19)7

and using (2.37), the mass balance (2.36) reduces to the equation

CT = ¢ + ,usf(Cl), (238)

which can be either solved iteratively or using interpolation. See subsection 3.4.2 in
numerical methods for details.

The units of ¢;, ¢; and k; can vary in literature. To avoid misinterpretation, we derive
(according to Bowman [1]) a conversion rule for Freundlich isotherm which will lead the
user also in other cases, we believe.

Units conversion. Let us have ¢ [kgm™?], the mass concentration in liquid, and
s [kgkg™'], the fraction of the amount of the solute adsorbed and the amount of the
adsorbent in solid. The unit of K follows from the dimensional analysis of s = K¢*:

kgl—ocm?)a
K="y
g
which we want to convert to kr [molkg™'] in the formula ¢, = kpcf.

The first step is a conversion of the mass of the solute to moles by dividing it by the
molar mass M,. We then have the formula

s = Kc*

z\j — K/(]\Z) , (2.39)

s = KM,

where s = ¢,M, and K’ = KM®~" [mol' *kg™'m?] is a new constant, distributing the
molar concentration in liquid to the ratio of the molar mass and the amount of sorbent
in solid.

The second step is introducing ¢; = - into the formula (2.39)
1 [ GipPL ¢ I f—a Qo -1 o) .o
cs = IX (ﬁ) = K'M;"pfcf = (KM, pf') f', (2.40)

where we can denote
krp = KM p, (2.41)

which is the constant we are looking for. This can be also translated to the case of the
linear isotherm, where o = 1 and [K] = kg™ 'm?, and we get the conversion rule

k= KM p,. (2.42)

The conversion of different prefixes of units are left on the user. One should be careful
using the Freundlich isotherm, though, where the exponent o must not be forgotten.
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2.5.3 Sorption in Dual Porosity Model

There are two parameters p; and ps, scale of aqueous concentration and scale of sorbed
concentration, respectively. There is a difference in computation of these in the dual
porosity model because both work on different concentrations and different zones.

Let ¢,y and ¢,,s be concentration in liquid and in solid in the mobile zone, ¢; and c¢;5 be
concentration in liquid and in solid in the immobile zone, ¥,, and ¥; be the mobile and
the immobile porosity, and ¢ be the sorbing surface.

The sorbing surface in the mobile zone is given by

Um

while in the immobile zone it becomes

O
O + 0 O+

l—p=1-

Remind the mass balance equation (2.38). In the dual porosity model, the scaling
parameters py, ps are slightly different. In particular, the mass balance in the mobile
zone reads:

cr = Wy - Cmi +MS * Cms)
= 01 Vm, (2.44)
Ms:Mst(l—ﬁm—ﬁz)%

while in the immobile zone it has the form:

Cr = W+ G +,us * Cis,
ps = M- 05+ (L= U — ;) (1 — ).

2.5.4 Radioactive Decay

The radioactive decay is one of the processes that can be modelled in the reaction
term of the transport model. This process is coupled with the transport using the
operator splitting method. It can run throughout all the phases, including the mobile
and immobile phase of the liquid and also the sorbed solid phase, as it can be seen in
figure 2.2.

The radioactive decay of a parent radionuclide A to a nuclid B

Ak p  allp

is mathematicaly formulated as a system of first order differential equations

dCA
— = —k 2.4
dr o (2.46)
dCB
Z ok 2.4
dr C4) (2.47)
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where k is the radioactive decay rate. Usually, the half life of the parent radionuclide
t1/2 is known rather than the rate. Relation of these can be derived:

dCA
— —kc
dr A
dc
—A = _kdr
CA
094/2 t1/2
dc
—A - % / 1dr
Ca
&, 0
cy/2 t
e =[]l
In 2
k= —.
l1/2
Let us now suppose a more complex situation. Consider substances (radionuclides)
Ay, ..., As which take part in a complex radioactive chain, including branches, e.g.
A By B4y By 40 By 4

k k.
Y/ LN TN
Ay Eo oA B oAl B A

Now the problem turned into a system of differential equations d,c = Dc with the
following matrix, generally full and nonsymmetric:

M, ki ko oo kg ML1
D_ M, | k"12 —'k‘2 ksa ML2 ’
7 RV S et
where M; is molar mass. We can then write
dij = {]i];;\]?_j’ Z.Z:éj.]’ (2.48)

We denote the rate constant of the ¢-th radionuclide
S S
ko= kij=Y bk
j=1 =1

which is equal to a sum of partial rate constants k;;. Branching ratio b; € (0,1)
determines the distribution into different branches of the decay chain, holding Zj‘:1 bij =
1.

Notice, that physically it is not possible to create a chain loop, so in fact one can
permutate the vector of concentrations and rearrange the matrix D into a lower triangle
matrix

dll
D— d21 dgg
dsl ds2 e dss

33



However, we do not do this and we do not search the reactions for chain loops.

The system of first order differential equations with constant coefficients is solved using
one of the implemented linear ODE solvers, described in section 3.4.3.

2.5.5 First Order Reaction

First order kinetic reaction is another process that can take part in the reaction term.
Similarly to the radioactive decay, it is connected to transport by operator splitting
method and can run in all the possible phases, see figure 2.2.

Currently, reactions with single reactant and multiple products (decays) are available
in the software. The mathematical description is the same as for the radioactive decay,
it only uses kinetic reaction rate coefficient k£ in the input instead of half life.

2.6 Heat Transfer

Under the assumption of thermal equilibrium between the solid and liquid phase, the
energy balance equation has the form?

0, (63T) + div(g;c;Tq) — div(sAVT) = FT + FL.
The principal unknown is the temperature 7' [K]. Other quantities are:

e 0, 0s [kgm™3] is the density of the fluid and solid phase, respectively.
e ¢, ¢, [Jkg7'K~' is the heat capacity of the fluid and solid phase, respectively.

e 5 [Jm3K~!] is the volumetric heat capacity of the porous medium defined as

§ =oc+ (1 —1)oscs.

e A [Wm™K™'] is the thermal dispersion tensor:
A= Acond +Adisp
Acond —_ (ﬁ)\fond 4 (1 o 19))\2()”6[) ]L

. VRV
AP = Y0 || (OéT]I + (ar — OéT)—) >

Cli

where A\fod \ond [Wm K™ is the thermal conductivity of the fluid and solid
phase, respectively, and o, cvp [m] is the longitudal and transverse dispersivity in
the fluid.

o T [Jm~9s™!] represents the thermal source:

F' =69F" +6(1 —9)F],

2For lower dimensions this form can be derived as in Section 2.2 using w := §5T, u := T, A := I,
b= 2%,
S
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Fl' = [l + aad! (T = T)),
Fg:fg+QsCsU?(T—Ts)a

where ', fI' [Wm™?] is the density of thermal sources in fluid and solid, respec-
tively, 7;, T, [K] is a reference temperature and o/, o7 [s7!] is the heat exchange
rate.

Initial and boundary conditions. At time ¢ = 0 the temperature is determined by
the initial condition Ty [K]:

Given the decomposition of 99y into I'y UT'p U T'rr U pr (see also Section 2.4), we
prescribe the following boundary conditions:

e inflow Default boundary condition. On the inflow I’} the reference temperature
Tp [K] is enforced through total flux:

(@eTq —0AVT) -n = 0cTpg - n,
while on the outflow I'; we prescribe zero diffusive flux:

—0AVT -n=0.

e dirichlet On I'p, the Dirichlet condition is imposed via prescribed temperature
TDZ
T:TD on F?_UFD.

e total flux On I'7r we impose total energy flux condition:
(—acTq+ SAVT) -n=6(f5 +on(Tp —T)).

with user-defined incoming energy flux ff [Jm™2s7!], transition parameter o}

[Jm™2s7'K~!] and reference temperature Thp.

e diffusive_flux Finally on I'pr we prescribe diffusive energy flux (similarly as
above):
SAVT -n=65(fx +0on(Tp —T)).

We mention several typical uses of boundary conditions:

e natural inflow: Use dirichlet or inflow b.c. (the later type is useful when the
location of liquid inflow is not known a priori) and specify Tp.

e natural outflow: The energy in the domain decreases only due to advection. Use
zero diffusive_flux or inflow (the latter in case that the outflow boundary is not
known a priori).

e boundary with known energy flux: Use total flux and fZ.
e thermally insulated boundary: Use zero total flux.

e partially permeable boundary: The energy transfer is proportional to the temper-
ature difference inside and outside the domain. Use diffusive_flux, Tp and oF.
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Communication between dimensions. Denoting 7,1, T; the temperature in 24,1
and €14, respectively, the communication on the interface between ;. and €2, is de-
scribed by the quantity

43 ady., T if ¢4, , >0,
Qir1a = U§+17d—?12Ad tn@n(Tyy —Ta) + o lq;lﬂ’d ;l:l £ qfﬂ’d B (2.49)
d QZCZQd+1,dgTd i ggi14 <0,
where
® 14 [Wm™] is the density of heat flux from Q441 to Qg
° a§+1,d [—] is a transition parameter. Its value determines the exchange of energy

between dimensions due to temperature difference. In general, it is recommended
to leave the default value o7 = 1 or to set o7 = 0 (when exchange is due to water
flux only).

° qﬁlﬂ’d = 4. - 1 is the water flux from Q41 to .

The communication between dimensions is incorporated as the total flux boundary con-
dition for the problem on Q4 :

(00 T'q — 6AVT) -m = ¢~ (2.50)
and a source term in );:

ng =0, ng = Q::‘,an Fgl = CJ2T1- (2-51)

Energy balance. The heat equation satisfies the balance of energy in the following
form:

e(0) + /Ots(r) dr + /Otf(T) dr = e(t)

for any instant ¢ in the computational time interval. Here

e(t) == Z/Qd(déT)(t,m) dz,

s(t) = Z/Qd FI(t, @) de,

3
= —oicT IAVT -nd
0= [ ConTa+ v t.a) nia

is the energy [J], the volume source [Js™!] and the energy flux [Js™!] at time ¢, re-
spectively. The energy, flux and source on every geometrical region is calculated at
each output time step and the values together with the control sums are written to
the file energy balance.{dat|txt}. If, in addition, cumulative is set to true then the
time-integrated flux and source is written.

36



Chapter 3

Numerical Methods

3.1 Diagonalized Mixed-Hybrid Method

Model of flow described in section 2.3 is solved by the mixed-hybrid formulation (MH)
of the finite element method. As in the previous chapter, let 7 be the time step and
Ta a regular simplicial partition of Q4 d = 1,2,3. Denote by W ,(Ty) C H (div,T})
the space of Raviart-Thomas functions of order zero (RTp) on an element T, € T;. We
introduce the following spaces:

W =W, xWyx W3 W,;= H Wd(Td)a

Tu€Ta

Q=0Q1xQ2xQ3, Qa=1L*(Q). (3.1)
For every Ty € T4 we define the auxiliary space of values on interior sides of Ty:
Q(Ty) = {g € L* Ty \ 998) : 4 = w - nlor,, w € Wy} . (3.2)

Further we introduce the space of functions defined on interior sides that do not coincide
with elements of the lower dimension:

Qa={ae T] QU): dlor = dlog on the side F = 9TNOT  if FOQyy =0} (3.3)

TeTq

Finally we set Q = 6021 X C}Q X @3.
The mized-hybrid method for the unsteady Darcy flow reads as follows. We are looking
for a trio (u, h,h) € W x @ x @) which satisfies the saddle-point problem:

a(u,v) + b(v,p) + loy(v,ﬁ) = (g,v), Yv e W, (3.4)
b(w,q) +b(w,d) — (p,,0,4) = (f,(¢:4),  Vg€Q, §€Q, (3.5)
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where

3
a(u,v) = Z Z %Kdlud cvgdr,

d=1TeTy /T %
3

Z Z / qq divug dx,

d=1T€Ty

Yy | dlortua myas.

d=1T€T, T\
c(hyh,q,4) = c;(h, hyq, ) + ci(h, by q,§) + cr(h, §)

crhhg )= > /8m 0a(pi—1 — Pa)(qa—1 — qa) ds
d—1

d=2,3T€Ty
045,
hhqq ZZ/Mhdqddx
d=1TeTy
h ,q) / o hdqd ds,
dZ;Ten ornrTF ¢
3
(9,v) = — / py (v-n)ds,
3
(fLe)==>_ [ 0afaqads,
d=1 "%
3
- Z / @3 4o+ of hEads
d=1TeTy Y 9T
- Ct<l;/7 ];M q, q)

All quantities are meant in time ¢, only h is the pressure head in time ¢t — 7.

The advantage of the mixed-hybrid method is that the set of equations (3.4) —

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.5) can

be reduced by eliminating the unknowns u and ¢ to a sparse positive definite system for
q. This equation can then be efficiently solved using a preconditioned conjugate gradient
method. Unfortunately, it appears that the resulting system does not satisfy the discrete
maximum principle which in particular for short time steps 7 can lead to unphysical
oscillations. One possible solution is the diagonalization of the method (lumped mixed-
hybrid method, LMH) proposed in [11]. This method was implemented in Flow123d as

well. It consists in replacing the form ¢; by

d+1

+(h, h .4, q) ZZZQTZ’T‘@(h‘STqusTZ>’

d=1T€eT; i=1
and the source term 22:1 de 04 faqqdx by

d+1

Z > anilTI6afadlsy.,

d=1T€eTy i=1
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Figure 3.1: Comparison of MH (left) and LMH scheme (right), 7 = 10~%.

where |T'| is the size of an element T', S, is the i-th side of T', and iL|STﬂ. is the degree of
freedom on the side Sr;. Weights ar; can be chosen to be 1/(d 4 1). After solving the
set of equations it is necessary to modify the velocity field w by adding the time term.
This modified system already satisfies the discrete maximum principle and does not
produce oscillations. Figure 3.1 shows a comparison of the results using conventional
MH scheme and LMH scheme. At the MH scheme one can observe oscillations in the
wavefront where the minimum value is significantly less than zero.

3.2 Discontinuous Galerkin Method

Models for solute transport and heat transfer described in sections 2.4 and 2.6 are
collectively formulated as a system of abstract advection-diffusion equations on domains
Qq, d =1,2,3, connected by communication terms. Consider for d = 1,2, 3 the equation

Opug + div(bug) — div(AVug) = fO + 1 (u® — ug) + q(uarr, ug) in (0,T) x Q4 (3.17a)

with initial and boundary conditions

uq(0,) = u’ in Qg, (3.17b)

ug = u” on (0,T) x T'?, (3.17c)

(bug — AVuy) -n = fN + o (uy — u?) on (0,7) x T'¥, (3.17d)
(bug — AVuy) - n = q(ug, ug—1) on (0,T) x 'Y, (3.17e)

where

Pdc = ﬁd N ﬁdfl.
The communication term ¢(ugy1,uq) has the form

aQugr1 + Pug  in FdC+1, d=1,2,

3.17f
0 on Q\TY,,, d=1,2, and for d =0, 3. ( )

q(tay1,uq) = {
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System (3.17) is spatially discretized by the discontinuous Galerkin method with weighted
averages, which was derived for the case of one domain in [(] (for a posteriori estimate
see [7]). For time discretization we use the implicit Euler method.

Let 7 denote the time step. For a regular splitting 7y of Q¢, d = 1,2, 3, into simplices
we define the following sets of element sides:

Ea sides of all elements in 75 (i.e. triangles for d = 3, lines for d = 2 and nodes for d = 1),
Ear interior sides (shared by 2 or more d-dimensional elements),
Ein outer sides (belonging to only one element),

Eap(t) sides, where the Dirichlet condition (3.17¢) is given,
Ean(t) sides, where the Neumann or Robin condition (3.17d) is given,

Eac sides coinciding with Fdo.

For an interior side £ we denote by NVy(E) the set of elements that share E (notice that
1D and 0D sides can be shared by more than 2 elements). For an element T' € Ny(FE) we
denote ¢r := (b - n);r the outflow from T, and define N (E) := {T € Ny(E)|qr < 0},
NF(E) :={T € Ny(E)| qr > 0} the sets of all outflow and inflow elements, respectively.
For every pair (T, T7) € Nf (E) x N (E) we define the flux from 7" to T~ as

qr+qr-

GrisT = .
doTeN (B 4T

We select arbitrary element T € Ny(E) and define ng as the the unit outward normal
vector to 0T at E. The jump in values of a function f between two adjacent elements
T1, Ty € Ny(E) is defined by [f]r, 1, = firy s = fiy» similarly we introduce the average
Utnn = %(fm‘E + finyp) and a weighted average {f}7, 7, = wfir,, + (1 — w) fim -
The weight w is selected in a specific way (see [0]) taking into account the possible
inhomogeneity of the tensor A.

For every time step t; = k7 we look for the discrete solution u* = (u},ub, uf) € V,

where

3
V=][Va and Vi={v:0Q4=R|vre P(T) VT € Tg}
d=1
are the spaces of piecewise polynomial functions of degree at most p on elements 7y,
generally discontinuous on interfaces of elements. The initial condition for u is defined
as the L2-projection of u® to V. For k = 1,2,..., u* is given as the solution of the
problem

N

(u* — uk’l,v)v + a"(uF,v) = b (v) Vv eV

Here (f, 9)y Zd L (f9)aas (f29)qa = Joa f9, and forms o, b* are defined as follows:
a® ((uy, ug, us), (vi,vs,v3))

3

Z( " (g, va) — (q(Ugsn, Ua), Va)ga — Z <Q(Udaud—1)avd)E)v (3.18)

d=1 Eeg(‘li,c (tk)

b (01,09, 08)) = D bi(va),
! (3.19)
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ak(u,v) = (AVu, Vv)qa — (bu, Vu)ga + (flu’ U)Qd
-> > . < ({Avu}%,T2 ‘ng, [U]Tl,TQ)E +0 ({Avv}%% ng, [U]Tl,Tz)E

Eegd Ty, ToeNy(
T #T»

— e ([uln, 1, [V, 1) ) Z Z <QT+_>T* {utps o [U]TﬂT*)E

Ee&Y  TTeN] (E)

T eN (E)
+ Z (%E (u, ) + (b-nu,v)y — (AVu-n,v), — @(AVv-n,u)E)
Ee&d 1 (tr)
+ Z (URu v)E
Be&d ()
ba(v) (fo‘*‘flusav)m‘f‘ Z (’YE(UD,U)E—@( AV )E>
Ee&d ()
+ Z (aRuD—fN,v)E
Ee&] y(t)

The Dirichlet condition is here enforced by a penalty with an arbitrary parameter vg >
0; its value influences the level of solution’s discontinuity. For vz — 400 we obtain
asymptotically (at least formally) the finite element method. The constant © can take
the values —1, 0 or 1, where —1 corresponds to the nonsymetric, 0 to the incomplete
and 1 to the symetric variant of the discontinuous Galerkin method.

3.3 Finite Volume Method for Convective Trans-

port

In the case of the purely convective solute transport (D = 0), problem (3.17) is replaced
by:

Oug + div(bug) = O+ 1 (u” — ua) + q(uar1, uq) in (0,7) x Qq, (3.20a)
uq(0,-) = u° in Qg, (3.20b)
(b-n)ug = (b-n)u” on I}, (3.20c)

where

Y= {(t,x) € (0,T) x 94| b(t,z) - n(x) < 0}.
The communication term ¢(ug41,uq) has the same structure as in (3.17f).

The system is discretized by the cell-centered finite volume method combined with the
explicit Euler time discretization. Using the notation of Section 3.2, we consider the
space V' of piecewise constants on elements and define the discrete problem:

— (uf =, v)v +aF W ) = () Yo eV
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where the forms a* and b* are defined in (3.18)-(3.19) and a%, b% now have simplified
form:

a];(u,v) = Z ((b ) n)+u,v)aTi + Z (QT]'—>T1'% v)aTimaTj )

T:€Tq T;€Ta
bi(v) = (fo + [ —ufhT U)Qd + Z ((b -m)"u”, U)aT,-man :
T:€Tq

The above formulation corresponds to the upwind scheme, ideal mixing in case of mul-
tiple elements sharing one side, and explicit treatment of linear source term.

3.4 Solution Issues for Reaction Term

3.4.1 Dual Porosity

The analytic solution of the system of differential equations (2.35) at the time t with
initial conditions ¢,,(0) and ¢;(0) is

en(t) = (em(0) — ca(0)) exp <_de (i + %) t) + ca(0), (3.21)
() = (¢:(0) — cal0)) exp <—de (i + %) t) + ca(0), (3.22)

where ¢, is the weighted average

ﬁmcm + 191'61'
Cop = —F7——
Uy + Vi

If the time step is large, we use the analytic solution to compute new values of concen-
trations. Otherwise, we replace the time derivatives in (2.35a) and (2.35b) by first order
forward differences and we get the classical Euler scheme

en(tt) = DngAt(ci(t) —en(®)) + em(t), (3.23a)
() = Dd%ft(cm(t) — () + alt), (3.23b)
(3.23¢)

where At = tT — t is the time step.

The condition on the size of the time step is derived from the Taylor expansion of (3.21)
or (3.22), respectively. We neglect the higher order terms and we want the second order
term to be smaller than the given scheme tolerance tol, relatively to c,,

D40
D}, (At)? ( s

2
) L ol (3.24)
5 ca_o. )

(€m(0) — ca(0))

We then transform the above inequation into the following condition which is tested in
the program

max(|c;,(0) — ca(0)],]¢:(0) — ¢, (0)]) < 2¢, (deAfg;jj—l— 191)) tol. (3.25)
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In addition, the explicit Euler method (3.23) requires the satisfaction of a CFL condition

of the form L 99
At < m

= Dy O + ;.

If either of the inequalities (3.25) or (3.26) is not satisfied, then the analytic solution is
used.

(3.26)

3.4.2 Equilibrial Sorption

Let us now describe the actual computation of the sorption model. To solve (2.38)
iteratively, it is very important to define the interval where to look for the solution
(unknown ¢;), see Figure 3.2. The lower bound is 0 (concentration can not reach negative
values). The upper bound is derived using a simple mapping. Let us suppose limited
solubility of the selected transported substance and let us denote the limit ¢;. We keep
the maximal ”total mass” ér = ;- & + us - f(¢), but we dissolve all the mass to get
maximal ¢"** > ¢;. That means ¢; = 0 at this moment. We can slightly enlarge the

interval by setting the upper bound equal to ¢]*** + constgmqu-

CsA Ccr=9g(c))

>
cr C
Figure 3.2: Sorption in combination with limited solubility.
To approximate the equation (2.38) using interpolation, we need to prepare the set
of values which represents [¢;, f(c;)], with ¢; equidistantly distributed in transformed

(rotated and rescaled) coordination system at first. The construction process of the
interpolation table follows.

1. Maximal “total mass” ¢7 = ;- ¢ + ps - f(¢;) is computed.

2. Total mass step is derived mass_step = ¢r/n_steps. n_steps is the number of
substeps.

3. Appropriate ¢ = (mass_step - j)/u, j € {0,...,n_steps} are computed.
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4. The equations ;- ¢y = i - c{ + ps f(c{) J €{0,...,n_steps} are solved for C‘Z
as unknowns. The solution is the set of ordered couples (points) [, f(c])], j €
{0,...,n_steps}.

After the computation of {[c], f(c])]}, we transform these coordinates to the system
where the total mass is an independent variable. This is done by multiplication of
precomputed points using the transformation matrix A:

ci=A.¢
" 9 My(1— 9 g
“ = Pw S( )PR ) )
[ chd } = [ M1 - Ppr O pu } [ i } (3.27)

j €40,... ,n_steps}
R7j
The values ¢,

the values cZ

are equidistantly distributed and there is no reason to save them, but
J are stored in onedimensional interpolation table.

Once we have the interpolation table, we can use it for projecting the transport results
[c1, ¢s] on the isotherm under consideration. Following steps must be taken.

1. Achieved concentrations are transformed to the coordinate system through multi-
plication with the matrix A, see (3.27).

2. Transformed values are interpolated.

3. The result of interpolation is transformed back. The backward transformation con-
sists of multiplication with AT which is followed by rescaling the result. Rescaling
the result is necessary because A is not orthonormal as it is shown bellow.

AT A= (1P )| ]

Limited solubility. When p;-¢;+ ps- f(¢) > - ¢+ ps- f(G), neither iterative solver
nor interpolation table is used. The aqueous concentration is set to be ¢ and sorbed
concentration is computed cs = (p; - ¢ + s - f(er) — - &)/ ps-

3.4.3 System of Linear Ordinary Differential Equations

A system of linear ordinary differential equations (ODE) appears in several places in
the model. We provide several solvers which we shall brielfy describe in this section.
For the moment, however, we only use the method of Padé approximant. Let us denote
the ODE system

oe(t) = A(t)e(t) + b(t).

Semi-analytic solution. A semi-analytic solution can be obtained in special cases
due to the physical nature of the problem. The problem can be then solved only by
a matrix multiplication ¢(t + At) = Re(t). This is used in case of radioactive decays
and first order kinetic reactions.

The right hand side b is zero and A is constant. The assumption is made that the
equations are independent during one time step. Each quantity ¢; (concentration in this

44



case) is decreased by et (supposing negative diagonal) during time step At. The
decrement (1 — ea“'At) is then distributed among other quantities according to the given

fraction.

In case of radioactive decays and first order reactions, the elements of the solution matrix
R are

ri = e Mol

Ty = (1 — €7kiAt) bji]]\\?u

where bj; is the branching ratio of i-th reactant (or radionuclide) and % is the fraction

of molar masses. The expressions bﬂ% are then obtained from the system matrix by

dividing —ZL See the system matrix entries in (2.48).

The assumption (equations independence) is adequate when a very small time step is
applied. This will then lead to huge amount of evaluations of the exponential functions
which can be expensive, so other numerical methods might be more appropriate. When
the time step is large then the assumption is inadequate.

On the other hand, if the time step is constant (for significantly large number of time
steps), we get the solution cheaply just by matrix multiplication, because the matrix R
is constant.

Padé approximant. For homogenous systems with constant matrix A, we can use
Padé approximation to find the solution. This method finds a rational function whose
power series agrees with a power series expansion of a given function to the highest
possible order (e.g. in [10]). Let

TOEDILTEDS

J=0 J=0

F9(to)

S| =

be the function being approximated and its power series given by Taylor expansion
about tg. Then the rational function

P(t -
Rpult) = 20 20 (3.28)
@nlt) > qjt?
7=0
which satisfies .
F&) = et = Ryn(t), (3.29)
7=0

is called Padé approximant. From (3.29), we obtain m + n + 2 equations for coefficients
of the nominator P, (polynomial of degree m) and the denominator @,, (polynomial of
degree n). We also see that the error of the approximation is O(t™*"1). By convention,
the denominator is normalized such that gy = 1. Theoretical results show that for
m =n — 1 and m = n — 2 the Padé approximant corresponds to an implicit Runge-
Kutta method which is A-stable and L-stable (see [5]).
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Now, we consider the solution of our ODE system in a form ¢(t) = eA'¢(0). We shall

approximate the matrix exponential function using a matrix form of (3.28). For expo-
nential functions, there are known coeffficients of the nominator and denominator:

= (mtn—jm ;
P, (At) = ; CETOTI (At)’, (3.30)
B - i (m+n—j)n! i
Finally, we can write the solution at time t + At
c(t + At) = %c(zﬁ) =R, .(AAt)c(t). (3.32)

If the time step At is constant, we do not need to compute the matrix R,,, repeatedly
and we get the solution cheaply just by matrix multiplication. In the oposite case, we
avoid evaluating the exponential function and still get the solution quite fast (comparing
to computing semi-analytic solution).
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Chapter 4

File Formats

4.1 Main Input File (CON File Format)

In this section, we shall describe structure of the main input file that is given through
the parameter -s on the command line. The file formats of other files that are referenced
from the main input file and used for input of the mesh or large field data (e.g. the GMSH
file format) are described in following sections. The input subsystem was designed
with the aim to provide uniform initialization of C++ classes and data structures. Its
structure is depicted on Figure 4.1. The structure of the input is described by the Input
Types Tree (ITT) of (usually static) objects which follows the structure of the classes.
The data from an input file are read by apropriate reader, their structure is checked
against I'TT and they are pushed into the Internal Storage Buffer (ISB). An accessor
object to the root data record is the result of the file reading. The data can be retrieved
through accessors which combine raw data stored in in IBS with their meaning described
in I'TT. ITT can be printed out in various formats providing description of the input
structure both for humans and other software.

Currently, the JSON input file format is only implemented and in fact it is slight ex-
tension of the JSON file format. On the other hand the data for initialization of the
C++ data structures are coded in particular way. Combination of this extension and
restriction of the JSON file format produce what we call CON (C++ object notation)
file format.

4.1.1 JSON for Humans

Basic syntax of the CON file is very close to the JSON file format with only few exten-
sions, namely:

e You can use C++ (or JavaScript) comments. One line comments // and multi-line
comments /* */.

e The quoting of the keys is optional if they do not contain spaces (holds for all
CON keys).
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the |nput structure
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Figure 4.1: Sturucture of the input subsystem. Grey boxes are not implemented yet.

e You can use equality sign = instead of colon : for separation of keys and values in
JSON objects.

e You can use any whitespace to separate tokens in JSON object or JSON array.

The aim of these extensions is to simplify writing input files manually. However these
extensions can be easily filtered out and converted to the generic JSON format. For the
description of the JSON format we refer to http://www. json.org/.

4.1.2 CON Constructs

The CON file format constructs are designed for initialization of C++ strongly typed
variables. The primitive data types can be initialized from the primitive CON constructs:

e Bool — initialized from the JSON keywords true and false.
e Double, Integer — initialized from JSON numeric data.

o String, FileName, Selections — initialized from JSON strings

Selections are typed like the C++ enum types that are initialized from them. Various
kind of containers can be initialized by the Array construct, that is an JSON array with
elements of the same CON type. The C++ structures and classes can be initialize from
the Record construct, which is represented by a JSON object. However, in constrast
to JSON, these Records have different types in similar way as the strong typed C++
structures. The types are described by ITT of the particular program which can be
printed out in several formats, in particular description of ITT for Flow123d forms
content of Chapter 5. In order to allow certain kind of polymorphism, we introduce also
the AbstractRecord construct, where the type of the record is not given by I'TT but can
be chosen as part of the input.
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4.1.3 CON Special Keys

All keys in Records should be in lower case, possibly using digits and underscore. The
keys all in upper case are reserved for special function in the CON file. These are:

TYPE key :
TYPE=<Selection of AbstractRecord>

Is used to specify particular type of an AbstractRecord. This way you can choose
which particular implementation of an abstract C++ class should be instantiated.
The value of the key is a string from the Selection that consists of names of Records
that was declared as descendants of the AbstractRecord.

REF key :
{ REF=<address> }

The record in input file that contains only the key REF is replaced by the JSON
entity that is referenced by the <address>. The address is a string with format
similar to UNIX path, i.e. with grammar

<address> = <address> / <item>
= <item>
= <null>

<item> = <index>

<key>

where index is non-negative integer and key is valid CON record key (lowercase,
digits, underscores). The address can be absolute or relative identification of an
entity. The relative address is relative to the entity in which the reference record
is contained. One can use two dots ".." to move to parent entity.

Example:

mesh={
file_name="xyz"

}

array=|[
{x=1 y=0%}
{x=2 y=0}
{x=3 y=0}

]

outer_record={
output_file="x_out"
inner_record={

output_file={REF="../output_file"} // value "x_out"

}
x={REF="/array/2/x"} // value "3"
f_name={REF="/mesh/file_name"} // value "xyz"
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4.1.4 Record Types

A Record type is given by the set of key specifications, which in turn consist from: key
name, type of value and default value specification. Default value specification can be:

obligatory — means no default value, which has to be specified at input.

optional — means no default value, but value is needs not to be specified. Unspecified
value usually means that you turn off some functionality.

default at declaration — the default value is explicitly given in declaration and is
automatically provided by the input subsystem if needed

default at read time — the default value is provided at read time, usually from some
other variable. In the documentation, there is only textual description where the
default value comes from.

Implicit Creation of Composed Entities

Consider a Record type in which all keys have default values (possibly except one).
Then the specification of the Record can contain a key for default construction. User
can specify only the value of this particular key instead of the whole record, all other
keys are initialized from its default values. Moreover, an AbstractRecord type may have
a default value for the TYPE key. This allows to express simple tasks by simple inputs
but still make complex inputs possible. Similar functionality holds for arrays. If the
user sets a non-array value where an array is expected the reader provides an array with
a unique element holding the given value.

4.2 Important Record Types of Flow123d Input

4.2.1 Mesh Record

The mesh record provides initialization for the computational mesh consisting of points,
lines, triangles and tetrahedrons in 3D space. Currently, we support only GMSH mesh
file format MSH ASCII. The input file is provided by the key mesh _file. The file format
allows to group elements into regions identified either by ID number or by string label.
The regions with labels starting with the dot character are treated as boundary regions.
Their elements are removed from the computational domain, however they can be used
to specify boundary conditions. Other regions are called bulk regions. User can create
new labeled regions through the key regions.

4.2.2 Field Records

A general time and space dependent, scalar, vector, or tensor valued function can be
specified through the family of abstract records Field R™— > §, where m is currently
always m = 3 and S is a specification of the target space, which can be:

e 7 — scalar valued field, with scalars of type T
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e T[d] — vector valued field, with vector of fixed size d and elements of type T

e 7 [n] — vector valued field, with vector of variable size (given by some input) and
elements of type T

e T[d,d] — tensor valued field, with square tensor of fixed size and elements of type

17'
the scalar types can be

e Real — scalar real valued field
e Int — scalar integer valued field

e Enum — scalar non negative integer valued field, should be convertible to appro-
priate C++ enum type

Each of these abstract record has the same set of descendants which implement various
algorithms to specify and compute values of the field. These are

FieldConstant — field that is constant in space

FieldFormula — field that is given by runtime parsed formula using x, ¥, z,t coordi-
nates. The Function Parser library is used with syntax rules described here.

FieldPython — field can be implemented by Python script either specified by string
(key script_string) or in external file (key script file.

FieldElementwise — discrete field, currently only piecewise constant field on elements
is supported, the field can given by the MSH ASCII file specified in key gmsh file
and field name in the file given by key field name. The file must contain same
mesh as is used for computation.

FieldInterpolated — allows interpolation between different meshes. Not yet fully
supported.

Several automatic conversions are implemented. Scalar values can be used to set con-
stant vectors or tensors. Vector value of size d can be used to set diagonal tensor d x d.
Vector value of size d(d — 1)/2, e.g. 6 for d = 3, can be used to set symmetric ten-
sor. These rules apply only for FieldConstant and FieldFormula. Moreover, all Field
abstract types have default value TYPE=FieldConstant. Thus you can just use the
constant value instead of the whole record.

Examples:
constant_scalar_function = 1.0
// is same as
constant_scalar_function = {

TYPE=FieldConstant,
value=1.0

3
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conductivity_tensor [1,2, 3]

// is same as

conductivity_tensor = {
TYPE=FieldConstant,

value=[[1,0,0],[0,2,0],[0,0,3]]

concentration = {
TYPE=FieldFormula,
value="x+y+z"
}
//is same as (provided the vector has 2 elements)
concentration = {
TYPE=FieldFormula,
value=["x+y+z", "x+y+z"]

4.2.3 Field Data for Equations

Every equation record has key input_fields, intended to set both the bulk and bound-
ary fields. These keys contain an array of region-time initialization records like the Data
record of the DarcyFlow equation. Every such record specifies fields on particular region
(keys region and rid ) starting from the time specified by the key time. The array is
processed sequentially and latter values overwrite the previous ones. Times should form
a non-decreasing sequence

Example:

input_fields = [
{ // time=0.0 - default value
r_set="BULK",
conductivity=1 // setting the conductivity field on all regions

1,
{
region="2d_part",
conductivity=2 // overwriting the previous value
1,
{ time=1.0,
region="2d_part",
conductivity={
// from time=1.0 we switch to the linear function in time
TYPE=FieldFormula,
value="2+t"
}
},
{ time=2.0,

region="2d_part",
conductivity={
// from time=2.0 we switch to elementwise field, but only
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// on the region "2d_part"
TYPE=FieldElementwise,
gmsh_file="./input/data.msh",
field_name="conductivity"

4.3 Mesh and Data File Format MSH ASCII

Currently, the only supported format for the computational mesh is MSH ASCII format
used by the GMSH software. You can find its documentation on:

http://geuz.org/gmsh/doc/texinfo/gmsh. html#MSH-ASCII-file-format

The scheme of the file is as follows:

$MeshFormat
<format version>
$EndMeshFormat

$PhysicalNames
<number of items>
<dimension> <region ID> <region label>

$EndPhysicalNames

$Nodes
<number of nodes>
<node ID> <X coord> <Y coord> <Z coord>

$EndNodes
$Elements

<number of elements>
<element ID> <element shape> <n of tags> <tags> <nodes>

$EndElements

$ElementData
<n of string tags>
<field name>
<interpolation scheme>
<n of double tags>
<time>
<n of integer tags>
<time step index>
<n of components>
<n of items>
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<partition index>
<element ID> <component 1> <component 2> ...

$EndElementData
Detailed description of individual sections:

PhysicalNames : Assign labels to region IDs. Elements of one region should have
common dimension. Flow123d interprets regions with labels starting with period
as the boundary elements that are not used for calculations.

Nodes : <number of nodes> is also number of data lines that follows. Node IDs are
unique but need not to form an aritmetic sequance. Coordinates are float numbers.

Elements : Element IDs are unique but need not to form an aritmetic sequence. Integer
code <element shape> represents the shape of element, we support only points
(15), lines (1), triangles (2), and tetrahedrons (4). Default number of tags is 3.
The first is the region ID, the second is ID of the geometrical entity (that was
used in original geometry file from which the mesh was generated), and the third
tag is the partition number. nodes is list of node IDs with size according to the
element shape.

ElementData : The header has 2 string tags, 1 double tag, and 4 integer tags with de-
fault meaning. For the purpose of the FieldElementwise the tags <field name>,
<n of components>, and <n of items> are obligatory. This header is folowed by
field data on individual elements. Flow123d assumes that elements are sorted by
element ID, but doesn’t need to form a continuos sequence.

4.4 Output Files

Flow123d supports output of scalar, vector and tensor data fields into two formats. The
first is the native format of the GMSH software (usually with extension msh) which
contains computational mesh followed by data fields for sequence of time levels. The
second is the XML version of VTK files. These files can be viewed and post-processed
by several visualization software packages. However, our primal goal is to support data
transfer into the Paraview visualization software. See key format.

Input record of every equation (flow, transport, reactions, heat) contains the keys
output_stream and output fields. In output_stream, the name and type of the
output file is specified. Further, in output_fields, one determines the list of fields
intended for output. The available output fields include input data as well as the simu-
lation results.

Below we mention the most important output fields of all equations and link to the
complete lists.
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Darcy flow

pressure_p0

Pressure head [m], piecewise constant on every element.
This field is directly produced by the MH method and
thus contains no postprocessing error.

pressure_pl

Same pressure head field, but interpolated into P1 con-
tinuous scalar field. Namely you lost dicontinuities on
fractures.

velocity_pO

Vector field of water flux [m3s™!|. For every element we
evaluate discrete flux field in barycenter.

piezo_head_pO

Piezometric head [m], piecewise constant on every ele-
ment. This is just pressure on element plus z-coordinate
of the barycenter. This field is produced only on demand
(see key piezo head pO0).

complete list

See Darcy flow output fields.

Convection transport

conc

Concentration [kgm ™3], piecewise constant on every el-
ement.

complete list

See Convection transport output fields.

Transport with dispersion

conc

Concentration [kgm™], piecewise linear on every ele-
ment. Even if higher order polynomial approximation is
used in simulation, the results are saved only in element
corners.

complete list

See Transport with dispersion output fields.

Dual porosity

conc_immobile

Concentration [kgm™] in immobile zone, piecewise lin-
ear on every element.

complete list

See Dual porosity output fields.

Sorption, Mobile sorption, Immobile sorption

conc_solid

Concentration [mol kg™ '] of sorbed substance, piecewise
linear on every element.

complete list

See Sorption output fields, Mobile sorption output fields,
Immobile sorption output fields.

Heat transfer

temperature

Temperature [K|, piecewise linear on every element.
Even if higher order polynomial approximation is used
in simulation, the results are saved only in element cor-
ners.

complete list

See Heat transfer output fields.

4.4.1 Auxiliary Output Files

Profiling Information

On every run we collect some basic profiling informations. After all computations these
data are written into the file profileriy’m%d_%H.%M.%S.out where %y, %m, %d, %H, %M,
%S are two digit numbers representing year, month, day, hour, minute, and second of
the program start time.
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Balance of Conservative Quantities

Primary and secondary equations can produce additional information on fluxes, sources
and state of conservative quantities (for flow it is the volume of water, for transport
the mass of a substance, for heat transfer the energy). The computation of bal-
ance is governed by the key balance. The balance file (default water_balance.txt,
mass_balance.txt, energy_balance.txt) contains the following information:

e time and region
e name and unit of the quantity

e mass (current state), flux through boundary and volume source at given time and
region

e incoming and outgoing flux and source

e flux and source increment since the last balance output time

e cumulative flux and source

e error: current mass should equal to initial mass + cumulative sources - cumulative

fluxes

Raw Water Flow Data File

You can force Flow123d to write raw data about results of MH method. The file format
1S:

$FlowField

T=<time>

<number fo elements>

<eid> <pressure> <flux x> <flux y> <flux z> <number of sides> <pressures on sides> <flu

$EndFlowField
where

<time> — is simulation time of the raw output.

<number of elements> — is number of elements in mesh, which is same as number
of subsequent lines.

<eid> — element id same as in the input mesh.
<flux x,y,z> — components of water flux interpolated to barycenter of the element

<number of sides> — number of sides of the element, influence number of remaining
values

<pressures on sides> — for every side average of the pressure over the side
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<fluxes on sides> — for ever side total flux through the side

The side values are reported according to the side order, with sides numbering given by
Table 4.1.

Table 4.1: Side numbering relative to veritices.

element dimension side vertices

0
1

01
02
12

012
013
023
123

o

1

W~ O N~ O
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Chapter 5

Main Input File Reference

record: Balance

Balance of a conservative quantity, boundary fluxes and sources.
times = (Array [0, UINT] of Record: TimeGrid )

Default: ( [/ )
add_output_times = (Bool )

Default: ( True )

Add all output times of the balanced equation to the balance output times set.
Note that this is not the time set of the output stream.

format = (Selection: Balance_output_format )
Default: ( Txt )
Format of output file.

cumulative = (Bool )
Default: ( False )

Compute cumulative balance over time. If true, then balance is calculated at
each computational time step, which can slow down the program.

file = (Filename )
Default: ”File name generated from the balanced quantity: jquantity_namej _balance.*”

File name for output of balance.

record: Bddc implements abstract type: LinSys

Solver setting.
TYPE = (String )
Default: ( Bddc )

Sub-record Selection.

r_tol = (Double [0, 1])
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Default: ”Defalut value set by nonlinear solver or equation. If not we use value
1.0e-7.7

Relative residual tolerance, (to initial error).
max_it = (Integer [0, INT])

Default: ”Defalut value set by nonlinear solver or equation. If not we use value
1000.”

Maximum number of outer iterations of the linear solver.
max-nondecr_it = (Integer [0, INT] )

Default: ( 30)

Maximum number of iterations of the linear solver with non-decreasing residual.
number _of levels = (Integer [0, INT] )

Default: ( 2)

Number of levels in the multilevel method (=2 for the standard BDDC).
use_adaptive_bddc = (Bool )

Default: ( False )

Use adaptive selection of constraints in BDDCML.
bddcml_verbosity_level = (Integer [0, 2] )

Default: ( 0)

Level of verbosity of the BDDCML library:

e 0 - no output
e 1 - mild output

e 2 - detailed output.

record: Coupling_OperatorSplitting implements abstract type: AdvectionProcess

Transport by convection and/or diffusion
coupled with reaction and adsorption model (ODE per element)
via operator splitting.

TYPE = (String )
Default: ( Coupling_operatorsplitting )

Sub-record Selection.

time = (Record: TimeGovernor )
Default: ( Obligatory )

Time governor setting for the secondary equation.

balance = (Record: Balance )

Default: ( )
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Settings for computing balance.
output_stream = (Record: OutputStream )

Default: ( Obligatory )

Parameters of output stream.
substances = (Array [1, UINT] of Record: Substance )

Default: ( Obligatory )

Specification of transported substances.
transport = (Abstract: Solute )

Default: ( Obligatory )

Type of numerical method for solute transport.
reaction term = (Abstract: ReactionTerm )

Default: ( Optional )

Reaction model involved in transport.

record: Coupling_Sequential implements abstract type: Coupling Base

Record with data for a general sequential coupling.
TYPE = (String )

Default: ( Coupling_sequential )

Sub-record Selection.
description = (String )

Default: ( Optional )

Short description of the solved problem.
Is displayed in the main log, and possibly in other text output files.

mesh = (Record: Mesh )
Default: ( Obligatory )

Computational mesh common to all equations.

time = (Record: TimeGovernor)
Default: ( Optional )

Simulation time frame and time step.
flow_equation = (Abstract: DarcyFlow )

Default: ( Obligatory )

Flow equation, provides the velocity field as a result.

solute_equation = (Abstract: AdvectionProcess )
Default: ( Optional )

Transport of soluted substances, depends on the velocity field from a Flow equa-
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tion.

heat_equation = (Abstract: AdvectionProcess )
Default: ( Optional )

Heat transfer, depends on the velocity field from a Flow equation.

record: Decay

A model of a radioactive decay.
radionuclide = (String )
Default: ( Obligatory )
The name of the parent radionuclide.
half life = (Double [0, +inf) )
Default: ( Obligatory )
The half life of the parent radionuclide in seconds.
products = (Array [1, UINT] of Record: RadioactiveDecayProduct )
Default: ( Obligatory )
An array of the decay products (daughters).

record: Difference implements abstract type: Region

Defines region as a difference of given pair of regions.
TYPE = (String )

Default: ( Difference )

Sub-record Selection.
name = (String )

Default: ( Obligatory )

Label (name) of the region. Has to be unique in one mesh.
regions = (Array [2, 2] of String )

Default: ( Obligatory )

Defines region as a difference of given pair of regions.

record: DualPorosity implements abstract type: ReactionTerm

Dual porosity model in transport problems.
Provides computing the concentration of substances in mobile and immobile
zone.

TYPE = (String )
Default: ( Dualporosity )
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Sub-record Selection.
input_fields = (Array [0, UINT] of Record: DualPorosity_Data )

Default: ( Obligatory )

Containes region specific data necessary to construct dual porosity model.
scheme tolerance = (Double [0, +inf) )

Default: ( 0.001)

Tolerance according to which the explicit Euler scheme is used or not.Set 0.0 to
use analytic formula only (can be slower).

reaction mobile = (Abstract: ReactionTerm )
Default: ( Optional )
Reaction model in mobile zone.

reaction immobile = (Abstract: ReactionTerm )
Default: ( Optional )
Reaction model in immobile zone.

output = (Record: EquationOutput )
Default: ( u’fields’: [u’conc_immobile’] )
Setting of the fields output.

record: DualPorosity_Data

Record to set fields of the equation.

The fields are set only on the domain specified by one of the keys: 'region’, rid’
and after the time given by the key ’time’. The field setting can be overridden
by

any DualPorosity_Data record that comes later in the boundary data array.
region = (Array [1, UINT] of String )

Default: ( Optional )

Labels of the regions where to set fields.
rid = (Integer [0, INT] )

Default: ( Optional )

ID of the region where to set fields.
time = (Double [0, +inf) )

Default: ( 0.0)

Apply field setting in this record after this time.
These times have to form an increasing sequence.

diffusion rate_immobile = (Array [1, UINT] of Abstract: Field:R3 — R )
Default: ( Optional )

Diffusion coefficient of non-equilibrium linear exchange between mobile and im-
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mobile zone. [s7!]
porosity_immobile = (Abstract: Field:R3 — R)
Default: ( Optional )
Porosity of the immobile zone. [—]
init_conc_immobile = (Array [1, UINT] of Abstract: Field:R3 — R )
Default: ( Optional )

Initial concentration of substances in the immobile zone. [m3kg]

record: DualPorosity_Data_aux

Record to set fields of the equation.

The fields are set only on the domain specified by one of the keys: 'region’, rid’
and after the time given by the key 'time’. The field setting can be overridden
by

any DualPorosity_Data_aux record that comes later in the boundary data array.

region = (Array [1, UINT] of String )

Default: ( Optional )

Labels of the regions where to set fields.
rid = (Integer [0, INT] )

Default: ( Optional )

ID of the region where to set fields.
time = (Double [0, +inf) )

Default: ( 0.0)

Apply field setting in this record after this time.
These times have to form an increasing sequence.

record: EmptyRecord

record: EquationOutput

Output of the equation’s fields. The output is done through the output stream
of the associated balance law equation.The stream defines output format for
the full space information in selected times and observe points for the full time
information. The key 'fields’ select the fields for the full spatial output.The set of
output times may be specified per field otherwise common time set 'times’ is used.
If even this is not providedthe time set of the output_stream is used. The initial
time of the equation is automatically added to the time set of every selected field.
The end time of the equation is automatically added to the common output time
set.

times = (Array [0, UINT] of Record: TimeGrid )
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Default: ( Optional )

Output times used for the output fields without is own time series specification.
add_input_times = (Bool )

Default: ( False )

Add all input time points of the equation, mentioned in the ’input_fields’ list,
also as the output points.

fields = (Array [0, UINT] of Record: FieldOutputSetting )
Default: ( [/ )
Array of output fields and their individual output settings.
observe_fields = (Array [0, UINT] of Selection: Flow_Darcy-MH_outpul_fields )
Default: ( [/ )

Array of the fields evaluated in the observe points of the associated output stream.

record: EquationOutput

Output of the equation’s fields.The output is done through the output stream
of the associated balance law equation.The stream defines output format for
the full space information in selected times and observe points for the full time
information. The key fields’ select the fields for the full spatial output.The set of
output times may be specified per field otherwise common time set 'times’ is used.
If even this is not providedthe time set of the output_stream is used. The initial
time of the equation is automatically added to the time set of every selected field.
The end time of the equation is automatically added to the common output time
set.

times = (Array [0, UINT] of Record: TimeGrid )

Default: ( Optional )

Output times used for the output fields without is own time series specification.
add_input_times = (Bool )

Default: ( False )

Add all input time points of the equation, mentioned in the ’input_fields’ list,
also as the output points.

fields = (Array [0, UINT] of Record: FieldOutputSetting )
Default: ( [/ )
Array of output fields and their individual output settings.

observe fields = (Array [0, UINT] of Selection: Solute_Advection F'V_output_fields )
Default: ( /] )

Array of the fields evaluated in the observe points of the associated output stream.

record: EquationOutput
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Output of the equation’s fields. The output is done through the output stream
of the associated balance law equation.The stream defines output format for
the full space information in selected times and observe points for the full time
information. The key 'fields’ select the fields for the full spatial output.The set of
output times may be specified per field otherwise common time set 'times’ is used.
If even this is not providedthe time set of the output_stream is used. The initial
time of the equation is automatically added to the time set of every selected field.
The end time of the equation is automatically added to the common output time
set.

times = (Array [0, UINT] of Record: TimeGrid )

Default: ( Optional )

Output times used for the output fields without is own time series specification.
add_input_times = (Bool )

Default: ( False )

Add all input time points of the equation, mentioned in the ’input_fields’ list,
also as the output points.

fields = (Array [0, UINT] of Record: FieldOutputSetting )
Default: ( [/ )
Array of output fields and their individual output settings.
observe_fields = (Array [0, UINT] of Selection: Solute_AdvectionDiffusion_DG_output_fields

)
Default: ( /] )

Array of the fields evaluated in the observe points of the associated output stream.

record: EquationOutput

Output of the equation’s fields. The output is done through the output stream
of the associated balance law equation.The stream defines output format for
the full space information in selected times and observe points for the full time
information. The key 'fields’ select the fields for the full spatial output.The set of
output times may be specified per field otherwise common time set "times’ is used.
If even this is not providedthe time set of the output_stream is used. The initial
time of the equation is automatically added to the time set of every selected field.
The end time of the equation is automatically added to the common output time
set.

times = (Array [0, UINT] of Record: TimeGrid )
Default: ( Optional )

Output times used for the output fields without is own time series specification.

add_input_times = (Bool )
Default: ( False )
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Add all input time points of the equation, mentioned in the ’input_fields’ list,
also as the output points.

fields = (Array [0, UINT] of Record: FieldOutputSetting )

Default: ( [/ )
Array of output fields and their individual output settings.

observe_fields = (Array [0, UINT] of Selection: Sorption_output_fields )

Default: ( [/ )

Array of the fields evaluated in the observe points of the associated output stream.

record: EquationOutput

times

Output of the equation’s fields.The output is done through the output stream
of the associated balance law equation.The stream defines output format for
the full space information in selected times and observe points for the full time
information. The key 'fields’ select the fields for the full spatial output.The set of
output times may be specified per field otherwise common time set 'times’ is used.
If even this is not providedthe time set of the output_stream is used. The initial
time of the equation is automatically added to the time set of every selected field.
The end time of the equation is automatically added to the common output time
set.

= (Array [0, UINT] of Record: TimeGrid )
Default: ( Optional )

Output times used for the output fields without is own time series specification.

add_input_times = (Bool )

Default: ( False )

Add all input time points of the equation, mentioned in the ’input_fields’ list,
also as the output points.

fields = (Array [0, UINT] of Record: FieldOutputSetting )

Default: ( [/ )
Array of output fields and their individual output settings.

observe fields = (Array [0, UINT] of Selection: SorptionMobile_output_fields )

Default: ( /] )

Array of the fields evaluated in the observe points of the associated output stream.

record: EquationOutput

Output of the equation’s fields. The output is done through the output stream
of the associated balance law equation.The stream defines output format for
the full space information in selected times and observe points for the full time
information. The key ’fields’ select the fields for the full spatial output.The set of
output times may be specified per field otherwise common time set "times’ is used.
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If even this is not providedthe time set of the output_stream is used. The initial
time of the equation is automatically added to the time set of every selected field.
The end time of the equation is automatically added to the common output time
set.

times = (Array [0, UINT] of Record: TimeGrid )

Default: ( Optional )

Output times used for the output fields without is own time series specification.
add_input_times = (Bool )

Default: ( False )

Add all input time points of the equation, mentioned in the ’input_fields’ list,
also as the output points.

fields = (Array [0, UINT] of Record: FieldOutputSetting )
Default: ( [/ )
Array of output fields and their individual output settings.

observe fields = (Array [0, UINT] of Selection: SorptionImmobile_output_fields )
Default: ( [/ )

Array of the fields evaluated in the observe points of the associated output stream.

record: EquationOutput

Output of the equation’s fields. The output is done through the output stream
of the associated balance law equation.The stream defines output format for
the full space information in selected times and observe points for the full time
information. The key 'fields’ select the fields for the full spatial output.The set of
output times may be specified per field otherwise common time set 'times’ is used.
If even this is not providedthe time set of the output_stream is used. The initial
time of the equation is automatically added to the time set of every selected field.
The end time of the equation is automatically added to the common output time
set.

times = (Array [0, UINT] of Record: TimeGrid )

Default: ( Optional )

Output times used for the output fields without is own time series specification.
add_input_times = (Bool )

Default: ( False )

Add all input time points of the equation, mentioned in the ’input_fields’ list,
also as the output points.

fields = (Array [0, UINT] of Record: FieldOutputSetting )
Default: ( /] )
Array of output fields and their individual output settings.
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observe fields = (Array [0, UINT] of Selection: DualPorosity_output_fields )
Default: ( [/ )

Array of the fields evaluated in the observe points of the associated output stream.

record: EquationOutput

Output of the equation’s fields. The output is done through the output stream
of the associated balance law equation.The stream defines output format for
the full space information in selected times and observe points for the full time
information. The key 'fields’ select the fields for the full spatial output.The set of
output times may be specified per field otherwise common time set 'times’ is used.
If even this is not providedthe time set of the output_stream is used. The initial
time of the equation is automatically added to the time set of every selected field.
The end time of the equation is automatically added to the common output time
set.

times = (Array [0, UINT] of Record: TimeGrid )

Default: ( Optional )

Output times used for the output fields without is own time series specification.
add_input_times = (Bool )

Default: ( False )

Add all input time points of the equation, mentioned in the ’input_fields’ list,
also as the output points.

fields = (Array [0, UINT] of Record: FieldOutputSetting )
Default: { [/ )
Array of output fields and their individual output settings.
observe_fields = (Array [0, UINT] of Selection: Heat_AdvectionDiffusion_DG _output_fields

)
Default: ( /] )

Array of the fields evaluated in the observe points of the associated output stream.

record: EquationOutput

Output of the equation’s fields.The output is done through the output stream
of the associated balance law equation.The stream defines output format for
the full space information in selected times and observe points for the full time
information. The key 'fields’ select the fields for the full spatial output.The set of
output times may be specified per field otherwise common time set "times’ is used.
If even this is not providedthe time set of the output_stream is used. The initial
time of the equation is automatically added to the time set of every selected field.
The end time of the equation is automatically added to the common output time
set.

times = (Array [0, UINT] of Record: TimeGrid )
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Default: ( Optional )

Output times used for the output fields without is own time series specification.
add_input_times = (Bool )

Default: ( False )

Add all input time points of the equation, mentioned in the ’input_fields’ list,
also as the output points.

fields = (Array [0, UINT] of Record: FieldOutputSetting )
Default: ( [/ )
Array of output fields and their individual output settings.
observe_fields = (Array [0, UINT] of Parameter )
Default: ( [/ )

Array of the fields evaluated in the observe points of the associated output stream.

record: FieldConstant implements abstract type: Field:R3 — R[3,3] constructible
from key: value

R3 — RJ[3,3] Field constant in space.
TYPE = (String )
Default: ( Fieldconstant )
Sub-record Selection.
value = (Array [1, UINT] of Array [1, UINT] of Double (-inf, +inf) )
Default: ( Obligatory )

Value of the constant field.

For vector values, you can use scalar value to enter constant vector.
For square N x N-matrix values, you can use:

- vector of size N to enter diagonal matrix

e vector of size %N (N + 1) to enter symmetric matrix (upper triangle, row by row)

e scalar to enter multiple of the unit matrix.

record: FieldConstant implements abstract type: Field:R3 — R constructible from
key: value

R3 — R Field constant in space.
TYPE = (String )
Default: ( Fieldconstant )
Sub-record Selection.
value = (Double (-inf, +inf) )
Default: ( Obligatory )
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Value of the constant field.

For vector values, you can use scalar value to enter constant vector.
For square N x N-matrix values, you can use:

- vector of size N to enter diagonal matrix

e vector of size N (N + 1) to enter symmetric matrix (upper triangle, row by row)

e scalar to enter multiple of the unit matrix.

record: FieldConstant implements abstract type: Field:R3 — R constructible from
key: value

R3 — R Field constant in space.
TYPE = (String )
Default: ( Fieldconstant )
Sub-record Selection.
value = (Selection: Flow_Darcy BC_Type )
Default: ( Obligatory )

Value of the constant field.

For vector values, you can use scalar value to enter constant vector.
For square N x N-matrix values, you can use:

- vector of size N to enter diagonal matrix

e vector of size 3N (N + 1) to enter symmetric matrix (upper triangle, row by row)

e scalar to enter multiple of the unit matrix.

record: FieldConstant implements abstract type: Field:R3 — R constructible from
key: value

R3 — R Field constant in space.
TYPE = (String )
Default: ( Fieldconstant )
Sub-record Selection.
value = (Selection: Solute_AdvectionDiffusion-BC-Type )
Default: ( Obligatory )

Value of the constant field.

For vector values, you can use scalar value to enter constant vector.
For square N x N-matrix values, you can use:

- vector of size N to enter diagonal matrix

e vector of size N (N + 1) to enter symmetric matrix (upper triangle, row by row)

e scalar to enter multiple of the unit matrix.
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record: FieldConstant implements abstract type: Field:R3 — R constructible from
key: value

R3 — R Field constant in space.
TYPE = (String )
Default: ( Fieldconstant )
Sub-record Selection.
value = (Selection: SorptionType )
Default: ( Obligatory )

Value of the constant field.

For vector values, you can use scalar value to enter constant vector.
For square N x N-matrix values, you can use:

- vector of size N to enter diagonal matrix

e vector of size N (N + 1) to enter symmetric matrix (upper triangle, row by row)

e scalar to enter multiple of the unit matrix.

record: FieldConstant implements abstract type: Field:R3 — R constructible from
key: value

R3 — R Field constant in space.
TYPE = (String )
Default: ( Fieldconstant )
Sub-record Selection.
value = (Selection: Heat BC_Type )
Default: ( Obligatory )

Value of the constant field.

For vector values, you can use scalar value to enter constant vector.
For square N x N-matrix values, you can use:

- vector of size N to enter diagonal matrix

e vector of size N (N + 1) to enter symmetric matrix (upper triangle, row by row)

e scalar to enter multiple of the unit matrix.

record: FieldConstant implements abstract type: Field:R2 — R[2,2] constructible
from key: value

R2 — R[2,2] Field constant in space.
TYPE = (String )
Default: ( Fieldconstant )
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Sub-record Selection.
value = (Array [1, UINT] of Array [1, UINT] of Parameter )
Default: ( Obligatory )

Value of the constant field.

For vector values, you can use scalar value to enter constant vector.
For square N x N-matrix values, you can use:

- vector of size N to enter diagonal matrix

e vector of size N (N + 1) to enter symmetric matrix (upper triangle, row by row)

e scalar to enter multiple of the unit matrix.

record: FieldConstant implements abstract type: Field:R3 — R[n] constructible from
key: value

R3 — R[n] Field constant in space.
TYPE = (String )
Default: ( Fieldconstant )
Sub-record Selection.
value = (Array [1, UINT] of Parameter )
Default: ( Obligatory )

Value of the constant field.

For vector values, you can use scalar value to enter constant vector.
For square N x N-matrix values, you can use:

- vector of size N to enter diagonal matrix

e vector of size N (N + 1) to enter symmetric matrix (upper triangle, row by row)

e scalar to enter multiple of the unit matrix.

record: FieldConstant implements abstract type: Field:R3 — R3] constructible from
key: value

R3 — RJ[3] Field constant in space.
TYPE = (String )
Default: ( Fieldconstant )
Sub-record Selection.
value = (Array [1, 3] of Parameter )
Default: ( Obligatory )

Value of the constant field.

For vector values, you can use scalar value to enter constant vector.
For square N x N-matrix values, you can use:

- vector of size N to enter diagonal matrix
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e vector of size 3 N(N + 1) to enter symmetric matrix (upper triangle, row by row)

e scalar to enter multiple of the unit matrix.

record: FieldConstant implements abstract type: Field:R2 — R[2] constructible from
key: value

R2 — R[2] Field constant in space.
TYPE = (String )
Default: ( Fieldconstant )
Sub-record Selection.
value = (Array [1, 2] of Parameter )
Default: ( Obligatory )

Value of the constant field.

For vector values, you can use scalar value to enter constant vector.
For square N x N-matrix values, you can use:

- vector of size N to enter diagonal matrix

e vector of size 3 N(N + 1) to enter symmetric matrix (upper triangle, row by row)

e scalar to enter multiple of the unit matrix.

record: FieldConstant implements abstract type: Field:R2 — R constructible from
key: value

R2 — R Field constant in space.
TYPE = (String )
Default: ( Fieldconstant )
Sub-record Selection.
value = (Parameter)
Default: ( Obligatory )

Value of the constant field.

For vector values, you can use scalar value to enter constant vector.
For square N x N-matrix values, you can use:

- vector of size N to enter diagonal matrix

e vector of size N (N + 1) to enter symmetric matrix (upper triangle, row by row)

e scalar to enter multiple of the unit matrix.

record: FieldConstant implements abstract type: Field:R3 — R constructible from
key: value
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R3 — R Field constant in space.
TYPE = (String )
Default: ( Fieldconstant )
Sub-record Selection.
value = (Parameter)
Default: ( Obligatory )

Value of the constant field.

For vector values, you can use scalar value to enter constant vector.
For square N x N-matrix values, you can use:

- vector of size N to enter diagonal matrix

e vector of size N (N + 1) to enter symmetric matrix (upper triangle, row by row)

e scalar to enter multiple of the unit matrix.

record: FieldConstant implements abstract type: Field:R3 — R[3,3] constructible
from key: value

R3 — R[3,3] Field constant in space.
TYPE = (String )
Default: ( Fieldconstant )
Sub-record Selection.
value = (Array [1, UINT] of Array [1, UINT] of Parameter)
Default: ( Obligatory )

Value of the constant field.

For vector values, you can use scalar value to enter constant vector.
For square N x N-matrix values, you can use:

- vector of size N to enter diagonal matrix

e vector of size %N (N + 1) to enter symmetric matrix (upper triangle, row by row)

e scalar to enter multiple of the unit matrix.

record: FieldElementwise implements abstract type: Field:R3 — R|[3,3|Field:R3 —
R[3,3]

R3 — RJ[3,3] Field constant in space.
TYPE = (String )
Default: ( Fieldelementwise )

Sub-record Selection.
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gmsh file = (Filename )
Default: ( Obligatory )
Input file with ASCII GMSH file format.
field name = (String )
Default: ( Obligatory )
The values of the Field are read from the $ElementData

record: FieldElementwise implements abstract type: Field:R3 — RField:R3 — RField:R3
— RField:R3 — RField:R3 — RField:R3 — R

R3 — R Field constant in space.
TYPE = (String )
Default: ( Fieldelementwise )

Sub-record Selection.
gmsh _file = (Filename )
Default: ( Obligatory )
Input file with ASCIT GMSH file format.
field name = (String )
Default: ( Obligatory )
The values of the Field are read from the $ElementData

record: FieldElementwise implements abstract type: Field:R2 — R|[2,2]

R2 — R[2,2] Field constant in space.
TYPE = (String )
Default: ( Fieldelementwise )
Sub-record Selection.
gmsh _file = (Filename )
Default: ( Obligatory )
Input file with ASCII GMSH file format.
field name = (String )
Default: ( Obligatory )
The values of the Field are read from the $ElementData

record: FieldElementwise implements abstract type: Field:R3 — R[3]

R3 — RJ[3] Field constant in space.
TYPE = (String )
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Default: ( Fieldelementwise )
Sub-record Selection.
gmsh file = (Filename )
Default: ( Obligatory )
Input file with ASCII GMSH file format.
field name = (String )
Default: ( Obligatory )
The values of the Field are read from the $ElementData

record: FieldElementwise implements abstract type: Field:R2 — R|[2]

R2 — R[2] Field constant in space.
TYPE = (String )
Default: ( Fieldelementwise )
Sub-record Selection.
gmsh file = (Filename )
Default: ( Obligatory )
Input file with ASCII GMSH file format.
field name = (String )
Default: ( Obligatory )
The values of the Field are read from the $ElementData

record: FieldElementwise implements abstract type: Field:R2 — R

R2 — R Field constant in space.
TYPE = (String )
Default: ( Fieldelementwise )
Sub-record Selection.
gmsh file = (Filename )
Default: ( Obligatory )
Input file with ASCII GMSH file format.
field name = (String )
Default: ( Obligatory )
The values of the Field are read from the $ElementData

record: FieldFormula implements abstract type: Field:R3 — R[3,3]Field:R3 — R[3,3]

R3 — R[3,3] Field given by runtime interpreted formula.
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TYPE = (String )
Default: ( Fieldformula )
Sub-record Selection.

value = (Array [1, UINT] of Array [1, UINT] of String )
Default: ( Obligatory )

String, array of strings, or matrix of strings with formulas for individual entries
of scalar, vector, or tensor value respectively.

For vector values, you can use just one string to enter homogeneous vector.

For square N x N-matrix values, you can use:

e array of strings of size IV to enter diagonal matrix

e array of strings of size %N (N +1) to enter symmetric matrix (upper triangle, row
by row)

e just one string to enter (spatially variable) multiple of the unit matrix.
Formula can contain variables x,y,z,t

record: FieldFormula implements abstract type: Field:R3 — RField:R3 — RField:R3
— RField:R3 — RField:R3 — RField:R3 — R

R3 — R Field given by runtime interpreted formula.
TYPE = (String )
Default: ( Fieldformula )

Sub-record Selection.

value = (String )
Default: ( Obligatory )

String, array of strings, or matrix of strings with formulas for individual entries
of scalar, vector, or tensor value respectively.

For vector values, you can use just one string to enter homogeneous vector.

For square N x N-matrix values, you can use:

e array of strings of size N to enter diagonal matrix

e array of strings of size %N (N +1) to enter symmetric matrix (upper triangle, row
by row)

e just one string to enter (spatially variable) multiple of the unit matrix.
Formula can contain variables x,y,z,t

record: FieldFormula implements abstract type: Field:R2 — R[2,2]

R2 — RJ[2,2] Field given by runtime interpreted formula.
TYPE = (String )
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Default: ( Fieldformula )
Sub-record Selection.

value = (Array [1, UINT] of Array [1, UINT] of String )
Default: ( Obligatory )

String, array of strings, or matrix of strings with formulas for individual entries
of scalar, vector, or tensor value respectively.

For vector values, you can use just one string to enter homogeneous vector.

For square N x N-matrix values, you can use:

e array of strings of size N to enter diagonal matrix

e array of strings of size 1 N(N + 1) to enter symmetric matrix (upper triangle, row
by row)

e just one string to enter (spatially variable) multiple of the unit matrix.
Formula can contain variables x,y,z,t

record: FieldFormula implements abstract type: Field:R3 — R3]

R3 — RJ[3] Field given by runtime interpreted formula.
TYPE = (String )

Default: { Fieldformula )

Sub-record Selection.
value = (Array [1, UINT] of String )

Default: ( Obligatory )

String, array of strings, or matrix of strings with formulas for individual entries
of scalar, vector, or tensor value respectively.

For vector values, you can use just one string to enter homogeneous vector.

For square N x N-matrix values, you can use:

e array of strings of size NV to enter diagonal matrix

e array of strings of size %N (N 4 1) to enter symmetric matrix (upper triangle, row
by row)

e just one string to enter (spatially variable) multiple of the unit matrix.
Formula can contain variables x,y,z,t

record: FieldFormula implements abstract type: Field:R2 — R|[2]

R2 — R[2] Field given by runtime interpreted formula.
TYPE = (String )
Default: ( Fieldformula )
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Sub-record Selection.
value = (Array [1, UINT] of String )
Default: ( Obligatory )

String, array of strings, or matrix of strings with formulas for individual entries
of scalar, vector, or tensor value respectively.

For vector values, you can use just one string to enter homogeneous vector.

For square N x N-matrix values, you can use:

e array of strings of size N to enter diagonal matrix

e array of strings of size %N (N +1) to enter symmetric matrix (upper triangle, row
by row)

e just one string to enter (spatially variable) multiple of the unit matrix.
Formula can contain variables x,y,z,t

record: FieldFormula implements abstract type: Field:R2 — R

R2 — R Field given by runtime interpreted formula.
TYPE = (String )

Default: ( Fieldformula )

Sub-record Selection.
value = (String )

Default: ( Obligatory )

String, array of strings, or matrix of strings with formulas for individual entries
of scalar, vector, or tensor value respectively.

For vector values, you can use just one string to enter homogeneous vector.

For square N x N-matrix values, you can use:

e array of strings of size NV to enter diagonal matrix

e array of strings of size %N (N +1) to enter symmetric matrix (upper triangle, row
by row)

e just one string to enter (spatially variable) multiple of the unit matrix.
Formula can contain variables x,y,z,t

record: FieldInterpolatedP0O implements abstract type: Field:R3 — R|[3,3|Field:R3
— R[3,3]

R3 — R[3,3] Field constant in space.
TYPE = (String )
Default: ( Fieldinterpolatedp( )
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Sub-record Selection.
gmsh _file = (Filename )
Default: ( Obligatory )
Input file with ASCII GMSH file format.
field name = (String )
Default: ( Obligatory )
The values of the Field are read from the $ElementData

record: FieldInterpolatedPO implements abstract type: Field:R3 — RField:R3 —
RField:R3 — RField:R3 — RField:R3 — RField:R3 — R

R3 — R Field constant in space.
TYPE = (String )
Default: ( Fieldinterpolatedp0 )

Sub-record Selection.
gmsh file = (Filename )
Default: ( Obligatory )
Input file with ASCII GMSH file format.
field name = (String )
Default: ( Obligatory )
The values of the Field are read from the $ElementData

record: FieldInterpolatedPO0 implements abstract type: Field:R2 — R[2,2]

R2 — R[2,2] Field constant in space.
TYPE = (String )
Default: ( Fieldinterpolatedp0 )
Sub-record Selection.
gmsh _file = (Filename )
Default: ( Obligatory )
Input file with ASCII GMSH file format.
field name = (String )
Default: ( Obligatory )
The values of the Field are read from the $ElementData

record: FieldInterpolatedPO0 implements abstract type: Field:R3 — R|[3]

R3 — RJ[3] Field constant in space.
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TYPE = (String )
Default: ( Fieldinterpolatedp0 )
Sub-record Selection.
gmsh file = (Filename )
Default: ( Obligatory )
Input file with ASCII GMSH file format.
field name = (String )
Default: ( Obligatory )

The values of the Field are read from the $ElementData

record: FieldInterpolatedP0 implements abstract type: Field:R2 — R|[2]

R2 — R|[2] Field constant in space.
TYPE = (String )
Default: ( Fieldinterpolatedp0 )
Sub-record Selection.
gmsh file = (Filename )
Default: ( Obligatory )
Input file with ASCIT GMSH file format.
field name = (String )
Default: ( Obligatory )
The values of the Field are read from the $ElementData

record: FieldInterpolatedP0O implements abstract type: Field:R2 — R

R2 — R Field constant in space.
TYPE = (String )
Default: ( Fieldinterpolatedp0 )
Sub-record Selection.
gmsh file = (Filename )
Default: ( Obligatory )
Input file with ASCII GMSH file format.
field name = (String )
Default: ( Obligatory )
The values of the Field are read from the $ElementData

record: FieldOutputSetting constructible from key: field
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Setting of the field output. The field name, output times, output interpolation
(future).

field = (Selection: Flow_Darcy MH output_fields )
Default: ( Obligatory )
The field name (from selection).

times = (Array [0, UINT] of Record: TimeGrid )
Default: ( Optional )
Output times specific to particular field.

record: FieldOutputSetting constructible from key: field

Setting of the field output. The field name, output times, output interpolation
(future).

field = (Selection: Solute_Advection_FV_output_fields )
Default: ( Obligatory )
The field name (from selection).

times = (Array [0, UINT] of Record: TimeGrid )
Default: ( Optional )
Output times specific to particular field.

record: FieldOutputSetting constructible from key: field

Setting of the field output. The field name, output times, output interpolation
(future).

field = (Selection: Solute_AdvectionDiffusion_DG_output_fields )
Default: ( Obligatory )
The field name (from selection).
times = (Array [0, UINT] of Record: TimeGrid )
Default: ( Optional )
Output times specific to particular field.

record: FieldOutputSetting constructible from key: field

Setting of the field output. The field name, output times, output interpolation
(future).

field = (Selection: Sorption_output_fields )
Default: ( Obligatory )

The field name (from selection).

times = (Array [0, UINT] of Record: TimeGrid )
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Default: ( Optional )
Output times specific to particular field.

record: FieldOutputSetting constructible from key: field

Setting of the field output. The field name, output times, output interpolation
(future).

field = (Selection: SorptionMobile_output_fields )
Default: ( Obligatory )
The field name (from selection).

times = (Array [0, UINT] of Record: TimeGrid )
Default: ( Optional )
Output times specific to particular field.

record: FieldOutputSetting constructible from key: field

Setting of the field output. The field name, output times, output interpolation
(future).

field = (Selection: Sorptionlmmobile_output_fields )
Default: ( Obligatory )
The field name (from selection).

times = (Array [0, UINT] of Record: TimeGrid )
Default: ( Optional )
Output times specific to particular field.

record: FieldOutputSetting constructible from key: field

Setting of the field output. The field name, output times, output interpolation
(future).

field = (Selection: DualPorosity_outpul_fields )
Default: ( Obligatory )
The field name (from selection).

times = (Array [0, UINT] of Record: TimeGrid )
Default: ( Optional )
Output times specific to particular field.

record: FieldOutputSetting constructible from key: field

Setting of the field output. The field name, output times, output interpolation
(future).

33



field = (Selection: Heat AdvectionDiffusion_DG _output_fields )
Default: ( Obligatory )
The field name (from selection).
times = (Array [0, UINT] of Record: TimeGrid )
Default: ( Optional )
Output times specific to particular field.

record: FieldOutputSetting constructible from key: field

Setting of the field output. The field name, output times, output interpolation
(future).

field = (Parameter )
Default: ( Obligatory )
The field name (from selection).
times = (Array [0, UINT] of Record: TimeGrid )
Default: ( Optional )
Output times specific to particular field.

record: FieldPython implements abstract type: Field:R3 — R[3,3|Field:R3 — R|[3,3]

R3 — R[3,3] Field given by a Python script.
TYPE = (String )
Default: ( Fieldpython )
Sub-record Selection.
script_string = (String )
Default: ”Obligatory if ’script_file’ is not given.”
Python script given as in place string
script file = (Filename )
Default: ”Obligatory if ’script_striong’ is not given.”
Python script given as external file
function = (String )
Default: ( Obligatory )

Function in the given script that returns tuple containing components of the
return type.
For NxM tensor values: tensor(row,col) = tuple( M*row + col ).

record: FieldPython implements abstract type: Field:R3 — RField:R3 — RField:R3
— RField:R3 — RField:R3 — RField:R3 — R
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R3 — R Field given by a Python script.
TYPE = (String )
Default: ( Fieldpython )
Sub-record Selection.
script_string = (String )
Default: ”Obligatory if ’script_file’ is not given.”
Python script given as in place string
script_file = (Filename )
Default: ”Obligatory if ’script_striong’ is not given.”
Python script given as external file
function = (String )
Default: ( Obligatory )

Function in the given script that returns tuple containing components of the
return type.
For NxM tensor values: tensor(row,col) = tuple( M*row + col ).

record: FieldPython implements abstract type: Field:R2 — R[2,2]

R2 — RJ[2,2] Field given by a Python script.
TYPE = (String )
Default: ( Fieldpython )
Sub-record Selection.
script_string = (String )
Default: ”Obligatory if ’script_file’ is not given.”
Python script given as in place string
script_file = (Filename )
Default: ”Obligatory if ’script_striong’ is not given.”
Python script given as external file
function = (String )
Default: ( Obligatory )

Function in the given script that returns tuple containing components of the
return type.
For NxM tensor values: tensor(row,col) = tuple( M*row + col ).

record: FieldPython implements abstract type: Field:R3 — R|n]

R3 — R|[n] Field given by a Python script.
TYPE = (String )
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Default: ( Fieldpython )
Sub-record Selection.
script_string = (String )
Default: ”Obligatory if ’script_file’ is not given.”
Python script given as in place string
script_file = (Filename )
Default: ”Obligatory if 'script_striong’ is not given.”
Python script given as external file
function = (String )
Default: ( Obligatory )

Function in the given script that returns tuple containing components of the
return type.
For NxM tensor values: tensor(row,col) = tuple( M*row + col ).

record: FieldPython implements abstract type: Field:R3 — R[3]

R3 — RJ[3] Field given by a Python script.
TYPE = (String )
Default: ( Fieldpython )
Sub-record Selection.
script_string = (String )
Default: ”Obligatory if 'script_file’ is not given.”
Python script given as in place string
script_file = (Filename )
Default: ”Obligatory if 'script_striong’ is not given.”
Python script given as external file
function = (String )
Default: ( Obligatory )

Function in the given script that returns tuple containing components of the
return type.
For NxM tensor values: tensor(row,col) = tuple( M*row + col ).

record: FieldPython implements abstract type: Field:R2 — R|[2]

R2 — RJ[2] Field given by a Python script.
TYPE = (String )
Default: ( Fieldpython )

Sub-record Selection.
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script_string = (String )
Default: ”Obligatory if ’script_file’ is not given.”
Python script given as in place string

script_file = (Filename )
Default: ”Obligatory if ’script_striong’ is not given.”
Python script given as external file

function = (String )
Default: ( Obligatory )

Function in the given script that returns tuple containing components of the
return type.
For NxM tensor values: tensor(row,col) = tuple( M*row + col ).

record: FieldPython implements abstract type: Field:R2 — R

R2 — R Field given by a Python script.
TYPE = (String )
Default: ( Fieldpython )
Sub-record Selection.
script_string = (String )
Default: ”Obligatory if ’script_file’ is not given.”
Python script given as in place string
script_file = (Flilename )
Default: ”Obligatory if ’script_striong’ is not given.”
Python script given as external file
function = (String )
Default: ( Obligatory )

Function in the given script that returns tuple containing components of the
return type.
For NxM tensor values: tensor(row,col) = tuple( M*row + col ).

record: FirstOrderReaction implements abstract type: ReactionTerm

A model of first order chemical reactions (decompositions of a reactant into prod-
ucts).

TYPE = (String )
Default: ( Firstorderreaction )

Sub-record Selection.

reactions = (Array [0, UINT] of Record: Reaction )
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Default: ( Obligatory )

An array of first order chemical reactions.

ode_solver = (Record: PadeApprozimant )
Default: ( )

Numerical solver for the system of first order ordinary differential equations com-
ing from the model.

record: FirstOrderReactionProduct constructible from key: name

A record describing a product of a reaction.
name = (String )

Default: ( Obligatory )

The name of the product.
branching ratio = (Double [0, +inf) )

Default: ( 1.0)

The branching ratio of the product when there are more products.

The value must be positive. Further, the branching ratios of all products are
normalized in order to sum to one.

The default value 1.0, should only be used in the case of single product.

record: FirstOrderReactionReactant constructible from key: name

A record describing a reactant of a reaction.
name = (String )
Default: ( Obligatory )

The name of the reactant.

record: Flow_Darcy MH implements abstract type: DarcyFlow
Mixed-Hybrid solver for STEADY saturated Darcy flow.
TYPE = (String )
Default: ( Flow_darcy-mh )
Sub-record Selection.
gravity = (Array [3, 3] of Double (-inf, +inf) )
Default: ( [0, 0, -1])

Vector of the gravitational acceleration (divided by the acceleration). Dimen-
sionless, magnitude one for the Earth conditions.

input_fields = (Array [0, UINT] of Record: Flow_Darcy MH Data )
Default: ( Obligatory )
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Input data for Darcy flow model.
nonlinear_solver = (Record: NonlinearSolver )

Default: ( Obligatory )

Non-linear solver for MH problem.
output_stream = (Record: OutputStream )

Default: ( Obligatory )

Parameters of output stream.
output = (Record: EquationOutput )

Default: ( u’fields’: [u’pressure_p0’, u’velocity_p0’] )

Parameters of output from MH module.
output_specific = (Record: Output_DarcyMHSpecific )

Default: ( Optional )

Parameters of output form MH module.
balance = (Record: Balance )

Default: ( )

Settings for computing mass balance.
time = (Record: TimeGovernor )

Default: ( Optional )

Time governor setting for the unsteady Darcy flow model.
n_schurs = (Integer [0, 2] )

Default: ( 2)

Number of Schur complements to perform when solving MH system.
mortar method = (Selection: MH_MortarMethod )

Default: ( None )

Method for coupling Darcy flow between dimensions.

record: Flow_Darcy MH _ Data

Record to set fields of the equation.

The fields are set only on the domain specified by one of the keys: 'region’, rid’

and after the time given by the key 'time’. The field setting can be overridden

by

any Flow_Darcy_MH_Data record that comes later in the boundary data array.
region = (Array [1, UINT] of String )

Default: ( Optional )

Labels of the regions where to set fields.

rid = (Integer [0, INT] )
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Default: ( Optional )

ID of the region where to set fields.
time = (Double [0, +inf) )

Default: ( 0.0)

Apply field setting in this record after this time.
These times have to form an increasing sequence.

anisotropy = (Abstract: Field:R3 — R/3,3] )
Default: ( Optional )
Anisotropy of the conductivity tensor. [—]
cross_section = (Abstract: Field:R3 — R )
Default: ( Optional )

Complement dimension parameter (cross section for 1D, thickness for 2D). [m3~9]

conductivity = (Abstract: Field:R3 — R )
Default: ( Optional )
Isotropic conductivity scalar. [ms™!]
sigma = (Abstract: Field:R3 — R )
Default: ( Optional )
Transition coefficient between dimensions. [—]
water_source_density = (Abstract: Field:R3 — R )
Default: ( Optional )
Water source density. [s7!]
bc_type = (Abstract: Field:R3 — R)
Default: ( Optional )
Boundary condition type, possible values: [—]
bc_pressure = (Abstract: Field:R3 — R)
Default: ( Optional )

Prescribed pressure value on the boundary. Used for all values of ’bc_type’
save the bc_type="none’.See documentation of ’bc_type’ for exact meaning of
"be_pressure’ in individual boundary condition types. [m]

be_flux = (Abstract: Field:R3 — R )
Default: ( Optional )
Incoming water boundary flux. Used for bc_types : 'none’, "total flux’, ’seepage’,
river’. [m1=4s71]
bc_robin sigma = (Abstract: Field:R3 — R)
Default: ( Optional )

Conductivity coefficient in the 'total flux’ or the 'river’ boundary condition type.
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[m3—d8—1]

bc_switch pressure = (Abstract: Field:R3 — R )

Default: ( Optional )

Critical switch pressure for ’seepage’ and ’river’ boundary conditions. [m]
init_pressure = (Abstract: Field:R3 — R)

Default: ( Optional )

Initial condition as pressure [m]
storativity = (Abstract: Field:R3 — R )

Default: ( Optional )

Storativity. [m™!]
bc_piezo_ head = (Abstract: Field:R3 — R )

Default: ( Optional )

Boundary piezometric head for BC types: dirichlet, robin, and river.
bc_switch piezo_head = (Abstract: Field:R3 — R)

Default: ( Optional )

Boundary switch piezometric head for BC types: seepage, river.
init_piezo_head = (Abstract: Field:R3 — R)

Default: ( Optional )

Initial condition for the pressure given as the piezometric head.

record: Flow_Darcy MH _Data_aux Data

Record to set fields of the equation.

The fields are set only on the domain specified by one of the keys: 'region’, rid’
and after the time given by the key 'time’. The field setting can be overridden
by

any Flow_Darcy MH_Data_aux Data record that comes later in the boundary
data array.

region = (Array [1, UINT] of String )

Default: ( Optional )

Labels of the regions where to set fields.
rid = (Integer [0, INT] )

Default: ( Optional )

ID of the region where to set fields.
time = (Double [0, +inf) )

Default: ( 0.0)

Apply field setting in this record after this time.
These times have to form an increasing sequence.
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anisotropy = (Abstract: Field:R3 — R[3,5])

Default: ( Optional )

Anisotropy of the conductivity tensor. [—]
cross_section = (Abstract: Field:R3 — R)

Default: ( Optional )

Complement dimension parameter (cross section for 1D, thickness for 2D). [m3~9]
conductivity = (Abstract: Field:R3 — R )

Default: ( Optional )

Isotropic conductivity scalar. [ms™!]
sigma = (Abstract: Field:R3 — R )

Default: ( Optional )

Transition coefficient between dimensions. [—]
water_source density = (Abstract: Field:R3 — R )

Default: ( Optional )

Water source density. [s™!]
bc_type = (Abstract: Field:R3 — R )

Default: ( Optional )

Boundary condition type, possible values: [—]
bc_pressure = (Abstract: Field:R3 — R)

Default: ( Optional )

Prescribed pressure value on the boundary. Used for all values of 'bc_type’
save the bc_type="none’.See documentation of ’bc_type’ for exact meaning of
'be_pressure’ in individual boundary condition types. [m]

bec_flux = (Abstract: Field:R3 — R)
Default: ( Optional )
Incoming water boundary flux. Used for bc_types : 'none’, 'total flux’, ’seepage’,
river’. [mA=4s7!]
bc_robin _sigma = (Abstract: Field:R3 — R )
Default: ( Optional )

Conductivity coefficient in the 'total _flux’ or the 'river’ boundary condition type.

[m?)fdsfl]

bc_switch pressure = (Abstract: Field:R3 — R )

Default: ( Optional )

Critical switch pressure for ’seepage’ and 'river’ boundary conditions. [m]
init_pressure = (Abstract: Field:R3 — R)

Default: ( Optional )
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Initial condition as pressure [m]
storativity = (Abstract: Field:R3 — R )

Default: ( Optional )

Storativity. [m™!]

record: Flow_Darcy MH Data_aux Data_aux

Record to set fields of the equation.

The fields are set only on the domain specified by one of the keys: 'region’, rid’
and after the time given by the key 'time’. The field setting can be overridden
by

any Flow_Darcy MH _Data_aux_Data_aux record that comes later in the boundary
data array.

region = (Array [1, UINT] of String )

Default: ( Optional )

Labels of the regions where to set fields.
rid = (Integer [0, INT] )

Default: ( Optional )

ID of the region where to set fields.
time = (Double [0, +inf) )

Default: ( 0.0)

Apply field setting in this record after this time.
These times have to form an increasing sequence.

record: Flow_Richards LMH implements abstract type: DarcyFlow

Lumped Mixed-Hybrid solver for unsteady saturated Darcy flow.
TYPE = (String )

Default: ( Flow_richards_lmh )

Sub-record Selection.
gravity = (Array [3, 3] of Double (-inf, +inf) )

Default: ( [0, 0, -1] )

Vector of the gravitational acceleration (divided by the acceleration). Dimen-
sionless, magnitude one for the Earth conditions.

input_fields = (Array [0, UINT] of Record: RichardsLMH_Data )
Default: ( Obligatory )
Input data for Darcy flow model.

nonlinear_solver = (Record: NonlinearSolver )

Default: ( Obligatory )
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Non-linear solver for MH problem.
output_stream = (Record: OutputStream )

Default: ( Obligatory )

Parameters of output stream.
output = (Record: EquationOutput )

Default: ( u’fields’: [u’pressure_p0’, u’velocity_p0’] )

Parameters of output from MH module.
output_specific = (Record: Output_DarcyMHSpecific )

Default: ( Optional )

Parameters of output form MH module.
balance = (Record: Balance )

Default: ( )

Settings for computing mass balance.
time = (Record: TimeGovernor)

Default: ( Optional )

Time governor setting for the unsteady Darcy flow model.
n_schurs = (Integer [0, 2] )

Default: ( 2)

Number of Schur complements to perform when solving MH system.
mortar method = (Selection: MH_MortarMethod )

Default: ( None )

Method for coupling Darcy flow between dimensions.
soilmodel = (Selection: Flow_Darcy-BC-Type )

Default: ( Van_genuchten )

Selection of the globally applied soil model. In future we replace this key by a
field for selection of the model. That will allow usage of different soil model in a
single simulation.

record: From_Elements implements abstract type: Region

Region declared by name, ID and enum of elements.
Allows to create new region and assign elements to its.
Elements are specified by ids.

TYPE = (String )
Default: ( From_elements )

Sub-record Selection.

name = (String )
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Default: ( Obligatory )

Label (name) of the region. Has to be unique in one mesh.
id = (Integer [0, INT] )

Default: ( Optional )

The ID of the region to which you assign label.
If new region is created and ID is not set, unique ID will be generated automat-
ically.

element_list = (Array [1, UINT] of Integer [0, INT] )
Default: ( Obligatory )

Specification of the region by the list of elements.

record: From_Id implements abstract type: Region

Region declared by id and name.
Allows to create new region with given id and label
or specify existing region by id which will be renamed.

TYPE = (String )

Default: ( From_id )

Sub-record Selection.
name = (String )

Default: ( Obligatory )

Label (name) of the region. Has to be unique in one mesh.
id = (Integer [0, INT] )

Default: ( Obligatory )

The ID of the region to which you assign label.
dim = (Integer [0, INT] )

Default: ( Optional )

The dim of the region to which you assign label. Value is taken into account only
if new region is created.

record: From_Label implements abstract type: Region

Allows to rename existing region specified by mesh_label.
TYPE = (String )
Default: ( From_label )

Sub-record Selection.
name = (String )

Default: { Obligatory )
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New label (name) of the region. Has to be unique in one mesh.
mesh_label = (String )
Default: ( Obligatory )

The mesh_label is e.g. physical volume name in GMSH format.

record: Heat_AdvectionDiffusion DG implements abstract type: AdvectionProcess

DG solver for heat transfer.
TYPE = (String )
Default: ( Heat_advectiondiffusion_dg )
Sub-record Selection.
time = (Record: TimeGovernor )
Default: ( Obligatory )
Time governor setting for the secondary equation.
balance = (Record: Balance )
Default: ( )
Settings for computing balance.
output_stream = (Record: OutputStream )
Default: ( Obligatory )
Parameters of output stream.
solver = (Record: Petsc )
Default: ( Obligatory )
Linear solver for MH problem.
input_fields = (Array [0, UINT] of Record: Heat AdvectionDiffusion-DG_Data )
Default: ( Obligatory )
Input fields of the equation.
dg_variant = (Selection: DG variant )
Default: ( Non-symmetric )
Variant of interior penalty discontinuous Galerkin method.
dg_order = (Integer [0, 3] )
Default: ( 1)

Polynomial order for finite element in DG method (order 0 is suitable if there is
no diffusion/dispersion).

output = (Record: EquationOutput )
Default: ( u’fields’: [u’temperature’] )
Setting of the field output.
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record: Heat_AdvectionDiffusion_ DG _Data

Record to set fields of the equation.

The fields are set only on the domain specified by one of the keys: 'region’, rid’
and after the time given by the key 'time’. The field setting can be overridden
by

any Heat_AdvectionDiffusion DG _Data record that comes later in the boundary
data array.

region = (Array [1, UINT] of String )
Default: ( Optional )

Labels of the regions where to set fields.
rid = (Integer [0, INT] )

Default: ( Optional )

ID of the region where to set fields.
time = (Double [0, +inf) )

Default: ( 0.0)

Apply field setting in this record after this time.
These times have to form an increasing sequence.

bc_type = (Abstract: Field:R3 — R)
Default: ( Optional )
Type of boundary condition. [—]
bc_temperature = (Array [1, UINT] of Abstract: Field:R3 — R )
Default: ( Optional )
Boundary value of temperature. [K]
be_flux = (Abstract: Field:R3 — R )
Default: ( Optional )
Flux in Neumann boundary condition. [m!'~?kgs™!]
bc_robin sigma = (Abstract: Field:R3 — R )
Default: ( Optional )
Conductivity coefficient in Robin boundary condition. [m*~%s™!]
init temperature = (Abstract: Field:R3 — R )
Default: ( Optional )
Initial temperature. [K]
porosity = (Abstract: Field:R3 — R)
Default: ( Optional )
Porosity. [—]
fluid_density = (Abstract: Field:R3 — R)
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Default: ( Optional )
Density of fluid. [m3kg]
fluid heat capacity = (Abstract: Field:R3 — R )
Default: ( Optional )
Heat capacity of fluid. [m?s™2K 1]
fluid heat_conductivity = (Abstract: Field:R3 — R )
Default: ( Optional )
Heat conductivity of fluid. [mkgs 2K ~!]
solid density = (Abstract: Field:R3 — R )
Default: ( Optional )
Density of solid (rock). [m™3kg]
solid heat capacity = (Abstract: Field:R3 — R )
Default: ( Optional )
Heat capacity of solid (rock). [m2s™2 K]
solid heat_conductivity = (Abstract: Field:R3 — R )
Default: ( Optional )
Heat conductivity of solid (rock). [mkgs 3K 1]
disp 1 = (Abstract: Field:R3 — R)
Default: ( Optional )
Longitudal heat dispersivity in fluid. [m]
disp_t = (Abstract: Field:R3 — R )
Default: ( Optional )
Transversal heat dispersivity in fluid. [m)]
fluid thermal source = (Abstract: Field:R3 — R)
Default: ( Optional )
Thermal source density in fluid. [m~tkgs™3]
solid thermal_source = (Abstract: Field:R3 — R )
Default: ( Optional )
Thermal source density in solid. [m~tkgs™3]
fluid heat exchange rate = (Abstract: Field:R3 — R)
Default: ( Optional )
Heat exchange rate in fluid. [s7]
solid heat_exchange rate = (Abstract: Field:R3 — R )
Default: ( Optional )

Heat exchange rate of source in solid. [s™!]
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fluid ref temperature = (Abstract: Field:R3 — R )
Default: ( Optional )
Reference temperature of source in fluid. [K]
solid ref temperature = (Abstract: Field:R3 — R)
Default: ( Optional )
Reference temperature in solid. [K]
fracture sigma = (Array [1, UINT] of Abstract: Field:R3 — R)
Default: ( Optional )
Coefficient of diffusive transfer through fractures (for each substance). [—]
dg_penalty = (Array [1, UINT] of Abstract: Field:R3 — R)
Default: ( Optional )

Penalty parameter influencing the discontinuity of the solution (for each sub-
stance). Its default value 1 is sufficient in most cases. Higher value diminishes
the inter-element jumps. [—]

record: Heat_AdvectionDiffusion DG _Data_aux

Record to set fields of the equation.

The fields are set only on the domain specified by one of the keys: 'region’, rid’
and after the time given by the key 'time’. The field setting can be overridden
by

any Heat_AdvectionDiffusion_ DG _Data_aux record that comes later in the bound-
ary data array.

region = (Array [1, UINT] of String )
Default: ( Optional )
Labels of the regions where to set fields.
rid = (Integer [0, INT] )
Default: ( Optional )

ID of the region where to set fields.
time = (Double [0, +inf) )
Default: ( 0.0)

Apply field setting in this record after this time.
These times have to form an increasing sequence.

record: Intersection implements abstract type: Region

Defines region as an intersection of given two or more regions.
TYPE = (String )

Default: ( Intersection )
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Sub-record Selection.
name = (String )

Default: ( Obligatory )

Label (name) of the region. Has to be unique in one mesh.
regions = (Array [2, UINT] of String )

Default: ( Obligatory )

Defines region as an intersection of given pair of regions.

record: LinearODEAnalytic implements abstract type: LinearODESolver

Evaluate analytic solution of the system of ODEs.
TYPE = (String )
Default: { Linearodeanalytic )

Sub-record Selection.

record: Mesh constructible from key: mesh file

Record with mesh related data.
mesh file = (Filename )
Default: ( Obligatory )
Input file with mesh description.
regions = (Array [0, UINT] of Abstract: Region )
Default: ( Optional )

List of additional region and region set definitions not contained in the mesh.
There are three region sets implicitly defined:

e ALL (all regions of the mesh)
e .BOUNDARY (all boundary regions)
e and BULK (all bulk regions)

partitioning = (Record: Partition )

Default: ( Any_neighboring )

Parameters of mesh partitioning algorithms.
print regions = (Bool )

Default: ( False )

If true, print table of all used regions.

record: NonlinearSolver
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Parameters to a non-linear solver.
linear _solver = (Abstract: LinSys )

Default: ( Obligatory )

Linear solver for MH problem.
tolerance = (Double [0, +inf) )

Default: ( 1e-006)

Residual tolerance.
max_it = (Integer [0, INT])

Default: ( 100 )

Maximal number of iterations (linear solves) of the non-linear solver.
converge_on_stagnation = (Bool )

Default: ( False )

If a stagnation of the nonlinear solver is detected the solver stops. A divergence
is reported by default forcing the end of the simulation. Setting this flag to 'true’,
the solverends with convergence success on stagnation, but report warning about
it.

record: ObservePoint constructible from key: point

Specification of the observation point. The actual observe element and the observe point
on it is determined as follows:

1. Find an initial element containing the initial point. If no such element exists we
report the error.

2. Use BFS starting from the inital element to find the 'observe element’. The observe
element is the closest element 3. Find the closest projection of the inital point on
the observe element and snap this projection according to the 'snap_dim’.

name = (String )

Default: ”Default name have the form ’obs_jid;’, where ’id’ is the rank of the
point on the input.”

Optional point name. Has to be unique. Any string that is valid YAML key
in record without any quoting can be used howeverusing just alpha-numerical
characters and underscore instead of the space is recommended.

point = (Array [3, 8] of Double (-inf, +inf) )
Default: ( Obligatory )
Initial point for the observe point search.
snap_dim = (Integer [0, 4] )
Default: ( 4 )

The dimension of the sub-element to which center we snap. For value 4 no
snapping is done. For values 0 up to 3 the element containing the initial point
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is found and then the observepoint is snapped to the nearest center of the sub-
element of the given dimension. E.g. for dimension 2 we snap to the nearest
center of the face of the initial element.

snap_region = (String )
Default: ( All)

The region of the initial element for snapping. Without snapping we make a
projection to the initial element.

n_search levels = (Integer [0, INT] )
Default: ( 1)

Maximum number of levels of the breadth first search used to find the observe
element from the initial element. Value zero means to search only the initial
element itself.

record: OutputStream

Parameters of output.
file = (Filename )
Default: ”Name of the equation associated with the output stream.”
File path to the connected output file.
format = (Abstract: OutputTime )
Default: ( )
Format of output stream and possible parameters.
times = (Array [0, UINT] of Record: TimeGrid )
Default: ( Optional )
Output times used for equations without is own output times key.
output_mesh = (Record: OutputStream )
Default: ( Optional )
Output mesh record enables output on a refined mesh.
precision = (Integer [0, INT])
Default: ( 5 )
The number of decimal digits used in output of floating point values.
observe points = (Array [0, UINT] of Record: ObservePoint )
Default: ( /] )

Array of observe points.

record: OQutputStream

Parameters of output.
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max_level = (Integer [1, 20])

Default: ( 3)

Maximal level of refinement of the output mesh.
refine by error = (Bool )

Default: ( False )

Set true for using error_control field. Set false for global uniform refinement to
max_level.

error_control field = (String )
Default: ( Optional )

Name of an output field, according to which the output mesh will be refined. The
field must be a SCALAR one.

record: Output_DarcyMHSpecific

Specific Darcy flow MH output.
compute_errors = (Bool )

Default: ( False )

SPECIAL PURPOSE. Computing errors pro non-compatible coupling.
raw_flow_output = (Filename )

Default: ( Optional )

Output file with raw data form MH module.

record: PadeApproximant

Record with an information about pade approximant parameters.Note that stable
method is guaranteed only if d-n=1 or d-n=2, where d=degree of denominator
and n=degree of nominator. In those cases the Pade approximant corresponds to
an implicit Runge-Kutta method which is both A- and L-stable. The default val-
ues n=2, d=3 yield relatively good precision while keeping the order moderately
low.
pade nominator degree = (Integer [1, INT])
Default: ( 1)

Polynomial degree of the nominator of Pade approximant.

pade denominator degree = (Integer [1, INT] )
Default: ( 3)

Polynomial degree of the denominator of Pade approximant

record: Partition constructible from key: graph type

Setting for various types of mesh partitioning.
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tool = (Selection: PartTool )

Default: ( Metis )

Software package used for partitioning. See corresponding selection.
graph_type = (Selection: GraphType )

Default: ( Any_neighboring )

Algorithm for generating graph and its weights from a multidimensional mesh.

record: Petsc implements abstract type: LinSys

Interface to PETSc solvers. Convergence criteria is:

norm( resn ) < max( norm( res 0 ) * r_tol, a_tol )

where res_i is the residuum vector after i-th iteration of the solver

and res_0 is an estimate of the norm of initial residual.

If the initial guess of the solution is provided (usually only for transient
equations) the residual of this estimate is used,

otherwise the norm of preconditioned RHS is used.

The default norm is L2 norm of preconditioned residual: P~'(Az—b),

usage of other norm may be prescribed using the ’option’ key.

See also PETSc documentation for KSPSetNormType.

TYPE = (String )
Default: ( Petsc )
Sub-record Selection.
r_tol = (Double [0, 1] )

Default: ”Defalut value set by nonlinear solver or equation. If not we use value
1.0e-7.”

Relative residual tolerance, (to initial error).
a_tol = (Double [0, +inf) )

Default: ”Defalut value set by nonlinear solver or equation. If not we use value
1.0e-11.7

Absolute residual tolerance.
max_it = (Integer [0, INT])

Default: ”Defalut value set by nonlinear solver or equation. If not we use value
1000.”

Maximum number of outer iterations of the linear solver.
options = (String )
Default: ( )
Options passed to PETSC before creating KSP instead of default setting.

record: RadioactiveDecay implements abstract type: ReactionTerm
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A model of a radioactive decay and possibly of a decay chain.
TYPE = (String )

Default: ( Radioactivedecay )

Sub-record Selection.
decays = (Array [1, UINT] of Record: Decay )

Default: ( Obligatory )

An array of radioactive decays.
ode_solver = (Record: PadeApprozimant )

Default: ( )

Numerical solver for the system of first order ordinary differential equations com-
ing from the model.

record: RadioactiveDecayProduct constructible from key: name

A record describing a product of a radioactive decay.
name = (String )

Default: ( Obligatory )

The name of the product.
energy = (Double [0, +inf) )

Default: ( 0.0)

Not used at the moment! The released energy in MeV from the decay of the
radionuclide into the product.

branching ratio = (Double [0, +inf) )
Default: ( 1.0)

The branching ratio of the product when there is more than one.Considering only
one product, the default ratio 1.0 is used.Its value must be positive. Further, the
branching ratios of all products are normalizedby their sum, so the sum then
gives 1.0 (this also resolves possible rounding errors).

record: Reaction

Describes a single first order chemical reaction.
reactants = (Array [1, UINT] of Record: FirstOrderReactionReactant )
Default: ( Obligatory )

An array of reactants. Do not use array, reactions with only one reactant (decays)
are implemented at the moment!

reaction rate = (Double [0, +inf) )
Default: ( Obligatory )

The reaction rate coefficient of the first order reaction.
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products = (Array [1, UINT] of Record: FirstOrderReactionProduct )
Default: ( Obligatory )

An array of products.

record: RichardsLMH _Data

Record to set fields of the equation.

The fields are set only on the domain specified by one of the keys: 'region’, rid’
and after the time given by the key 'time’. The field setting can be overridden
by

any RichardsLMH _Data record that comes later in the boundary data array.

region = (Array [1, UINT] of String )
Default: ( Optional )

Labels of the regions where to set fields.
rid = (Integer [0, INT] )

Default: ( Optional )

ID of the region where to set fields.
time = (Double [0, +inf) )

Default: ( 0.0)

Apply field setting in this record after this time.
These times have to form an increasing sequence.

anisotropy = (Abstract: Field:R3 — R[3,5])
Default: ( Optional )
Anisotropy of the conductivity tensor. [—]
cross_section = (Abstract: Field:R3 — R )
Default: ( Optional )
Complement dimension parameter (cross section for 1D, thickness for 2D). [m3~9]
conductivity = (Abstract: Field:R3 — R )
Default: ( Optional )
Isotropic conductivity scalar. [ms™?]
sigma = (Abstract: Field:R3 — R )
Default: ( Optional )
Transition coefficient between dimensions. [—]
water_source density = (Abstract: Field:R3 — R )
Default: ( Optional )
Water source density. [s7!]

bc_type = (Abstract: Field:R3 — R)
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Default: ( Optional )

Boundary condition type, possible values: [—]
bc_pressure = (Abstract: Field:R3 — R)

Default: ( Optional )

Prescribed pressure value on the boundary. Used for all values of ’bc_type’
save the bc_type="none’.See documentation of ’bc_type’ for exact meaning of
"be_pressure’ in individual boundary condition types. [m]

bec_flux = (Abstract: Field:R3 — R)
Default: ( Optional )

Incoming water boundary flux. Used for bc_types : 'none’, 'total flux’, 'seepage’,

river’. [m*=4s71

bc_robin sigma = (Abstract: Field:R3 — R )
Default: ( Optional )
Conductivity coefficient in the 'total_flux” or the ’river’ boundary condition type.
(m3=ds—1]
bc_switch pressure = (Abstract: Field:R3 — R )
Default: ( Optional )
Critical switch pressure for seepage’ and 'river’ boundary conditions. [m]
init pressure = (Abstract: Field:R3 — R )
Default: ( Optional )
Initial condition as pressure [m]
storativity = (Abstract: Field:R3 — R)
Default: ( Optional )
Storativity. [m™!]
water_content_saturated = (Abstract: Field:R3 — R)
Default: ( Optional )

Saturated water content 6.
relative volume of the water in a reference volume of a saturated porous media.

-
water_content residual = (Abstract: Field:R3 — R)
Default: ( Optional )

Residual water content 6,.
Relative volume of the water in a reference volume of an ideally dry porous media.

=
genuchten p_head scale = (Abstract: Field:R3 — R )
Default: ( Optional )

The van Genuchten pressure head scaling parameter a.
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The parameter of the van Genuchten’s model to scale the pressure head.
Related to the inverse of the air entry pressure, i.e. the pressure where the relative
water content starts to decrease below 1.

[m™]
genuchten n_exponent = (Abstract: Field:R3 — R )

Default: ( Optional )

The van Genuchten exponent parameter n. [—|
bc_piezo head = (Abstract: Field:R3 — R )

Default: ( Optional )

Boundary piezometric head for BC types: dirichlet, robin, and river.
bc_switch piezo_head = (Abstract: Field:R3 — R)

Default: ( Optional )

Boundary switch piezometric head for BC types: seepage, river.
init_piezo head = (Abstract: Field:R3 — R)

Default: ( Optional )

Initial condition for the pressure given as the piezometric head.

record: RichardsLMH Data_aux_Data

Record to set fields of the equation.

The fields are set only on the domain specified by one of the keys: 'region’, rid’
and after the time given by the key 'time’. The field setting can be overridden
by

any RichardsLMH _Data_aux_Data record that comes later in the boundary data
array.

region = (Array [1, UINT] of String )
Default: ( Optional )

Labels of the regions where to set fields.
rid = (Integer [0, INT] )

Default: ( Optional )

ID of the region where to set fields.
time = (Double [0, +inf) )

Default: ( 0.0)

Apply field setting in this record after this time.
These times have to form an increasing sequence.

anisotropy = (Abstract: Field:R3 — R[3,5])
Default: ( Optional )

Anisotropy of the conductivity tensor. [—]
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cross_section = (Abstract: Field:R3 — R )

Default: ( Optional )

Complement dimension parameter (cross section for 1D, thickness for 2D). [m3~9]
conductivity = (Abstract: Field:R3 — R )

Default: ( Optional )

Isotropic conductivity scalar. [ms™?]
sigma = (Abstract: Field:R3 — R )

Default: ( Optional )

Transition coefficient between dimensions. [—]
water_source density = (Abstract: Field:R3 — R )

Default: ( Optional )

Water source density. [s7!]
bec_type = (Abstract: Field:R3 — R)

Default: ( Optional )

Boundary condition type, possible values: [—]
bc_pressure = (Abstract: Field:R3 — R)

Default: ( Optional )

Prescribed pressure value on the boundary. Used for all values of ’bc_type’
save the bc_type="none’.See documentation of ’bc_type’ for exact meaning of
"be_pressure’ in individual boundary condition types. [m]

bc_flux = (Abstract: Field:R3 — R)
Default: ( Optional )

Incoming water boundary flux. Used for bc_types : 'none’, 'total flux’, 'seepage’,

river’. [m*=4s7!

bc_robin sigma = (Abstract: Field:R3 — R)
Default: ( Optional )
Conductivity coefficient in the 'total_flux” or the ’river’ boundary condition type.
(m3—ds1]
bc_switch pressure = (Abstract: Field:R3 — R)
Default: ( Optional )
Critical switch pressure for seepage’ and 'river’ boundary conditions. [m]
init pressure = (Abstract: Field:R3 — R )
Default: ( Optional )
Initial condition as pressure [m]
storativity = (Abstract: Field:R3 — R)
Default: ( Optional )
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Storativity. [m™!]
water_content_saturated = (Abstract: Field:R3 — R )
Default: ( Optional )

Saturated water content 6.
relative volume of the water in a reference volume of a saturated porous media.

-
water_content residual = (Abstract: Field:R3 — R )
Default: ( Optional )

Residual water content 6,.
Relative volume of the water in a reference volume of an ideally dry porous media.

-]
genuchten p head scale = (Abstract: Field:R3 — R )
Default: ( Optional )

The van Genuchten pressure head scaling parameter a.

The parameter of the van Genuchten’s model to scale the pressure head.
Related to the inverse of the air entry pressure, i.e. the pressure where the relative
water content starts to decrease below 1.

[m™]
genuchten n_exponent = (Abstract: Field:R3 — R )
Default: ( Optional )

The van Genuchten exponent parameter n. [—|

record: RichardsLMH _Data_aux_Data_aux

Record to set fields of the equation.

The fields are set only on the domain specified by one of the keys: 'region’, rid’
and after the time given by the key ’time’. The field setting can be overridden
by

any RichardsLMH Data_aux_Data_aux record that comes later in the boundary
data array.

region = (Array [1, UINT] of String )
Default: ( Optional )

Labels of the regions where to set fields.
rid = (Integer [0, INT] )

Default: ( Optional )

ID of the region where to set fields.
time = (Double [0, +inf) )

Default: ( 0.0)

Apply field setting in this record after this time.
These times have to form an increasing sequence.
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record: Root
Root record of JSON input for Flow123d.

flowl123d_version = (String )
Default: ( Obligatory )

Version of Flow123d for which the input file was created.Flow123d only warn
about version incompatibility. However, external tools may use this information
to provide conversion of the input file to the structure required by another version
of Flow123d.

problem = (Abstract: Coupling Base )
Default: ( Obligatory )

Simulation problem to be solved.

pause_after run = (Bool )
Default: ( False )

If true, the program will wait for key press before it terminates.

record: Solute_AdvectionDiffusion DG implements abstract type: Solute

DG solver for solute transport.
TYPE = (String )
Default: ( Solute_advectiondiffusion_dg )
Sub-record Selection.
solvent density = (Double [0, +inf) )
Default: ( 1.0)
Density of the solvent [ ((kg.m(—3))) ].
solver = (Record: Petsc )
Default: ( Obligatory )
Linear solver for MH problem.
input_fields = (Array [0, UINT] of Record: Solute_AdvectionDiffusion-DG_Data )
Default: ( Obligatory )
Input fields of the equation.
dg_variant = (Selection: DG_variant )
Default: ( Non-symmetric )
Variant of interior penalty discontinuous Galerkin method.
dg_order = (Integer [0, 3] )
Default: ( 1)

Polynomial order for finite element in DG method (order 0 is suitable if there is
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no diffusion/dispersion).
output = (Record: FEquationOutput )

Default: ( u’fields’: [u’conc’] )

Setting of the field output.

record: Solute_AdvectionDiffusion_ DG _Data

Record to set fields of the equation.

The fields are set only on the domain specified by one of the keys: 'region’, rid’
and after the time given by the key 'time’. The field setting can be overridden
by

any Solute_AdvectionDiffusion_ DG _Data record that comes later in the boundary
data array.

region = (Array [1, UINT] of String )
Default: ( Optional )

Labels of the regions where to set fields.
rid = (Integer [0, INT] )

Default: ( Optional )

ID of the region where to set fields.
time = (Double [0, +inf) )

Default: ( 0.0)

Apply field setting in this record after this time.
These times have to form an increasing sequence.

porosity = (Abstract: Field:R3 — R )
Default: ( Optional )
Mobile porosity [—]
sources density = (Array [1, UINT] of Abstract: Field:R3 — R)
Default: ( Optional )
Density of concentration sources. [m2kgs™!]
sources_sigma = (Array [1, UINT] of Abstract: Field:R3 — R )
Default: ( Optional )
Concentration flux. [s7!]
sources_conc = (Array [1, UINT] of Abstract: Field:R3 — R )
Default: ( Optional )
Concentration sources threshold. [m=3kg]
be_type = (Array [1, UINT] of Abstract: Field:R3 — R)
Default: ( Optional )
Type of boundary condition. [—]
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bec_conc = (Array [1, UINT] of Abstract: Field:R3 — R )
Default: ( Optional )
Dirichlet boundary condition (for each substance). [m3kg]
be_flux = (Array [1, UINT] of Abstract: Field:R3 — R)
Default: ( Optional )
Flux in Neumann boundary condition. [m!=?kgs™!]
bc robin sigma = (Array [1, UINT] of Abstract: Field:R3 — R)
Default: ( Optional )
Conductivity coefficient in Robin boundary condition. [m*~%s™!]
init_conc = (Array [1, UINT] of Abstract: Field:R3 — R )
Default: ( Optional )
Initial concentrations. [m3kg]
disp-1 = (Array [1, UINT] of Abstract: Field:R3 — R )
Default: ( Optional )
Longitudal dispersivity (for each substance). [m]
disp.t = (Array [1, UINT] of Abstract: Field:R3 — R )
Default: ( Optional )
Transversal dispersivity (for each substance). [m]
diff m = (Array [1, UINT] of Abstract: Field:R3 — R )
Default: ( Optional )
Molecular diffusivity (for each substance). [m?s™1]
rock density = (Abstract: Field:R3 — R )
Default: ( Optional )
Rock matrix density. [m2kg]
sorption mult = (Array [1, UINT] of Abstract: Field:R3 — R )
Default: ( Optional )
Coefficient of linear sorption. [kg~tmol]
fracture sigma = (Array [1, UINT] of Abstract: Field:R3 — R)
Default: ( Optional )
Coefficient of diffusive transfer through fractures (for each substance). [—]
dg-penalty = (Array [1, UINT] of Abstract: Field:R3 — R )
Default: ( Optional )

Penalty parameter influencing the discontinuity of the solution (for each sub-
stance). Its default value 1 is sufficient in most cases. Higher value diminishes
the inter-element jumps. [—]
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record: Solute_AdvectionDiffusion_ DG _Data_aux

Record to set fields of the equation.

The fields are set only on the domain specified by one of the keys: 'region’, rid’
and after the time given by the key 'time’. The field setting can be overridden
by

any Solute_AdvectionDiffusion_DG_Data_aux record that comes later in the bound-
ary data array.

region = (Array [1, UINT] of String )
Default: ( Optional )

Labels of the regions where to set fields.
rid = (Integer [0, INT] )

Default: ( Optional )

ID of the region where to set fields.
time = (Double [0, +inf) )

Default: ( 0.0)

Apply field setting in this record after this time.
These times have to form an increasing sequence.

record: Solute Advection FV implements abstract type: Solute

Explicit in time finite volume method for advection only solute transport.
TYPE = (String )
Default: ( Solute_advection_fv )
Sub-record Selection.
input_fields = (Array [0, UINT] of Record: Solute_Advection F'V_Data )
Default: ( Obligatory )
output = (Record: FEquationOutput )
Default: ( u’fields’: [u’conc’] )
Setting of the fields output.

record: Solute_Advection_FV_Data

Record to set fields of the equation.

The fields are set only on the domain specified by one of the keys: 'region’, rid’
and after the time given by the key 'time’. The field setting can be overridden
by

any Solute_Advection FV_Data record that comes later in the boundary data
array.

region = (Array [1, UINT] of String )
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Default: ( Optional )

Labels of the regions where to set fields.
rid = (Integer [0, INT] )

Default: ( Optional )

ID of the region where to set fields.
time = (Double [0, +inf) )

Default: ( 0.0)

Apply field setting in this record after this time.
These times have to form an increasing sequence.

porosity = (Abstract: Field:R3 — R )
Default: ( Optional )
Mobile porosity [—]
sources_density = (Array [1, UINT] of Abstract: Field:R3 — R )
Default: ( Optional )
Density of concentration sources. [m=3kgs™]
sources_sigma = (Array [1, UINT] of Abstract: Field:R3 — R )
Default: ( Optional )
Concentration flux. [s7!]
sources_conc = (Array [1, UINT] of Abstract: Field:R3 — R )
Default: ( Optional )
Concentration sources threshold. [m=3kg]
bec_conc = (Array [1, UINT] of Abstract: Field:R3 — R)
Default: ( Optional )
Boundary conditions for concentrations. [m3kg]
init_conc = (Array [1, UINT] of Abstract: Field:R3 — R )
Default: ( Optional )

Initial concentrations. [m 3kg]

record: Solute_Advection_ FV_Data_aux

Record to set fields of the equation.

The fields are set only on the domain specified by one of the keys: 'region’, rid’
and after the time given by the key 'time’. The field setting can be overridden
by

any Solute_Advection_FV_Data_aux record that comes later in the boundary data
array.

region = (Array [1, UINT] of String )
Default: ( Optional )
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Labels of the regions where to set fields.
rid = (Integer [0, INT] )

Default: ( Optional )

ID of the region where to set fields.
time = (Double [0, +inf) )

Default: ( 0.0)

Apply field setting in this record after this time.
These times have to form an increasing sequence.

record: Sorption implements abstract type: ReactionTerm

Sorption model in the reaction term of transport.
TYPE = (String )

Default: ( Sorption )

Sub-record Selection.
substances = (Array [1, UINT] of String )

Default: ( Obligatory )

Names of the substances that take part in the sorption model.
solvent density = (Double [0, +inf) )

Default: ( 1.0)

Density of the solvent.
substeps = (Integer [1, INT] )

Default: ( 1000 )

Number of equidistant substeps, molar mass and isotherm intersections
solubility = (Array [0, UINT] of Double [0, +inf) )

Default: ( Optional )

Specifies solubility limits of all the sorbing species.
table limits = (Array [0, UINT] of Double [0, +inf) )

Default: ( Optional )

Specifies highest aqueous concentration in interpolation table.
input_fields = (Array [0, UINT] of Record: Sorption_Data )

Default: ( Obligatory )

Containes region specific data necessary to construct isotherms.
reaction liquid = (Abstract: ReactionTerm )

Default: ( Optional )

Reaction model following the sorption in the liquid.
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reaction solid = (Abstract: ReactionTerm )

Default: ( Optional )

Reaction model following the sorption in the solid.
output = (Record: FEquationOutput )

Default: ( u’fields’: [u’conc_solid’] )

Setting of the fields output.

record: Sorption

AUXILIARY RECORD. Should not be directly part of the input tree.
substances = (Array [1, UINT] of String )

Default: ( Obligatory )

Names of the substances that take part in the sorption model.
solvent density = (Double [0, +inf) )

Default: ( 1.0)

Density of the solvent.
substeps = (Integer [1, INT] )

Default: ( 1000 )

Number of equidistant substeps, molar mass and isotherm intersections
solubility = (Array [0, UINT] of Double [0, +inf) )

Default: ( Optional )

Specifies solubility limits of all the sorbing species.
table limits = (Array [0, UINT] of Double [0, +inf) )

Default: ( Optional )

Specifies highest aqueous concentration in interpolation table.
input_fields = (Array [0, UINT] of Record: Sorption_Data )

Default: ( Obligatory )

Containes region specific data necessary to construct isotherms.
reaction liquid = (Abstract: ReactionTerm )

Default: ( Optional )

Reaction model following the sorption in the liquid.
reaction_solid = (Abstract: ReactionTerm )

Default: ( Optional )

Reaction model following the sorption in the solid.

record: Sorptionlmmobile implements abstract type: ReactionTerm
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Sorption model in the immobile zone, following the dual porosity model.
TYPE = (String )

Default: ( Sorptionimmobile )

Sub-record Selection.
substances = (Array [1, UINT] of String )

Default: ( Obligatory )

Names of the substances that take part in the sorption model.
solvent density = (Double [0, +inf) )

Default: ( 1.0)

Density of the solvent.
substeps = (Integer [1, INT] )

Default: ( 1000 )

Number of equidistant substeps, molar mass and isotherm intersections
solubility = (Array [0, UINT] of Double [0, +inf) )

Default: ( Optional )

Specifies solubility limits of all the sorbing species.
table limits = (Array [0, UINT] of Double [0, +inf) )

Default: ( Optional )

Specifies highest aqueous concentration in interpolation table.
input_fields = (Array [0, UINT] of Record: Sorption_Data )

Default: ( Obligatory )

Containes region specific data necessary to construct isotherms.
reaction liquid = (Abstract: ReactionTerm )

Default: ( Optional )

Reaction model following the sorption in the liquid.
reaction_solid = (Abstract: ReactionTerm )

Default: ( Optional )

Reaction model following the sorption in the solid.
output = (Record: FEquationOutput )

Default: ( u’fields’: [u’conc_immobile_solid’] )

Setting of the fields output.

record: SorptionMobile implements abstract type: ReactionTerm

Sorption model in the mobile zone, following the dual porosity model.

TYPE = (String )
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Default: ( Sorptionmobile )

Sub-record Selection.
substances = (Array [1, UINT] of String )

Default: ( Obligatory )

Names of the substances that take part in the sorption model.
solvent density = (Double [0, +inf) )

Default: ( 1.0)

Density of the solvent.
substeps = (Integer [1, INT] )

Default: ( 1000 )

Number of equidistant substeps, molar mass and isotherm intersections
solubility = (Array [0, UINT] of Double [0, +inf) )

Default: ( Optional )

Specifies solubility limits of all the sorbing species.
table limits = (Array [0, UINT] of Double [0, +inf) )

Default: ( Optional )

Specifies highest aqueous concentration in interpolation table.
input_fields = (Array [0, UINT] of Record: Sorption_Data )

Default: ( Obligatory )

Containes region specific data necessary to construct isotherms.
reaction liquid = (Abstract: ReactionTerm )

Default: ( Optional )

Reaction model following the sorption in the liquid.
reaction_solid = (Abstract: ReactionTerm )

Default: ( Optional )

Reaction model following the sorption in the solid.
output = (Record: EquationOutput )

Default: ( u’fields’: [u’conc_solid’] )

Setting of the fields output.

record: Sorption_Data

Record to set fields of the equation.

The fields are set only on the domain specified by one of the keys: 'region’, rid’
and after the time given by the key 'time’. The field setting can be overridden
by

any Sorption_Data record that comes later in the boundary data array.
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region = (Array [1, UINT] of String )

Default: ( Optional )

Labels of the regions where to set fields.
rid = (Integer [0, INT] )

Default: ( Optional )

ID of the region where to set fields.
time = (Double [0, +inf) )

Default: ( 0.0)

Apply field setting in this record after this time.
These times have to form an increasing sequence.

rock density = (Abstract: Field:R3 — R )
Default: ( Optional )
Rock matrix density. [m™3kg]

sorption_type = (Array [1, UINT] of Abstract: Field:R3 — R )
Default: ( Optional )

Considered sorption is described by selected isotherm. If porosity on an element
is equal or even higher than 1.0 (meaning no sorbing surface), then type 'none’
will be selected automatically. [—]

isothermmult = (Array [1, UINT] of Abstract: Field:R5 — R )
Default: ( Optional )

Multiplication parameters (k, omega) in either Langmuir c.s = omega * (al-
phac_a)/(1- alphac_a) or in linear c_s = k * c_a isothermal description. [kg~'mol]

isotherm other = (Array [1, UINT] of Abstract: Field:R3 — R )
Default: ( Optional )

Second parameters (alpha, ...) defining isotherm c_s = omega * (alphac_a)/(1-
alphac_a). [—]

init_conc_solid = (Array [1, UINT] of Abstract: Field:R3 — R )
Default: ( Optional )

Initial solid concentration of substances. Vector, one value for every substance.
[kg~tmol|

record: Sorption_Data_aux

Record to set fields of the equation.

The fields are set only on the domain specified by one of the keys: 'region’, rid’
and after the time given by the key 'time’. The field setting can be overridden
by

any Sorption_Data_aux record that comes later in the boundary data array.

region = (Array [1, UINT] of String )
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Default: ( Optional )

Labels of the regions where to set fields.
rid = (Integer [0, INT] )

Default: ( Optional )

ID of the region where to set fields.
time = (Double [0, +inf) )

Default: ( 0.0)

Apply field setting in this record after this time.
These times have to form an increasing sequence.

record: Substance constructible from key: name

Chemical substance.
name = (String )
Default: ( Obligatory )
Name of the substance.
molar mass = (Double [0, +inf) )
Default: ( 1)

Molar mass of the substance [kg/mol].

record: TimeGovernor constructible from key: max_ dt

Setting of the simulation time. (can be specific to one equation)

start_time = (Double (-inf, +inf) )
Default: ( 0.0)
Start time of the simulation.
end_time = (Double (-inf, +inf) )
Default: ”Infinite end time.”
End time of the simulation.
init_dt = (Double [0, +inf) )
Default: ( 0.0)

Initial guess for the time step.

Only useful for equations that use adaptive time stepping.If set to 0.0, the time
step is determined in fully autonomous way if the equation supports it.

min dt = (Double [0, +inf) )

Default: ”Machine precision.”

Soft lower limit for the time step. Equation using adaptive time stepping can
notsuggest smaller time step, but actual time step could be smaller in order to
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match prescribed input or output times.
max_dt = (Double [0, +inf) )
Default: ”Whole time of the simulation if specified, infinity else.”

Hard upper limit for the time step. Actual length of the time step is also limitedby
input and output times.

record: TimeGrid constructible from key: begin

Equally spaced grid of time points.
begin = (Double [0, +inf) )

Default: ”The initial time of the associated equation.”

The start time of the grid.
step = (Double [0, +inf) )

Default: ( Optional )

The step of the grid. If not specified, the grid consists only of the start time.
end = (Double [0, +inf) )

Default: ”"The end time of the simulation.”

The time greater or equal to the last time in the grid.

record: Union implements abstract type: Region

Defines region as a union of given two or more regions.
Regions can be given by names or IDs or both ways together.

TYPE = (String )

Default: ( Union )

Sub-record Selection.
name = (String )

Default: ( Obligatory )

Label (name) of the region. Has to be unique in one mesh.
region_ids = (Array [0, UINT] of Integer [0, INT] )

Default: ( Optional )

List of region ID numbers that has to be added to the region set.
regions = (Array [0, UINT] of String )

Default: ( Optional )

Defines region as a union of given pair of regions.

record: gmsh implements abstract type: OutputTime
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Parameters of gmsh output format.
TYPE = (String )
Default: ( Gmsh )

Sub-record Selection.

record: vtk implements abstract type: OutputTime

Parameters of vtk output format.
TYPE = (String )
Default: ( Vik )
Sub-record Selection.
variant = (Selection: VTK variant (ascii or binary) )
Default: ( Ascii )
Variant of output stream file format.
parallel = (Bool )
Default: ( False )
Parallel or serial version of file format.
compression = (Selection: Type of compression of VTK file format )
Default: ( None )

Compression used in output stream file format.

abstract type: AdvectionProcess

Descendants:

Abstract advection process. In particular: transport of substances or heat trans-
fer.

Coupling OperatorSplitting

Heat_AdvectionDiffusion DG

abstract type: Coupling_Base

Descendants:

The root record of description of particular the problem to solve.

Coupling Sequential

abstract type: DarcyFlow

Descendants:
Darcy flow model. Abstraction of various porous media flow models.

Flow_Darcy_MH
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Flow_Richards_LMH

abstract type: EmptyAbstract

Descendants:

abstract type: Field:R2 — R default descendant: FieldConstant

Descendants:

Abstract for all time-space functions.
FieldConstant
FieldPython
FieldFormula
FieldElementwise

FieldInterpolatedPO

abstract type: Field:R2 — R[2,2] default descendant: FieldConstant

Descendants:

Abstract for all time-space functions.
FieldConstant
FieldPython
FieldFormula
FieldElementwise

FieldInterpolatedPO

abstract type: Field:R2 — R[2] default descendant: FieldConstant

Descendants:

Abstract for all time-space functions.
FieldConstant
FieldPython
FieldFormula
FieldElementwise

FieldInterpolatedPO

abstract type: Field:R3 — R default descendant: FieldConstant

Descendants:

Abstract for all time-space functions.

FieldConstant

124



FieldPython
FieldFormula
FieldElementwise

FieldInterpolatedPO

abstract type: Field:R3 — R default descendant: FieldConstant

Descendants:
Abstract for all time-space functions.
FieldConstant
FieldPython
FieldFormula
FieldElementwise

FieldInterpolatedPO

abstract type: Field:R3 — R default descendant: FieldConstant

Descendants:
Abstract for all time-space functions.
FieldConstant
FieldPython
FieldFormula
FieldElementwise

FieldInterpolatedPO

abstract type: Field:R3 — R default descendant: FieldConstant

Descendants:
Abstract for all time-space functions.
FieldConstant
FieldPython
FieldFormula
FieldElementwise

FieldInterpolatedPO

abstract type: Field:R3 — R default descendant: FieldConstant

Descendants:

Abstract for all time-space functions.
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FieldConstant
FieldPython
FieldFormula
FieldElementwise

FieldInterpolatedPO

abstract type: Field:R3 — R default descendant: FieldConstant

Descendants:
Abstract for all time-space functions.
FieldConstant
FieldPython
FieldFormula
FieldElementwise

FieldInterpolatedPO

abstract type: Field:R3 — R[3,3] default descendant: FieldConstant

Descendants:

Abstract for all time-space functions.
FieldConstant
FieldPython
FieldFormula
FieldElementwise

FieldInterpolatedPO

abstract type: Field:R3 — R|[3,3] default descendant: FieldConstant

Descendants:
Abstract for all time-space functions.
FieldConstant
FieldPython
FieldFormula
FieldElementwise

FieldInterpolatedPO

abstract type: Field:R3 — R|[3] default descendant: FieldConstant

Descendants:
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Abstract for all time-space functions.
FieldConstant
FieldPython
FieldFormula
FieldElementwise

FieldInterpolatedPO

abstract type: Field:R3 — R[n] default descendant: FieldConstant

Descendants:
Abstract for all time-space functions.
FieldConstant

FieldPython

abstract type: LinSys

Descendants:
Linear solver setting.
Petsc

Bddc

abstract type: LinearODESolver

Descendants:

Solver of a linear system of ODEs.

LinearODEAnalytic

abstract type: OutputTime default descendant: vtk

Descendants:
Format of output stream and possible parameters.
vtk

gmsh

abstract type: ReactionTerm

Descendants:

Equation for reading information about simple chemical reactions.
FirstOrderReaction
RadioactiveDecay

Sorption
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SorptionMobile
SorptionImmobile

DualPorosity

abstract type: Region

Descendants:

Abstract record for Region.
From_Id
From_Label
From_Elements
Union
Difference

Intersection

abstract type: Solute

Descendants:

Transport of soluted substances.
Solute_Advection FV

Solute_AdvectionDiffusion DG

selection type: Balance_output_format

Format of output file for balance.

Possible values:
legacy : Legacy format used by previous program versions.
txt : Excel format with tab delimiter.

gnuplot : Format compatible with GnuPlot datafile with fixed column width.

selection type: DG _variant

Type of penalty term.

Possible values:
non-symmetric : non-symmetric weighted interior penalty DG method
incomplete : incomplete weighted interior penalty DG method

symmetric : symmetric weighted interior penalty DG method

selection type: DualPorosity output_fields

Selection of output fields for the DualPorosity model.
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Possible values:

diffusion rate immobile : Output of the field diffusion rate_immobile [s™!] (Diffu-
sion coefficient of non-equilibrium linear exchange between mobile and immobile
zone. ).

porosity_immobile : Output of the field porosity_immobile [—] (Porosity of the im-
mobile zone.).

init_conc_immobile : Output of the field init_conc_immobile [m~2kg] (Initial concen-
tration of substances in the immobile zone.).

conc_immobile : Output of the field conc_immobile [m=>kg].

selection type: EmptySelection

Possible values:

selection type: Flow_Darcy BC_Type

Possible values:
none : Homogeneous Neumann boundary condition. Zero flux

dirichlet : Dirichlet boundary condition. Specify the pressure head through the
"'be_pressure’ field or the piezometric head through the "be_piezo_head’ field.

total flux : Flux boundary condition (combines Neumann and Robin type). Water
inflow equal to ¢" + o(hft — h). Specify the water inflow by the "be_flux’ field,
the transition coefficient by 'bc_robin_sigma’ and the reference pressure head or
pieozmetric head through ’bc_pressure’ or 'be_piezo_head’ respectively.

seepage : Seepage face boundary condition. Pressure and inflow bounded from above.
Boundary with potential seepage flow is described by the pair of inequalities:h <
hE and g < ¢¥', where the equality holds in at least one of them. Caution! Setting
q-d" strictly negativemay lead to an ill posed problem since a positive outflow is
enforced.Parameters hY and ¢}’ are given by fields bc_pressurebc piezo headbc flux

river : River boundary condition. For the water level above the bedrock, H > H*, the
Robin boundary condition is used with the inflow given by: ¢~ +o(HP —H). For
the water level under the bedrock, constant infiltration is used ¢~ +o(H” — HY).
Parameters: bc_pressurebc_switch _pressurebc_sigma,

selection type: Flow_Darcy BC_Type

Possible values:
van_genuchten : Van Genuchten soil model with cutting near zero.

irmay : Irmay model for conductivity, Van Genuchten model for the water content.
Suitable for bentonite.

selection type: Flow_Darcy MH output_fields

Selection of output fields for the Flow_Darcy MH model.
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Possible values:

pressure_p0 : Output of the field pressure_p0 [m)].
pressure_pl : Output of the field pressure_pl [m)].
piezo_head pO : Output of the field piezo_head_p0 [m].
velocity p0: Output of the field velocity_p0 [ms~!].
subdomain : Output of the field subdomain [—].
region_id : Output of the field region_id [—].

anisotropy :  Output of the field anisotropy [—] (Anisotropy of the conductivity
tensor.).

cross_section :  Output of the field cross_section [m*7¢] (Complement dimension
parameter (cross section for 1D, thickness for 2D).).

conductivity: Output of the field conductivity [ms™!] (Isotropic conductivity scalar.).
sigma : Output of the field sigma [—| (Transition coefficient between dimensions.).

water_source density : Output of the field water_source_density [s~'] (Water source
density.).

init_pressure : Output of the field init_pressure [m] (Initial condition as pressure).
storativity : Output of the field storativity [m~!] (Storativity.).

pressure diff : Output of the field pressure_diff [m].

velocity diff : Output of the field velocity diff [ms™!].

div.diff : Output of the field div_diff [s7!].

selection type: GraphType

Different algorithms to make the sparse graph with weighted edges
from the multidimensional mesh. Main difference is dealing with
neighborings of elements of different dimension.

Possible values:
any neighboring : Add edge for any pair of neighboring elements.

any wight lower dim cuts: Same as before and assign higher weight to cuts of lower
dimension in order to make them stick to one face.

same_dimension neghboring : Add edge for any pair of neighboring elements of same
dimension (bad for matrix multiply).

selection type: Heat_AdvectionDiffusion DG _output_fields

Selection of output fields for the Heat_AdvectionDiffusion_DG model.

Possible values:

init_temperature : Output of the field init_temperature [K] (Initial temperature.).
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porosity : Output of the field porosity [—] (Porosity.).
water_content : Output of the field water_content [—].
fluid density : Output of the field fluid_density [m—3kg] (Density of fluid.).

fluid heat_capacity : Output of the field fluid heat_capacity [m?s2K~!] (Heat
capacity of fluid.).

fluid heat_conductivity : Output of the field fluid_heat_conductivity [mkgs 3K ]
(Heat conductivity of fluid.).

solid density : Output of the field solid_density [m>kg] (Density of solid (rock).).

solid heat capacity : Output of the field solid_heat_capacity [m?s 2K '] (Heat
capacity of solid (rock).).

solid heat_conductivity : Output of the field solid_heat_conductivity [mkgs K]
(Heat conductivity of solid (rock).).

disp-1: Output of the field disp_l [m] (Longitudal heat dispersivity in fluid.).
disp-t : Output of the field disp_t [m] (Transversal heat dispersivity in fluid.).

fluid thermal source: Output of the field fluid_thermal source [m~'kgs™3] (Thermal
source density in fluid.).

solid thermal source: Output of the field solid_thermal source [m~'kgs™3] (Thermal
source density in solid.).

fluid heat_exchange rate : Output of the field fluid_heat_exchange rate [s™!] (Heat
exchange rate in fluid.).

solid heat_exchange rate : Output of the field solid_heat_exchange rate [s~!] (Heat
exchange rate of source in solid.).

fluid.ref_temperature : Output of the field fluid_ref_temperature [K] (Reference
temperature of source in fluid.).

solid ref temperature : Output of the field solid ref temperature [K] (Reference
temperature in solid.).

temperature : Output of the field temperature [K].

fracture sigma: Output of the field fracture_sigma [—] (Coefficient of diffusive trans-
fer through fractures (for each substance).).

dg_penalty : Output of the field dg_penalty [—] (Penalty parameter influencing the
discontinuity of the solution (for each substance). Its default value 1 is sufficient
in most cases. Higher value diminishes the inter-element jumps.).

region_id : Output of the field region_id [—].

selection type: Heat _BC_Type

Types of boundary conditions for heat transfer model.

Possible values:

inflow : Default heat transfer boundary condition.
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On water inflow (g, < 0), total energy flux is given by the reference temperature
'be_temperature’. On water outflow we prescribe zero diffusive flux, i.e. the
energy flows out only due to advection.

dirichlet : Dirichlet boundary condition 1" = T).
The prescribed temperature T is specified by the field 'bc_temperature’.

total_flux : Total energy flux boundary condition.
The prescribed incoming total flux can have the general form 0(fy + or(Tr —
T)), where the absolute flux fy is specified by the field 'be_flux’, the transi-
tion parameter or by 'bc_robin_sigma’, and the reference temperature Tg by
'be_temperature’.

diffusive flux : Diffusive flux boundary condition.
The prescribed incoming energy flux due to diffusion can have the general form
(fy +0or(Tr—T)), where the absolute flux fy is specified by the field "be_flux’,
the transition parameter og by ’bc_robin_sigma’, and the reference temperature
Tr by ’bc_temperature’.

selection type: MH_MortarMethod

Possible values:
None : Mortar space: PO on elements of lower dimension.
PO : Mortar space: PO on elements of lower dimension.

P1: Mortar space: P1 on intersections, using non-conforming pressures.

selection type: PartTool

Select the partitioning tool to use.

Possible values:
PETSc : Use PETSc interface to various partitioning tools.

METIS : Use direct interface to Metis.

selection type: Solute_AdvectionDiffusion BC _Type

Types of boundary conditions for advection-diffusion solute transport model.

Possible values:

inflow : Default transport boundary condition.
On water inflow (g, < 0), total flux is given by the reference concentration
'be_conc’. On water outflow we prescribe zero diffusive flux, i.e. the mass flows
out only due to advection.

dirichlet : Dirichlet boundary condition ¢ = cp.
The prescribed concentration cp is specified by the field 'bc_conc’.

total flux : Total mass flux boundary condition.
The prescribed total incoming flux can have the general form §(fy + or(cr —¢)),
where the absolute flux fy is specified by the field ’be_flux’, the transition pa-
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rameter or by ’be_robin_sigma’, and the reference concentration cg by ’bc_conc’.

diffusive flux : Diffusive flux boundary condition.
The prescribed incoming mass flux due to diffusion can have the general form
d(fn + or(cr — ¢)), where the absolute flux fy is specified by the field "be_flux’,
the transition parameter oz by 'be_robin_sigma’, and the reference concentration
cr by 'bc_conc’.

selection type: Solute_AdvectionDiffusion_DG_output_fields

Selection of output fields for the Solute_AdvectionDiffusion_DG model.

Possible values:
porosity : Output of the field porosity [—] (Mobile porosity).

water _content : Output of the field water_content [—] (INTERNAL - water content
passed from unsaturated Darcy).

sources_density : Output of the field sources_density [m32kgs~!] (Density of concen-
tration sources.).

sources_sigma : Output of the field sources_sigma [s~!] (Concentration flux.).

sources conc :  Output of the field sources_conc [m~3kg] (Concentration sources
threshold.).

init_conc : Output of the field init_conc [m~3kg| (Initial concentrations.).

disp.1: Output of the field disp_1 [m] (Longitudal dispersivity (for each substance).).
disp_t : Output of the field disp_t [m] (Transversal dispersivity (for each substance).).
diff m: Output of the field diff m [m?s~!] (Molecular diffusivity (for each substance).).
rock density : Output of the field rock density [m~3kg] (Rock matrix density.).

sorption mult : Output of the field sorption mult [kg~'mol] (Coefficient of linear
sorption.).

conc : Output of the field conc [m™3kg].

fracture sigma: Output of the field fracture_sigma [—] (Coefficient of diffusive trans-
fer through fractures (for each substance).).

dg_penalty : Output of the field dg_penalty [—] (Penalty parameter influencing the
discontinuity of the solution (for each substance). Its default value 1 is sufficient
in most cases. Higher value diminishes the inter-element jumps.).

region_id : Output of the field region_id [—].

selection type: Solute_Advection_FV _output_fields

Selection of output fields for the Solute_Advection_.FV model.

Possible values:
porosity : Output of the field porosity [—] (Mobile porosity).
water _content : Output of the field water_content [—] (INTERNAL - water content
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passed from unsaturated Darcy).

sources_density : Output of the field sources_density [m32kgs™!] (Density of concen-
tration sources.).

sources_sigma : Output of the field sources_sigma [s7!] (Concentration flux.).

sources conc :  Output of the field sources_conc [m=3kg] (Concentration sources
threshold.).

init_conc : Output of the field init_conc [m~3kg| (Initial concentrations.).
conc : Output of the field conc [m—3kg].
region_id : Output of the field region_id [—].

selection type: Sorptionlmmobile_output_fields

Selection of output fields for the Sorptionlmmobile model.
Possible values:
rock density : Output of the field rock density [m3kg] (Rock matrix density.).

sorption_type: Output of the field sorption_type [—] (Considered sorption is described
by selected isotherm. If porosity on an element is equal or even higher than 1.0
(meaning no sorbing surface), then type 'none’ will be selected automatically.).

isotherm mult : Output of the field isotherm mult [kg~'mol] (Multiplication param-
eters (k, omega) in either Langmuir c_.s = omega * (alphac_a)/(1- alphac_a) or
in linear c_s = k * c_a isothermal description.).

isotherm other : Output of the field isotherm_other [—] (Second parameters (alpha,
...) defining isotherm c_s = omega * (alphac_a)/(1- alphac_a).).

init_conc_solid : Output of the field init_conc_solid [kg~'mol] (Initial solid concen-
tration of substances. Vector, one value for every substance.).

conc_immobile solid : Output of the field conc_immobile_solid [m3kg].

selection type: SorptionMobile output_fields

Selection of output fields for the SorptionMobile model.
Possible values:
rock density : Output of the field rock density [m2kg] (Rock matrix density.).

sorption_type: Output of the field sorption_type [—] (Considered sorption is described
by selected isotherm. If porosity on an element is equal or even higher than 1.0
(meaning no sorbing surface), then type none’ will be selected automatically.).

isotherm mult : Output of the field isotherm_mult [kg~*mol] (Multiplication param-
eters (k, omega) in either Langmuir c_.s = omega * (alphac_a)/(1- alphac_a) or
in linear c_s = k * c_a isothermal description.).

isotherm other : Output of the field isotherm_other [—] (Second parameters (alpha,
...) defining isotherm c¢_s = omega * (alphac_a)/(1- alphac_a).).
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init_conc_solid : Output of the field init_conc solid [kg~'mol] (Initial solid concen-
tration of substances. Vector, one value for every substance.).

conc_solid : Output of the field conc_solid [m~3kg].

selection type: SorptionType

Possible values:
none : No sorption considered.
linear : Linear isotherm runs the concentration exchange between liquid and solid.

langmuir : Langmuir isotherm runs the concentration exchange between liquid and

solid.

freundlich: Freundlich isotherm runs the concentration exchange between liquid and

solid.

selection type: Sorption output fields

Selection of output fields for the Sorption model.
Possible values:
rock density : Output of the field rock density [m—3kg] (Rock matrix density.).

sorption_type: Output of the field sorption_type [—] (Considered sorption is described
by selected isotherm. If porosity on an element is equal or even higher than 1.0
(meaning no sorbing surface), then type none’ will be selected automatically.).

isothermmult : Output of the field isotherm_mult [kg~'mol] (Multiplication param-
eters (k, omega) in either Langmuir c_.s = omega * (alphac_a)/(1- alphac_a) or
in linear c_s = k * c_a isothermal description.).

isotherm other : Output of the field isotherm other [—] (Second parameters (alpha,
...) defining isotherm c_s = omega * (alphac_a)/(1- alphac_a).).

init_conc_solid : Output of the field init_conc solid [kg~'mol] (Initial solid concen-
tration of substances. Vector, one value for every substance.).

conc_solid : Output of the field conc_solid [m~3kg].

selection type: Type of compression of VTK file format

Possible values:
none : Data in VTK file format are not compressed

z1ib : Data in VTK file format are compressed using zlib (not supported yet)

selection type: VTK variant (ascii or binary)

Possible values:
ascii: ASCII variant of VTK file format
binary : Binary variant of VTK file format (not supported yet)
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