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Chapter 1

Quick start

Flow123D is a software for simulation of water flow and reactionary solute transport in
a heterogeneous porous and fractured medium. In particular it is suited for simulation
of underground processes in a granite rock massive. The program is able to describe
explicitly processes in 3D medium, 2D fractures, and 1D channels and exchange between
domains of different dimensions. The computational mesh is therefore collection of 3D
tetrahedrons, 2D triangles and 1D line segments.

The water flow model assumes a saturated medium described by Darcy law. For dis-
cretization, we use lumped mixed-hybrid finite element method. We support both steady
and unsteady water flow.

The solute transport model can deal with several dissolved substances. It contains non-
equilibrium dual porosity model, i.e. exchange between mobile and immobile pores.
There are also models for several types of adsorption in both the mobile and immobile
zone. The implemented adsorption models are linear adsorption, Freundlich isotherm
and Langmuir isotherm. The solute transport model uses finite volume discretization
with up-winding in space and explicit Euler discretization in time. The dual poros-
ity and the adsorption are introduced into transport by operator splitting. The dual
porosity model use analytic solution and the non-linear adsorption can be either solved
numerically by the toms748 solve(...) command (which is a part of boost package) or it
can be approximated through interpolation which uses precomputed functional values
lying on selected type of isotherm.

Reaction between transported substances can be modeled either by a SEMCHEM mod-
ule, which is slow, but can describe all sorts of reactions. On the other hand, for reactions
of the first order, i.e. linear reactions or decays, we provide our own solver which is much
faster. Reactions are coupled with transport by the operator splitting method.

The program provides output of the pressure, the velocity and the concentration fields
in two file formats. You can use file format of GMSH mesh generator and post-processor
or you can use output into widely supported VTK format. In particular we recommend
Paraview software for visualization and post-processing of VTK data.

The program is implemented in C/C++ using essentially PETSC library for linear alge-
bra. The water flow as well as the transport simulation and reactions can be computed
in parallel using MPI environment.

The program is distributed under GNU GPL v. 3 license and is available on the project
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web page: http://dev.nti.tul.cz/trac/flow123d

1.1 Basic usage

1.1.1 How to run the simulation.

On the Linux system the program can be started either directly or through a script
flow123d.sh. When started directly, e.g. by the command

> flow123d -s example.con

the program requires one argument after switch -s which is the name of the principal
input file. Full list of possible command line arguments is as follows.

--help

Parameters interpreted by Flow123d. Remaining parameters are passed to PETSC.

-s, --solve file
Set principal CON input file. All relative paths in the CON file are relative against
current directory.

-i, --input dir directory
The place holder ${INPUT} used in the path of an input file will be replaced by
given directory.

-o, --output dir directory
All paths for output files will be relative to this directory.

-l, --log file name
Set base name of log files.

--no log

Turn off logging.

--no profiler

Turn off profiler output.

--full doc

Prints full structure of the main input file.

--JSON template

Prints a description of the main input file as a valid CON file template.

--latex doc

Prints a description of the main input file in LaTeX format using particular macros.

All other parameters will be passed to the PETSC library. An advanced user can
influence lot of parameters of linear solver. In order to get list of supported options use
parameter -help together with some valid input. Options for various PETSC modules
are displayed when the module is used for the first time.
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Alternatively, you can use script flow123d.sh to start parallel jobs or limit resources
used by the program. This script accepts the same parameters as the program itself and
further following additional parameters:

-h
Usage overview.

-t timeout
Upper estimate for real running time of the calculation. Kill calculation after
timeout seconds. Can also be used by PBS to choose appropriate job queue.

-np number of processes
Specify number of parallel processes for calculation.

-m memory limit
Limits total available memory to memory limit bytes.

-n priority
Change (lower) priority for the calculation. See nice command.

-r out file
Stdout and stderr will be redirected to out file.

On the Windows system we use Cygwin libraries in other to emulate Linux API. There-
fore you have to keep the Cygwin libraries within the same direcotry as the program
executable. The Windows package that can be downloaded from project web page con-
tains both the Cygwin libraries and the mpiexec command for starting parallel jobs on
the Windows workstations.

Then you can start the sequential run by the command:

> flow123d.exe -s example.con

or the parallel run by the command:

> mpiexec.exe -np 2 flow123d.exe -s example.con

The program accepts the same parameters as the Linux version, but there is no script
similar to flow123d.sh for the Windows system.

1.1.2 Tutorial problem

CON file format

The main input file uses a slightly extended JSON file format which together with some
particular constructs forms a CON (C++ object notation) file format. Main extensions
of the JSON are unquoted key names (as long as they do not contain whitespaces),
possibility to use = instead of : and C++ comments, i.e. // for a one line and /* */

for a multi-line comment. In CON file format, we prefer to call JSON objects “records”
and we introduce also “abstract records” that mimic C++ abstract classes, arrays of a

7



CON file have only elements of the same type (possibly using abstract record types for
polymorphism). The usual keys are in lower case and without spaces (using underscores
instead), there are few special upper case keys that are interpreted by the reader: REF

key for references, TYPE key for specifing actual type of an abstract record. For detailed
description see Section 4.1.

Geometry

In the following, we shall provide a commented input for the tutorial problem:

tests/03_transport_small_12d/flow_vtk.con

We consider a simple 2D problem with a branching 1D fracture (see Figure 1.1 for the
geometry). To prepare a mesh file we use the GMSH software. First, we construct
a geometry file. In our case the geometry consists of:

• one physical 2D domain corresponding to the whole square

• three 1D physical domains of the fracture

• four 1D boundary physical domains of the 2D domain

• three 0D boundary physical domains of the 1D domain

In this simple example, we can in fact combine physical domains in every group, however
we use this more complex setting for demonstration purposes. Using GMSH graphical
interface we can prepare the GEO file where physical domains are referenced by numbers,
then we use any text editor and replace numbers with string labels in such a way that
the labels of boundary physical domains start with the dot character. These are the
domains where we will not do any calculations but we will use them for setting boundary
conditions. Finally, we get the GEO file like this:

1 cl1 = 0.16;

2 Point(1) = {0, 1, 0, cl1};

3 Point(2) = {1, 1, 0, cl1};

4 Point(3) = {1, 0, 0, cl1};

5 Point(4) = {0, 0, 0, cl1};

6 Point(6) = {0.25, -0, 0, cl1};

7 Point(7) = {0, 0.25, 0, cl1};

8 Point(8) = {0.5, 0.5, -0, cl1};

9 Point(9) = {0.75, 1, 0, cl1};

10 Line(19) = {9, 8};

11 Line(20) = {7, 8};

12 Line(21) = {8, 6};

13 Line(22) = {2, 3};

14 Line(23) = {2, 9};

15 Line(24) = {9, 1};

16 Line(25) = {1, 7};

17 Line(26) = {7, 4};

18 Line(27) = {4, 6};

19 Line(28) = {6, 3};

20 Line Loop(30) = {20, -19, 24, 25};

21 Plane Surface(30) = {30};

22 Line Loop(32) = {23, 19, 21, 28, -22};

23 Plane Surface(32) = {32};

24 Line Loop(34) = {26, 27, -21, -20};

25 Plane Surface(34) = {34};

26 Physical Point(".1d_top") = {9};

27 Physical Point(".1d_left") = {7};

28 Physical Point(".1d_bottom") = {6};

29 Physical Line("1d_upper") = {19};

30 Physical Line("1d_lower") = {21};

31 Physical Line("1d_left_branch") = {20};

32 Physical Line(".2d_top") = {23, 24};

33 Physical Line(".2d_right") = {22};

34 Physical Line(".2d_bottom") = {27, 28};

35 Physical Line(".2d_left") = {25, 26};

36 Physical Surface("2d") = {30, 32, 34};
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Notice the labeled physical domains on lines 26 – 36. Then we just set the discretization
step cl1 and use GMSH to create the mesh file. The mesh file contains both the ’bulk’
elements where we perform calculations and the ’boundary’ elements (on the boundary
physical domains) where we only set the boundary conditions.
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Having the computational mesh, we can create the main input file with the description
of our problem.

1 {

2 problem = {

3 TYPE = "SequentialCoupling",

4 description = "Transport 1D-2D, (convection, dual porosity, sorption)",

5 mesh = {

6 mesh_file = "./input/mesh_with_boundary.msh",

7 sets = [

8 { name="1d_domain",

9 region_labels = [ "1d_upper", "1d_lower", "1d_left_branch" ]

10 }

11 ]

12 },

The file starts with a particular problem type selection, currently only the type SequentialCoupling
is supported, and a textual problem description. Next, we specify the computational
mesh, here it consists of the name of the mesh file and the declaration of one region
set composed of all 1D regions i.e. representing the whole fracture. Other keys of the
mesh record allow labeling regions given only by numbers, defining new regions in terms
of element numbers (e.g to have leakage on single element), defining boundary regions,
and set operations with region sets, see Section 4.2.1 for details.

Flow setting

Next, we setup the flow problem. We shall consider a flow driven only by the pressure
gradient (no gravity), setting the Dirichlet boundary condition on the whole boundary
with the pressure head equal to x+y. The conductivity will be 1 on the 2D domain and
10 on the 1D domain. The fracture width will be δ1 = 1 (quite unnatural) as well as
the transition parameter σ2 = 1 which describes a “conductivity” between dimensions.
These are currently the default values.

13 primary_equation = {

14 TYPE = "Steady_MH",

15

16 bulk_data = [

17 { r_set = "1d_domain", conductivity = 10 },

18 { region = "2d", conductivity = 1 }

19 ],

20

21 bc_data = [

22 { r_set = "BOUNDARY",

23 bc_type = "dirichlet",

24 bc_pressure = { TYPE="FieldFormula", value = "x+y" }

25 }

26 ],

27
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28 output = {

29 output_stream = { REF = "/system/output_streams/0" },

30 pressure_p0 = "flow_output_stream",

31 pressure_p1 = "flow_output_stream",

32 velocity_p0 = "flow_output_stream"

33 },

34

35 solver = { TYPE = "Petsc", accuracy = 1e-07 }

36 }, // primary equation

On line 11, we specify particular implementation (numerical method) of the flow solver,
in this case the Mixed-Hybrid solver for unsteady problems. On lines 16 – 19, we set
mathematical fields that live on the computational domain (i.e. the bulk domain), we
set only the conductivity field since other bulk fields have appropriate default values. On
lines 21 – 26, we set fields for boundary conditions (bc data). We use implicitely defined
set “BOUNDARY” that contains all boundary regions and set there dirichlet boundary
condition in terms of the pressure head. In this case, the field is not of the implicit
type FieldConstant, so we must specify the type of the field TYPE=FieldFormula. See
Section ?? for other field types. On lines 28 – 33, we specify which output fields should
be written into which output stream (that means particular output file, with given
format). Currently, we support only one output stream per equation, so this allows at
least switching individual output fields on or off. Notice the reference used on line 29
pointing to the definition of the output streams at the end of the file. Finally, we specify
type of the linear solver and its tolerance.

Transport setting

We also consider subsequent transport problem with the porosity θ = 0.25 and zero
initial concentration. The boundary condition is equal to 1 and is automatically applied
only on the inflow part of the boundary. There are also some adsorption and dual
porosity models in this particular test case. Adsorption and simple reactions model
inputs are particularly described in subsections 1.1.2.

37 secondary_equation = {

38 TYPE = "TransportOperatorSplitting",

39

40 dual_porosity = true,

41 substances = [ "age", "U235", "U235s-lin", "U235s-lang", "U235s-freund"],

42

43 bulk_data = [

44 { r_set = "ALL",

45 init_conc = 0,

46 por_m = 0.25,

47 por_imm = 0.25

48 }

49 ],

50

51 bc_data = [
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52 { r_set = "BOUNDARY",

53 bc_conc = 1.0

54 }

55 ],

56

57 output = {

58 output_stream = { REF = "/system/output_streams/1" },

59 save_step = 0.01,

60 mobile_p0 = "transport_output_stream"

61 },

62

63 time = { end_time = 1.0 }

64

65 reactions = {

66 TYPE="Sorptions",

67 solvent_dens = 1.0,

68 species = [ "age", "U235", "U235s-lin", "U235s-lang", "U235s-freund"],

69 molar_masses = [1.0, 1.0, 1.0, 1.0, 1.0],

70 solubility = [1.0, 1.0, 1.0, 1.0, 1.0],

71 substeps = 50,

72 bulk_data = [

73 {

74 region = "2d",

75 rock_density = {TYPE="FieldFormula", value = "1.0*x/x"},

76 sorption_types = [ "none", "none", "linear", "langmuir", "freundlich"],

77 mult_coefs = [0, 0, 0.6, 0.4, 0.6],

78 second_params = [0, 0, 0, 0.6, 0.4]

79 }

80 ]

81 }

82 } // secondary_equation

83 }, // problem

For the transport problem we use implementation called “TransportOperatorSplitting”
which is explicit finite volume solver of the convection equation (without diffusion), the
operator splitting is used for the equilibrium adsorption as well as for the dual porosity
model and first order reactions simulation. Dual porosity is switched on as we can see
on lines 40. On the next line, we set names of transported substances, here it is the age
of the water and the uranium 235. On lines 44 – 55, we set the bulk fields in particular
the porosity ’por m’ and the initial concentrations ( one for every substance ). However,
on line 46, we see only single value since an automatic conversion is applied to turn
the scalar zero into the zero vector (of size 2). On line 53, we can see vector that set
different adsorption coefficients for the two substances. Then, on lines 57 – 61, we set
the boundary fields namely the concentration on the inflow part of the boundary. We
need not to specify type of the condition since currently this is the only one available.
In the output record we have to specify the save step (line 65) for the output fields. And
finally, we have to set the time setting, here only the end time of the simulation since
the step size is determined from the CFL condition, however you can set smaller time
step if you want.
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Sorption settings

The input information for equilibrial sorption are enclosed in the record reactions =
{. . .}. The type of simulated, chemical interactions is determinated by the label TY PE =
”Sorptions”,. It is possible to set the value of the solvent (obviously water) density
solvent dens = 1.0,. The solvent density is supposed to be constant all over the simu-
lated area. The vector species containes the list of soluted substances whose concentra-
tions is concidered to be affected by sorptions. Material characteristics of all the sorbing
species can be defined by vectors molar masses and solubility. Elements of the vector
sollubility defines the upper bound of an aqueous concentrations which can appear,
because some substances have limmited solubility and if the solubility exceeds this limit
they start to precipitate. solubility is a crucial parameter for solving further described
set of nonlinear equations. The parameter substeps is important when interpolation is
used to search approximative solution of the adsorption problem. It is the number of
precomputed points lying on the isotherm. Default value is set to be 100.

The record bulk data colects information about regions specific, several isotherms desribed
adsorption. Particular region (bulk Physical Entity), where one kind of adsorption takes
place, can be specified by its label from gmsh-file. All implemented types of adsorption
can take the rock density in region into account. The value of rock density can be ei-
ther constant or specified by FieldFormula. The implemented sorption types can have
one of four possible values {”none”, ”linear”, ”freundlich”, ”langmuir”} and except of
first one are those types empiricaly described by appropriate type of isotherm. Linear
isotherm described adsorption needs just one parameter to be given whereas Freundlichs’
and Langmuirs’ isotherm have two parameters. For further details about mathematical
description see the section 2.3. Isothermaly described sorption simulation can be used
in the case of low concenttrated solutions without competition between multiple disoved
species.

Output streams and results

84 system = {

85 output_streams = [

86 {

87 file = "test3.pvd",

88 format = { TYPE = "vtk", variant = "ascii" },

89 name = "flow_output_stream"

90 },

91 {

92 file = "test3-transport.pvd",

93 format = { TYPE = "vtk", variant = "ascii" },

94 name = "transport_output_stream"

95 }

96 ]

97 }

98 }

The end of the input file contains declaration of two output streams, one for the flow
problem and one for the transport problem. Currently, we support output into VTK
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Figure 1.1: Results of the tutorial problem.

format and GMSH data format. On Figure 1.1 you can see the results, the pressure
and the velocity field on the left and the concentration of U235 at time t = 0.9 on the
right. Even if the pressure gradient is the same on the 2D domain as on the fracture, the
velocity field is ten times faster on the fracture. Since porosity is same, the substance
is transported faster by the fracture and then appears in the bottom left 2D domain
before the main wave propagating solely through the 2D domain.

The output files can be either *.msh files accepted by the GMSH or one can use VTK
format that can be post-processed by Paraview.

In the following chapter, we briefly describe structure of individual input files in par-
ticular the main INI file. In the last chapter, we describe mathematical models and
numerical methods used in the Flow123d.
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Chapter 2

Mathematical models
of physical reality

Flow123d provides models for Darcy flow in porous media as well as for the transport and
reactions of soluted substances. In this section, we describe mathematical formulations
of these models together with physical meaning and units of all involved quantities.
Common and unique feature of all models is support of domains with mixed dimension.
Let Ω3 ⊂ R3 be an open set representing continuous approximation of porous and
fractured medium. Similarly, we consider open set Ω2 ⊂ R2 representing 2D fractures
and open set Ω1 ⊂ R3 of 1D channels or preferential paths (see Fig 2.1). We assume that
Ω2 and Ω1 are polygonal. For every dimension d = 1, 2, 3, we introduce a triangulation
Td of the open set Ωd that consists of finite elements T id, i = 1, . . . , Nd

E. The elements
are simplexes that are tetrahedrons, triangles and lines.

Figure 2.1: Scheme of a problem with domains of multiple dimensions.

Present numerical methods requires meshes satisfying the compatibility conditions

T id−1 ∩ Td ⊂ Fd, where Fd =
⋃
k

∂T kd (2.1)

and
T id−1 ∩ Fd is either T id−1 or ∅ (2.2)

for every i ∈ {1, . . . , Nd−1
E }, j ∈ {1, . . . , Nd

E}, and d = 2, 3. That is the (d − 1)-
dimensional elements are either between d-dimensional elements and match their sides
or they poke out of Ωd.
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2.1 Darcy flow model

We consider simplest model for the velocity of the steady or unsteady flow in porous
and fractured medium given by Darcy flow:

w = −K∇H on Ωd, for d = 1, 2, 3. (2.3)

We drop the dimension index of quantities in equations if it is the same as the dimension
of the set where the equation holds. In (2.3), wd [ms−1] is the superficial velocity, Kd is
the conductivity tensor, and Hd [m] is the piezometric head. The velocity is related to
the flux qd with units [m4−ds−1] through

qd = δdwd.

where δd [m3−d] is a cross section coefficient, in particular δ3 = 1, δ2 [m] is the thickness
of a fracture, and δ1 [m2] is the cross-section of a channel. The flux qd is the volume
of the liquid (water) that pass through a unit square (d = 3), unit line (d = 2), or
through a point (d = 1) per one second. The conductivity tensor is given by the
product Kd = kdAd, where kd > 0 is the hydraulic conductivity [ms−1] and Ad is 3 × 3
dimensionless anisotropy tensor which has to be symmetric and positive definite. The
piezometric-head Hd has units [m] and is related to the pressure head hd by Hd = hd+z
assuming that the gravity force acts in negative direction of the z-axes. Combining these
relations we get Darcy low in the form:

q = −δkA∇(h+ z) on Ωd, for d = 1, 2, 3. (2.4)

Next, we employ continuity equation for saturated porous medium:

∂t(S h) + divq = F on Ωd, for d = 1, 2, 3, (2.5)

where Sd is the storativity and Fd is a source term. In our setting the principal unknowns
of the system (2.4, 2.5) are the pressure head hd and the flux qd.

The storativity Sd > 0 or the volumetric specific storage [m−1] can be expressed as

Sd = γw(βr + νβw), (2.6)

where γw [kgm−2s−2] is the specific weight of water, ν is the porosity [−], βr is com-
pressibility of the bulk material of the pores (rock) and βw is compressibility of the
water both with units [kg−1ms−2]. For steady problems we set Sd = 0 for all dimensions
d = 1, 2, 3. The source term Fd [m3−ds−1] on the right hand side of (2.5) consists of
the volume density of prescribed sources fd [s−1] and flux from higher dimension. Exact
formula is slightly different for every dimension and will be discussed presently.

On Ω3 we simply have F3 = f3 [s−1].

On the set Ω2∩Ω3 the fracture is surrounded by one 3D surface from every side (or just
one surface since we allow also 2D models on the boundary). On ∂Ω3 ∩Ω2 we prescribe
boundary condition of Robin type

q3 · n+ = q+
32 = σ+

3 (h+
3 − h2),

q3 · n− = q−32 = σ−3 (h−3 − h2),
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where q3 · n+/− [ms−1] is the outflow from Ω3, h
+/−
3 is a trace of the pressure head on

Ω3, h2 is the pressure head on Ω2, and σ
+/−
3 = σ32 [s−1] is the transition coefficient that

will be discussed later. On the other hand, the sum of the interchange fluxes q
+/−
32 forms

a volume source on Ω2. Therefore F2 [ms−1] on the right hand side of (2.5) is given by

F2 = δ2f2 + (q+
32 + q−32). (2.7)

The communication between Ω2 and Ω1 is similar. However, in the 3D ambient space,
an 1D channel can join multiple 2D fractures 1, . . . , n. Therefore, we have n independent
outflows from Ω2:

q2 · ni = qi21 = σi2(hi2 − h1),

where σi2 = δi2σ21 [ms−1] is the transition coefficient integrated over the width of the
fracture i. Sum of the fluxes forms part of F1 [m2s−1]

F1 = δ1f1 +
∑
i

qi21. (2.8)

The transition coefficients σ32 [s−1] and σ21 [s−1] are independent parameters in our
setting however in practice they should be related to the conductivity. According to [9]
one can use

σ31 =
2K2 : n2 ⊗ n2

δ2

, σ21 =
2K1 : ni

1 ⊗ ni
1

δ1

where n2 is normal to the fracture (sign doesn’t matter) and ni
1 is normal to the channel

that is tangential to the fracture i.

In order to obtain unique solution we have to prescribe boundary conditions. Currently
we support three basic types of boundary condition. Consider disjoint decomposition of
the boundary

∂Ωd = ΓDd ∩ ΓNd ∩ ΓRd

into Dirichlet, Neumann, and Robin parts. We prescribe

hd = hDd on ΓDd , (2.9)

qd · n = qNd on ΓNd , (2.10)

qd · n = σRd (hd − hRd ) on ΓRd . (2.11)

where hDd , hRd is the prescribed pressure head [m], which alternatively can be prescribed
through the piezometric head HD

d , HR
d respectively. qNd is the prescribed surface density

of the boundary outflow [m4−ds−1], and σRd is the transition coefficient [m3−ds−1]. The
problem is well posed only if there is Dirichlet or Robin boundary condition on every
component of the set Ω1 ∪ Ω2 ∪ Ω3 and σd > 0 for d = 2, 3.

For unsteady problems one has to specify initial condition in terms of initial pressure
head h0

d or initial piezometric head H0
d .

2.2 Transport of substances

Flow123d can simulate transport of substances dissolved in water. The transport mech-
anism is governed by the advection, and the hydrodynamic dispersion. Moreover the
substances can move between ground and fractures.
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In the domain Ωd of dimension d ∈ {1, 2, 3}, we consider a system of mass balance
equations in the following form:

δd∂t(ϑc
i) + div(qdc

i)− div(ϑδdDi∇ci) = F i
S + FC(ci) + FR(c1, . . . , cs). (2.12)

The principal unknown is the concentration ci [kgm−3] of a substance i ∈ {1, . . . , s},
which means weight of the substance in unit volume of the water. Other quantities are:

• ϑ [] is the porosity, i.e. fraction of space occupied by water and the total volume.

• The hydrodynamic dispersivity tensor Di [m2s−1] has the form

Di = Di
mτI + |v|

(
αiT I + (αiL − αiT )

v × v

|v|2

)
,

which represents (isotropic) molecular diffusion, and mechanical dispersion in lon-
gitudal and transversal direction to the flow. Here Di

m [m2s−1] is the molecular
diffusion coefficient of the i-th substance (usual magnitude in clear water is 10−9),
τ = ϑ1/3 is the tortuosity (by [10]), αiL [m] and αiT [m] is the longitudal dispersivity
and the transversal dispersivity, respectively. Finally, v [ms−1] is the microscopic
water velocity, related to the Darcy flux qd by the relation qd = ϑδdv. The value of
Di
m for specific substances can be found in literature (see e.g. [3]). For instructions

on how to determine αiL, αiT we refer to [4, 5].

• F i
S [kgm−ds−1] represents the density of concentration sources. Its form is:

F i
S = %iS + (ciS − ci)σS.

Here %iS [kgm−ds−1] is the density of concentration sources, ciS is an equilibrium
concentration and σiS is the concentration flux.

• FC(ci) [kgm−ds−1] is the density of concentration sources due to exchange between
regions with different dimensions, see (2.15) below.

• The reaction term FR(. . . ) [kgm−ds−1] is currently neglected.

Initial and boundary conditions. At time t = 0 the concentration is determined
by the initial condition

ci(0,x) = ci0(x).

The physical boundary ∂Ωd is decomposed into two parts:

ΓD(t) = {x ∈ ∂Ωd | q(t,x) · n(x) < 0},
ΓN(t) = {x ∈ ∂Ωd | q(t,x) · n(x) ≥ 0},

where n stands for the unit outward normal vector to ∂Ωd. On the inflow part ΓD, the
user must provide Dirichlet boundary condition for concentrations:

ci(t,x) = ciD(t,x) on ΓD(t),

while on ΓN we impose homogeneous Neumann boundary condition:

−ϑδdDi(t,x)∇ci(t,x) · n(x) = 0 on ΓN(t).
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Communication between dimensions. Transport of substances is considered also
on interfaces of physical domains with adjacent dimensions (i.e. 3D-2D and 2D-1D, but
not 3D-1D). Denoting cd+1, cd the concentration of a given substance in Ωd+1 and Ωd,
respectively, the comunication on the interface between Ωd+1 and Ωd is described by:

qc = δd+1σ
c(ϑd+1cd+1 − ϑdcd) +

{
qwcd+1 if qw ≥ 0,

qwcd if qw < 0,
(2.13)

where

• qc [kgm−ds−1] is the density of concentration flux from Ωd+1 to Ωd,

• σc [ms−1] is a transition parameter. Its nonzero value causes mass exchange be-
tween dimensions whenever the concentrations differ. It is recommended to set
either σc = 0 (exchange due to water flux only) or, similarly as in (2.1),

σc ≈ δd+1

δd
D : n⊗ n.

• qw [m3−ds−1] is the water flux from Ωd+1 to Ωd, i.e. qw = qd+1 · nd+1.

Equation (2.13) is incorporated as the total flux boundary condition for the problem on
Ωd+1 and a source term in Ωd:

−ϑδd+1D∇cd+1 · n + qwcd+1 = qc, (2.14)

F d
C = qc. (2.15)

Dual porosity Up to now we have described the transport equation for the single
porosity model. The dual porosity model splits the mass into to zones the mobile zone
and the immbile zone. Both occupy the same macroscopic volume, however on the
microscopic scale, the immobile zone is formed by the dead-end pores, where the liquid
is traped and can not pass through. The rest of the pore volume is ocuppied by the
mobile zone. Since the liquid in the immobile pores is immobile, the exchange of the
substance is only due to molecular diffusion. We consider simple nonequilibrium linear
model:

θm∂tcm = α(ci − cm), (2.16)

θi∂tci = α(cm − ci) (2.17)

where cm is the concentration in the mobile zone, ci is the concentration in the immobile
zone, α is a diffusion parameter, θm and θi are porosities of the mobile zone and the
immobile zone respectively, while

θm + θi = θ.

The solution of this system is:

cm(t) = (cm(0)− ca(0)) exp(−α(
1

θm
+

1

θi
)t) + ca(0), (2.18)

ci(t) = (ci(0)− ca(0)) exp(−α(
1

θm
+

1

θi
)t) + ca(0) (2.19)

where ca is weighted average:

ca =
θmcm + θici
θm + θi

.
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2.3 Equilibrial Adsorption

The simulation of monolayer, equilibrial adsorption is based on solution of the cou-
ple of equations representing mass balance law and empirical description of adsorption
represented by comon types of isotherm. Considered types of isotherm folows:

• Without adsorption, sorption type is ”none”.

• Linear isotherm cs = f(ca) = kl · ca, sorption type is ”linear”.

• Freundlichs’ isotherm cs = f(ca) = kF · cαa , sorption type is ”freundlich”.

• Langmuirs’ isotherm cs = f(ca) = kL · α·ca
1+α·ca , sorption type is ”langmuir”. Lang-

muirs isotherm has been derived form thermodynamic laws. kL denotes the maxi-
mal amount of sorbing specie which can be capt per unit volume of a bulk matrix.
Coefficient α is a fraction of adsorption and desorption rate constant α = ka

kd

Notification:

• Sorbed concentration [cs] = [n]
[mH ]

= N
M

= Mol
kg

, where mH is the mass of bulk and
n denotes amount of substance in an element.

• Aqueous concentration [ca] = [m]
[mw]

= M
M

= kg
kg

= 1, where mw is the mass of

water/solvent in element. Just water (ρw = 1 kg · l−1) is supposed to be solvent
in version 1.7.0.

• Multiplication parameters, ki, i ∈ {l, F, L}, mult coefs can have various physical
dimensions.

• Aditional parameters, [α] = 1, second params.

The mass balance equation can be derived from 2.20,

mTotal = maqueous +msorbed = ca · Velm · ρw · n+ cs ·Ms · Velm · ρH · (1− n) (2.20)

where ρw denotes solvent density solvent dens, ρH is the symbol for rock density,
Velm denotes element volume, n is the symbol for porosity, here, and Ms denotes
molar masses.

The equation 2.20 depends on volume of an element Velm. We devide both sides by Velm
to suppress this dependency and we get resulting mass balance equation 2.21.

konst.T = ka · ca + ks · cs
ka = ρw · n
ks = Ms · ρH · (1− n)

(2.21)

After the substitution |cs = f(ca)| we become the equation, which can be either solved
iteratively or aproximated through interpolation. This equation has following form.

konst.T = ka · ca + ks · f(ca) (2.22)

To solve the equation 2.22 iteratively, it is very important to define interval where to look
for solution (unknown ca). The lower bound is 0. Concentration can not reach negative
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values. The upper bound is derived using simple imagination. Lets suppose limmited
solubility of selected transported substance and lets denote the limmit climmita . We keep
the maximal ”total mass” konst.limitT = ka ·climmita +ks ·f(climmita ), but we dissolve all the
mass to get maximal cmaxa > climmita . That means cs = 0 for this moment. To understand
this step lets look at the figure 2.2. We can slightly enlarge the interval by setting the
upper bound equal to cmaxa + constsmall.

Figure 2.2: Sorption in combination with limmited solubility.

To approximate the equation 2.22 using interpolation we need to prepare the set of values
which represent [ca, f(ca)], with ca equidistantly distributed in transformed (rotated and
rescaled) coordination system at first. The approach for construction of interpolation
table follows.

1. Maximal ”total mass” konst.limitT = ka · climmita + ks · f(climmita ) is computed.

2. Total mass step is derived mass step = konst.limitT /n steps. n steps is equal to
substeps in con-file.

3. Appropriate cia = (mass step · i)/ka, i ∈ {0, . . . , n steps} are computed.

4. The equations ka · cia = ka · ca + ks · f(ca) i ∈ {0, . . . , n steps} are solved for ca
as unknown. The solution is the set of ordered couples (points) [cla, f(cla)], l ∈
{0, . . . , n steps}.

After computation of {[cla, f(cla)]} we transform these coordinates to the system where
total mass is independent variable. This is done by multiplication of precomputed points
using transformation matrix A.

−→c R = A · −→c[
cR,la

cR,ls

]
=

[
n · ρw Ms(1− n)ρH

−Ms(1− n)ρH n · ρw

]
·
[
cla
cls

]
l ∈ {0, . . . , n steps}

(2.23)

The values cR,la are equidistantly distributed and there is no reason to save them, but
the values cR,ls are stored in onedimensional interpolation table.

Once we have the interpolation table, we can use it for projection of [ca, cs] transport
results on the isotherm under concideration. The approach look as folows.
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1. Achieved concentrations are transformed to the coordination system through mul-
tiplication with the matrix A, see 2.23.

2. Transrformed values are interpolated.

3. The result of interpolation is transformed back. The backward transformation con-
sist of multiplication with AT which is followed by rescaling the result. Rescaling
the result is neccessery because A is not orthonormal as it is shown bellow.

AT ·A = ((n− 1)2 ·M2
s · ρ2

h + n2 · ρ2
w) ·

[
1 0
0 1

]

2.3.1 Limmited Solubility

When ka·ca+ks·f(ca) > ka·climmita +ks·f(climmita ) neither iterative solver nor interpolation
table is used. The aqueous concentration is set to be climmita and sorbed concentration
is computed cs = (ka · ca + ks · f(ca)− ka · climmita )/ks.
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Chapter 3

Numerical methods

In this chapter we briefly describe numerical methods used in Flow123d for solution of
physical models presented in Chapter 2. For the steady or unsteady Darcy flow we use
mixed-hybrid discretization using Raviart-Thomas finite elements described in details
in Section 3.1. For the numerical approximation of the advection-dispersion equation
(2.12) we distinguish whether the dispersion D is present or not. Since the true solution
has qualitatively different properties, we also choose different numerical methods for
each case. For purely advection problems (i.e. without dispersion term) one can use
finite volume method with up–winding and explicit Euler method fully described in
Section 3.2. For problems with dispersion term (even advection dominated) we provides
implicit discontinuous Galerkin method covered in Section 3.3.

3.1 Mixed-Hybrid method for Darcy flow (TO BE

DONE)

Based on publications: [1], [12], [13], [11], [14], [8], [2]

3.2 Pure advection (NEEDS ACTUALIZATION)

3.2.1 Advection-Diffusion equation

Solute transport is governed by advection equation which can be written in the form

∂c

∂t
+ v

∂c

∂x
= 0, (3.1)

where c is concentration [M3 ·L−3], t is time [T ], v is velocity [L·T−1], and x is coordinate
in cartesian system [L]. Assuming solution which is constant on every element (cell
centered finite volume method) and integrating equation (3.1) we get∫

ei

∂c

∂t
dV +

∫
ei

v
∂c

∂x
dV = 0.
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After some rearrangements we obtain on i-th element (ei)

∂ci
∂t
Vi + c

∫
∂ei

v dS = 0, (3.2)

where ci is average concentration in ei and Vi its volume, c will be specified later (there
are two main possibilities - ci or concentration from neighbouring element). Term ∂c

∂t
we

approximate by explicit Euler difference

∂c

∂t
≈ cn+1

i − cni
∆t

. (3.3)

Where ∆t is a time step and upper index at ci means values in the discrete time steps
n + 1 and n. We assume that all elements have piecewise smooth element boudary ∂e
with outwards directed normal. Inside the area Ω we introduce internal flows. With
respect to ei, we define internal flow intake U−ij (from element ej) and internal flow drain
U+
ij (to element ej) as follows

U−ij = min(

∫
∂ei∩∂ej ,i 6=j

v dS, 0),

U+
ij = max(

∫
∂ei∩∂ej ,i 6=j

v dS, 0). (3.4)

Those flows realizes solute transport in the area Ω. On the ∂Ω we define external flows
which will be important for transport Dirichlet boundary conditions. In the same way
as for internal flows we assume (with respect to element ei) external flow intake U e−

ij

(from ∂Ω) and external flow drain U e+
ij (to ∂Ω).

U e−
ik = min(

∫
∂ei∩∂Ω

v dS, 0),

U e+
ik = max(

∫
∂ei∩∂Ω

v dS, 0). (3.5)

Direction of the velocity v, which affects sign of the U -terms is significant for the con-
struction solution. For the solution stability it is suitable to use an upwind scheme,
which can by written for finite difference on simple 1D geometry in the form

v > 0 :
∂c

∂x
≈
cni − cni−1

∆x
,

v < 0 :
∂c

∂x
≈
cni+1 − cni

∆x
. (3.6)

This scheme can be interpreted as well as in finite volume method - in convection
term one can get c value opposite the flow of the quantity v direction. For every ei
we introduce itemsets Ni,Bi which contains indexes of neighbourging elements, local
boundary conditions respectivelly. Assuming upwind scheme, using (3.4), (3.5), and
(3.3) we can write solution of the equation (3.2) (relation between two consecutive time
steps) on ei in the form

cn+1
i = cni −

∆t

Vi

[∑
j∈Ni

[
U+
ij ci + U−ij cj

]
+
∑
k∈Bi

[
U e+
ik ci + U e−

ik cBik

]]
. (3.7)
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Where cBik
are values of Dirichlet boundary conditions which belong to ei. Formula

(3.7) can be rewritten into the matrix notation

cn+1 = (I + ∆tA) · cn + ∆tB · cB
n (3.8)

Where c is vector of cn+1
i , A is a square matrix composed from

U+
ij

Vi
,
U−
ij

Vi
, and

Ue+
ij

Vi
. B is in

general rectangular matrix composed from
Ue−
ij

Vi
and cB

n is vector of Dirichlet boundary
conditions.matrix definition. There is one stability condition for time step which is
called Courant-Friedrich-Levy condition. For the problem without sources/sinks it can
be written as

∆tmax = min
i

 Vi∑
j

U+
ij +

∑
k

U e+
ik

 = min
i

 Vi∑
j

|U−ij |+
∑
k

|U e−
ik |

 . (3.9)

This condition has a physical interpretation, which can be understood as conservation
law - volume that intakes/drains to/from element ei can not be higher then element
volume Vi. From algebraical point of view this condition can be seen as a condition
which bounds norm of the evolution operator as follows

‖I + ∆tA ∆tB‖ ≤ 1. (3.10)

3.2.2 Generalization

This approach can be used as well as for more general element connections – for
compatible/non-compatible element interconnection, if we know the flow integral values
(U+

ij or U−ij ). The most general case of connection is relation among n elements like

i j
k

Figure 3.1: Edge with 3 elements

in figure (3.1). For this case we define edge element indexset Gl that contains all the
indexes of elements which sides make l-th edge (gl), so that Gl = {i, j, k}. For Gl we
introduce its subsets Gij, Gji, Gik, Gki, Gkj, and Gjk, where Gij = Gik = Gl\i = {j, k},
Gji = Gjk = Gl\j = {i, k}, and Gki = Gkj = Gl\k = {i, j}. It can be written in the same
way for any edge g with more than 3 elements, it is hold |Gg| − 1 = |Gab|;∀a, b ∈ Gg. For
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l-th edge (gl) we can define total edge flow Ugl eg. as

Ugl =
∑
m∈Gji

[
U+
mj +

U+
jm

|Gji|

]
=
∑
m∈Gjk

[
U+
mj +

U+
jm

|Gjk|

]

=
∑
m∈Gij

[
U+
mi +

U+
im

|Gij|

]
=
∑
m∈Gik

[
U+
mi +

U+
im

|Gik|

]

=
∑
m∈Gki

[
U+
mk +

U+
km

|Gki|

]
=
∑
m∈Gkj

[
U+
mk +

U+
km

|Gkj|

]
, (3.11)

Ugl with respect to any em; m ∈ Gl has to have the same value because continuity
equation, for assumed incompresible flow, has to be fulfilled in every edge. Edges with
more than two elements and two and more nonzero intakes to edge realize an ideal
mixing (to an average concentration) with weights which will be specified later. This
fact modifies equation (3.7) on the general mesh into the form

cn+1
i = cni −

∆t

Vi

∑
j∈Ni

U+
ij ci +

U−ij∑
k∈Gij

[
U+
ki +

U+
ik

|Gij |

] ∑
k∈Gij

U+
kick

+
∑
k∈Bi

[
U e+
ik ci + U e−

ik cBik

] .
(3.12)

The edges with total edge flow Ugl = 0 can occur breakdown in the equation (3.12)

via term
∑
k∈Gij

[
U+
ki +

U+
ik

|Gij |

]
= 0. This fact implies as well as numerator U−ij = 0. In

order to avoid dividing by zero we have to assume computation only for nonzero flows.
Concentrations ck, k ∈ Gij that may intakes into element ei are weighted with weights

αk =
U+
ki∑

k∈Gij

[
U+
ki +

U+
ik

|Gij |

] , (3.13)

so that the ideal mixing in this edge leads to the average concentration

cav =

∑
k∈Gij

U+
kick∑

k∈Gij

[
U+
ki +

U+
ik

|Gij |

] . (3.14)

Matrix notation is the same as in (3.8). Finally ...

3.3 Advection with dispersion

For the general case we use the discontinuous Galerkin space approximation described
in [7] and implicit Euler time discretization. Let τ , h be the time step and the space
discretization parameter, respectively. We assume that T dh is a regular partition of the
domain Ωd into simplices, d = 1, 2, 3. We define the set Edh of all edges of elements in Th
(triangles for d = 3, line segments for d = 2 and points for d = 1). Further, Edh,I , Edh,B
will stand for interior and boundary edges, respectively, Edh,D(t) for edges that coincide

with ΓdD(t) and Edh,C for edges on interface with Ωd−1.
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Let us fix one substance and the space dimension d. At each time instant tk = kτ we
search for the concentration field ch,kd ∈ V h

d , where

V h
d = {v : Ωd → R | v|T ∈ P1(T ) ∀T ∈ T dh }

is the space of functions piecewise affine on the elements of T dh , possibly discontinuous
across the element interfaces. The initial concentration ch,0d is set to the projection of
the initial data c0 onto V h

d . For k = 1, 2, . . ., the discrete problem reads:(
δdϑ

ch,kd − c
h,k−1
d

τ
, v

)
Ωd

+ ah,kd (ch,kd , v) = bh,kd (v) ∀v ∈ V h
d .

Here (f, g)Ωd =
∫

Ωd fg, ch,k−1
d is the solution from the previous time step and the forms

ah,kd , bh,kd are defined as follows:

ah,kd (u, v) =
(
δdϑD∇u,∇v

)
Ωd − (qu,∇v)Ωd

−
∑
E∈Edh,I

(({
δdϑD∇u

}
ω
· n, [v]

)
E

+ θ
({
δdϑD∇v

}
ω
· n, [u]

)
E

)
+
∑
E∈Edh,I

(q · n {u} , [v])E +
∑

E∈Edh,B

(q · nu, v)E

+
∑
E∈Edh,I

γE ([u], [v])E +
∑

E∈Edh,D(tk)

γE (u, v)E ,

bh,kd (v) =
∑

E∈Edh,D(tk)

γE (cD, v)E .

For an interior edge E we denote by T−(E) and T+(E) the elements sharing E. By
n we mean the unit normal vector to E pointing from T−(E) towards T+(E), the
inter-element jump is defined as [f ] = f|T−(E) − f|T+(E), {f} = 1

2
(f|T−(E) + f|T+(E)) and

{f}ω = ωf|T−(E) +(1−ω)f|T+(E) denotes the usual and weighted average of the quantity
f . The weight ω is chosen in a specific way (see [7] for details) taking into account
possible inhomogeneity of D. The stabilization parameter γE > 0 is user dependent; its
value affects the inter-element jumps of the solution. The constant θ can take the value
−1, 0 or 1, which corresponds to the nonsymmetric, incomplete and symmetric variant
of the interior penalty DG method.

In case that lower dimensional domains (Ω1, Ω2) have complex topology, e.g. if there
are more triangles sharing one line segment, then we consider ideal mixing, i.e. the
concentration entering the edge through every inlet element (q points out of this element)
is divided among all outlet elements proportionally to their fluxes.

If there are interfaces between adjacent dimensions, then the following terms are added
to the bilinear forms:

ah,kd+1,C((ud+1, ud), vd+1)

=
∑

E∈Ed+1
h,C

(
δd+1σ

c(ϑd+1ud+1 − ϑdud) + (q · n)+ud+1 − (q · n)−ud, vd+1

)
E
,
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ah,kd,C((ud+1, ud), vd)

= −
∑

E∈Ed+1
h,C

(
δd+1σ

c(ϑd+1ud+1 − ϑdud) + (q · n)+ud+1 − (q · n)−ud, vd
)
E
.

Here f+ = max{0, f} and f− = −min{0, f} is the positive, negative part, respectively
and E4

h,C = E1
h,C = ∅.

A priori error estimates for the equation in a single domain are done in [7], for a posteriori
estimates see [6].

28



Chapter 4

File formats

4.1 Main input file (CON file format)

In this section, we shall describe structure of the main input file that is given through
the parameter -s on the command line. The file formats of other files that are referenced
from the main input file and used for input of the mesh or large field data (e.g. the GMSH
file format) are described in following sections. The input subsystem was designed
with the aim to provide uniform initialization of C++ classes and data structures. Its
structure is depicted on Figure 4.1. The structure of the input is described by the Input
Types Tree (ITT) of (usually static) objects which follows the structure of the classes.
The data from an input file are read by apropriate reader, their structure is checked
against ITT and they are pushed into the Internal Storage Buffer (ISB). An accessor
object to the root data record is the result of the file reading. The data can be retrieved
through accessors which combine raw data stored in in IBS with their meaning described
in ITT. ITT can be printed out in various formats providing description of the input
structure both for humans and other software.

Currently, the JSON input file format is only implemented and in fact it is slight ex-
tension of the JSON file format. On the other hand the data for initialization of the
C++ data structures are coded in particular way. Combination of this extension and
restriction of the JSON file format produce what we call CON (C++ object notation)
file format.

4.1.1 JSON for humans

Basic syntax of the CON file is very close to the JSON file format with only few exten-
sions, namely:

• You can use C++ (or JavaScript) comments. One line comments // and multi-line
comments /* */.

• The quoting of the keys is optional if they do not contain spaces (holds for all
CON keys).

• You can use equality sign = instead of colon : for separation of keys and values in
JSON objects.
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Figure 4.1: Sturucture of the input subsystem. Grey boxes are not implemented yet.

• You can use any whitespace to separate tokens in JSON object or JSON array.

The aim of these extensions is to simplify writing input files manually. However these
extensions can be easily filtered out and converted to the generic JSON format. For the
description of the JSON format we refer to http://www.json.org/.

4.1.2 CON constructs

The CON file format constructs are designed for initialization of C++ strongly typed
variables. The primitive data types can be initialized from the primitive CON constructs:

• Bool — initialized from the JSON keywords true and false.

• Double, Integer — initialized from JSON numeric data.

• String, FileName, Selections — initialized from JSON strings

Selections are typed like the C++ enum types that are initialized from them. Various
kind of containers can be initialized by the Array construct, that is an JSON array with
elements of the same CON type. The C++ structures and classes can be initialize from
the Record construct, which is represented by a JSON object. However, in constrast
to JSON, these Records have different types in similar way as the strong typed C++
structures. The types are described by ITT of the particular program which can be
printed out in several formats, in particular description of ITT for Flow123d forms
content of Chapter 8. In order to allow certain kind of polymorphism, we introduce also
the AbstractRecord construct, where the type of the record is not given by ITT but can
be chosen as part of the input.
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4.1.3 CON special keys

All keys in Records should be in lower case, possibly using digits and underscore. The
keys all in upper case are reserved for special function in the CON file. These are:

TYPE key :

TYPE=<Selection of AbstractRecord>

Is used to specify particular type of an AbstractRecord. This way you can choose
which particular implementation of an abstract C++ class should be instantiated.
The value of the key is a string from the Selection that consists of names of Records
that was declared as descendants of the AbstractRecord.

REF key :

{ REF=<address> }

The record in input file that contains only the key REF is replaced by the JSON
entity that is referenced by the <address>. The address is a string with format
similar to UNIX path, i.e. with grammar

<address> = <address> / <item>

= <item>

= <null>

<item> = <index>

= <key>

= ..

where index is non-negative integer and key is valid CON record key (lowercase,
digits, underscores). The address can be absolute or relative identification of an
entity. The relative address is relative to the entity in which the reference record
is contained. One can use two dots ".." to move to parent entity.

Example:

mesh={

file_name="xyz"

}

array=[

{x=1 y=0}

{x=2 y=0}

{x=3 y=0}

]

outer_record={

output_file="x_out"

inner_record={

output_file={REF="../output_file"} // value "x_out"

}

x={REF="/array/2/x"} // value "3"

f_name={REF="/mesh/file_name"} // value "xyz"

}
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4.1.4 Record types

A Record type is given by the set of key specifications, which in turn consist from: key
name, type of value and default value specification. Default value specification can be:

obligatory — means no default value, which has to be specified at input.

optional — means no default value, but value is needs not to be specified. Unspecified
value usually means that you turn off some functionality.

default at declaration — the default value is explicitly given in declaration and is
automatically provided by the input subsystem if needed

default at read time — the default value is provided at read time, usually from some
other variable. In the documentation, there is only textual description where the
default value comes from.

Implicit creation of composed entities

Consider a Record type in which all keys have default values (possibly except one).
Then the specification of the Record can contain a key for default construction. User
can specify only the value of this particular key instead of the whole record, all other
keys are initialized from its default values. Moreover, an AbstractRecord type may have
a default value for the TYPE key. This allows to express simple tasks by simple inputs
but still make complex inputs possible. Similar functionality holds for arrays. If the
user sets a non-array value where an array is expected the reader provides an array with
a unique element holding the given value.

4.2 Important Record types of Flow123d input

4.2.1 Mesh record

The mesh record provides initialization for the computational mesh consisting of points,
lines, triangles and tetrahedrons in 3D space. Currently, we support only GMSH mesh
file format MSH ASCII. The input file is provided by the key mesh file. The file format
allows to group elements into regions identified either by ID number or by string label.
The regions with labels starting with the dot character are treated as boundary regions.
Their elements are removed from the computational domain, however they can be used
to specify boundary conditions. Other regions are called bulk regions. User can create
new labeled regions through the key regions, the new region can be specified either by
its ID or by list of IDs of its elements. The latter possibility overrides original region
assigned to the elements, which can be useful for specification of small areas “ad hoc”.
The key sets allows specification of sets of regions in terms of list of region IDs or labels
and basic set operations. The difference between regions and sets is that regions form
disjoint covering of elements, the sets, however, may overlap. There are three predefined
region sets: “ALL”, “BOUNDARY”, “BULK”.
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4.2.2 Field records

A general time and space dependent, scalar, vector, or tensor valued function can be
specified through the family of abstract records Field Rm− > S, where m is currently
always m = 3 and S is a specification of the target space, which can be:

• T — scalar valued field, with scalars of type T

• T [d] — vector valued field, with vector of fixed size d and elements of type T

• T [n] — vector valued field, with vector of variable size (given by some input) and
elements of type T

• T [d, d] — tensor valued field, with square tensor of fixed size and elements of type
T

the scalar types can be

• Real — scalar real valued field

• Int — scalar integer valued field

• Enum — scalar non negative integer valued field, should be convertible to appro-
priate C++ enum type

Each of these abstract record has the same set of descendants which implement various
algorithms to specify and compute values of the field. These are

FieldConstant — field that is constant in space

FieldFormula — field that is given by runtime parsed formula using x, y, z, t coordi-
nates. The Function Parser library is used with syntax rules described here.

FieldPython — field can be implemented by Python script either specified by string
(key script string) or in external file (key script file.

FieldElementwise — discrete field, currently only piecewise constant field on elements
is supported, the field can given by the MSH ASCII file specified in key gmsh file

and field name in the file given by key field name. The file must contain same
mesh as is used for computation.

FieldInterpolated — allows interpolation between different meshes. Not yet fully
supported.

Several automatic conversions are implemented. Scalar values can be used to set con-
stant vectors or tensors. Vector value of size d can be used to set diagonal tensor d× d.
Vector value of size d(d − 1)/2, e.g. 6 for d = 3, can be used to set symmetric ten-
sor. These rules apply only for FieldConstant and FieldFormula. Moreover, all Field
abstract types have default value TYPE=FieldConstant. Thus you can just use the
constant value instead of the whole record.

Examples:
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constant_scalar_function = 1.0

// is same as

constant_scalar_function = {

TYPE=FieldConstant,

value=1.0

}

conductivity_tensor = [1 ,2, 3]

// is same as

conductivity_tensor = {

TYPE=FieldConstant,

value=[[1,0,0],[0,2,0],[0,0,3]]

}

concentration = {

TYPE=FieldFormula,

value="x+y+z"

}

//is same as (provided the vector has 2 elements)

concentration = {

TYPE=FieldFormula,

value=["x+y+z", "x+y+z"]

}

4.2.3 Field data for equations

Every equation record has keys bulk_data and bc_data. Both have the same structure,
however, the first one is intended to set the bulk fields (on bulk regions) while the
second serves for initialization of the boundary fields (on boundary regions). These keys
contains an array of region-time initialization records like the BulkData record of the
DarcyFlow equation. Every such record specify fields on particular region (keys region
and rid ) or on a region set (key r set) starting from the time specified by the key
time. The array is processed sequentially and latter values overwrites the previous ones.
Times should form a non-decreasing sequence.

Example:

bulk_data = [

{ // time=0.0 - default value

r_set="BULK"

conductivity=1 // setting the conductivity field on all regions

}

{

region="2d_part"

conductivity=2 // overwriting the previous value

}

{ time=1.0

region="2d_part"

conductivity={
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// from time=1.0 we switch to the linear function in time

TYPE=FieldFormula

value="2+t"

}

}

{ time=2.0

region="2d_part"

conductivity={

// from time=2.0 we switch to elementwise field, but only

// on the region "2d_part"

TYPE=FieldElementwise

gmsh_file="./input/data.msh"

field_name="conductivity"

}

}

]

4.3 Mesh and data file format MSH ASCII

Currently, the only supported format for the computational mesh is MSH ASCII format
used by the GMSH software. You can find its documentation on:

http://geuz.org/gmsh/doc/texinfo/gmsh.html#MSH-ASCII-file-format

The scheme of the file is as follows:

$MeshFormat

<format version>

$EndMeshFormat

$PhysicalNames

<number of items>

<dimension> <region ID> <region label>

...

$EndPhysicalNames

$Nodes

<number of nodes>

<node ID> <X coord> <Y coord> <Z coord>

...

$EndNodes

$Elements

<number of elements>

<element ID> <element shape> <n of tags> <tags> <nodes>

...

$EndElements

$ElementData
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<n of string tags>

<field name>

<interpolation scheme>

<n of double tags>

<time>

<n of integer tags>

<time step index>

<n of components>

<n of items>

<partition index>

<element ID> <component 1> <component 2> ...

...

$EndElementData

Detailed description of individual sections:

PhysicalNames : Assign labels to region IDs. Elements of one region should have
common dimension. Flow123d interprets regions with labels starting with period
as the boundary elements that are not used for calculations.

Nodes : <number of nodes> is also number of data lines that follows. Node IDs are
unique but need not to form an aritmetic sequance. Coordinates are float numbers.

Elements : Element IDs are unique but need not to form an aritmetic sequence. Integer
code <element shape> represents the shape of element, we support only points
(15), lines (1), triangles (2), and tetrahedrons (4). Default number of tags is 3.
The first is the region ID, the second is ID of the geometrical entity (that was
used in original geometry file from which the mesh was generated), and the third
tag is the partition number. nodes is list of node IDs with size according to the
element shape.

ElementData : The header has 2 string tags, 1 double tag, and 4 integer tags with de-
fault meaning. For the purpose of the FieldElementwise the tags <field name>,
<n of components>, and <n of items> are obligatory. This header is folowed by
field data on individual elements. Flow123d assumes that elements are sorted by
element ID, but doesn’t need to form a continuos sequence.

4.4 Output files

Flow123d support output of scalar and vector data fields into two formats. The first is
the native format of the GMSH software (usually with extension msh) which contains
computational mesh followed by data fields for sequence of time levels. The second is
the XML version of VTK files. These files can be viewed and post-processed by several
visualization softwares. However, our primal goal is to support data transfer into the
Paraview visualization software. See key format.

4.4.1 Output data fields of water flow module

Water flow module provides output of four data fields.
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pressure on elements Pressure head in length units [L] piecewise constant on every
element. This field is directly produced by the MH method and thus contains no
postprocessing error.

pressure in nodes Same pressure head field, but interpolated into P1 continuous
scalar field. Namely you lost dicontinuities on fractures.

velocity on elements Vector field of water flux volume unit per time unit [L3/T ]. For
every element we evaluate discrete flux field in barycenter.

piezometric head on elements Piezometric head in length units [L] piecewise con-
stant on every element. This is just pressure on element plus z-coordinate of the
barycenter. This field is produced only on demand (see key piezo head p0).

4.4.2 Output data fields of transport

Transport module provides output only for concentrations (in mobile phase) as a field
piecewise constant over elements. There is one field for every substance and names of
those fields contain names of substances given by key substances. The physical unit is
mass unit over volume unit [M/L3].

4.4.3 Auxiliary output files

Profiling information

On every run we collect some basic profiling informations. After all computations these
data are written into the file profiler%y%m%d_%H.%M.%S.out where %y, %m, %d, %H, %M,
%S are two digit numbers representing year, month, day, hour, minute, and second of
the program start time.

Water flux information

File contains water flow balance, total inflow and outflow over boundary segments.
Further there is total water income due to sources (if they are present).

Raw water flow data file

You can force Flow123d to write raw data about results of MH method. The file format
is:

$FlowField

T=<time>

<number fo elements>

<eid> <pressure> <flux x> <flux y> <flux z> <number of sides> <pressures on sides> <fluxes on sides>

...

$EndFlowField

where
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<time> — is simulation time of the raw output.

<number of elements> — is number of elements in mesh, which is same as number
of subsequent lines.

<eid> — element id same as in the input mesh.

<flux x,y,z> — components of water flux interpolated to barycenter of the element

<number of sides> — number of sides of the element, infulence number of remaining
values

<pressures on sides> — for every side average of the pressure over the side

<fluxes on sides> — for ever side total flux through the side
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Chapter 5

Test and tutorial problems (WORK
IN PROGRES)
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Chapter 6

Units

Quantity Unit
lenght L
time T
conductivity
concentration
diffusivity

Table 6.1: The table of units used in the document.
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Chapter 7

Tests

7.1 Test 01 – Steady flow

This test considers steady Darcy flow in a cube domain which is cutted by 2D fractures
which are further separated by a 1D channel in their cross section. The multidimensional
connections between 1D, 2D and 3D elements are involved in the computation. Dirichlet
boundary condition is prescribed for flow.

• problem type – sequential coupling,

• primary equation – steady mixed hybrid

Geometry and boundary conditions

A cube with its side 1.0 L is cutted by two diagonal 2D fractures which are further
separated by a 1D channel in their cross section.

Geometry parameters are defined for different physical domains. Thickness of the 2D
fractures is set to 1.0 L and the area of the cross section is set to 1.0 L2. These parameters
are unrealistic (the side of the cube is 1.0 L long) but it is compensated in the equation
in the fraction with conductivity.

There are only simple Dirichlet boundary conditions. Pressure gradient in direction
from one corner of the cube to the oposite corner is applied on all boundary faces of all
dimensions.

Parameters

• Cross section area: 1D channel is set to 1.0 L2.

• Thickness: 2D fractures are set to 1.0 L.

• Conductivity: The conductivity of materials:

– 1D channel is set to K = 10.

– 2D fractures are set to K =

(
1 0
0 1

)
.
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Figure 7.1: Test 01 – mesh

– cube material is set to K =

 0.1 0 0
0 0.1 0
0 0 0.1

.

• There is no transport so there are not any other parameters.

Verification

This test verifies solving steady Darcy flow by mixed hybrid method. There are different
dimensional connections which are 2D-3D connection between the cube and the flat
fractures and 1D-2D connection between the 1D channel and the two flat fractures in
their crossection.

7.2 Test 02 – Steady flow in 2D and transport

This test involves steady Darcy flow in 2D, connections of 1D-2D elements, Dirichlet
boundary condition for flow and transport, transport of two substances with zero initial
condition for concentration. There are acutally two different cases computed in this
test. Dual porosity and sorption features in explicit transport. Dispersion is defined in
implicit transport.

The coefficient of diffusive transfer through a fracture (means between the fracture and
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the surrounding material) is set to zero so the substance cannot be diffused through the
fracture’s boundary.

• problem type – sequential coupling,

• primary equation – steady mixed hybrid

• secondary equation – transport operator splitting (explicit), discontinuous Galerkin
method (implicit)

Geometry and boundary conditions

The domain is two-dimensional slice through a part of a relief which involves several
one-dimensional fractures.

Simple Dirichlet flow boundary condition is defined on left and right side where pressure
heads are prescribed. There is no flow through the upper and lower boundary of the
model. This all causes a flow along the x axis.

Dirichlet boundary condition for transport is prescribed on both sides as it is for flow
boundary condition and the value of concentration is 1.0 for both substances. Initial
concentration of the substances is zero in the whole area.

0 3.19 6.38 9.56 12.8

0.75

2.56

4.38

6.19

8

X

Y

Z

Figure 7.2: Test 02 – mesh

Parameters

The flow is steady and the transport is solved in time interval (0, 5.0). The output is
written every 0.5. Time parameters for implicitly computed transport are the same only
initial time step is set to 0.5.
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• Cross section area: 1D fractures are set to 1.0 L2.

• Thickness: domain is set to 1.0 L.

• Conductivity: The conductivity of materials:

– fracture material is set to K = 10.

– plane material is set to K =

(
1 0
0 1

)
.

• Sorption: The sorption parameters are for both materials equal:

– linear sorption isotherm parameter of the first substance is set to kd = 0.02.

– Freundlich sorption isotherm parameters of the second substance are set to
kf = 0.02, α = 0.5

• Dual porosity: The dual porosity parameters are for both materials equal:

– mobile porosity coefficient is set to 0.25

– immobile porosity coefficient is set to 0.25

– nonequilibrium coefficient of both substances 0.01

• Sorption fraction: The sorption fraction parameters are for both materials equal
and set to SF = 0.5.

• Diffusivity coefficients: These are not set so default values are applied σ = 0,
αl = 0, αt = 0, dm = 1e− 6.

Verification

This test verifies explicitly computed transport considering only convection with dual
porosity and sorption and implicitly computed transport considering both convection
and dispersion. Transport through 1D-2D element connections is computed in addition
to the first test.

7.3 Test 03 – Steady flow in 2D and transport

This test differs from the previous one only by simpler structure of its geometry. It
shows how the substace flows in the main fracture and divides in two other fractures.
The substance spreads in the fractures much faster in comparision to transport in the
plane.

Geometry and boundary conditions

There is a plane with side 1.0 which is cutted by fractures. The main fracture divides
in two other fractures.
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Parameters

The flow is steady and the transport is solved in time interval (0, 1.0). The output is
written every 0.01. Initial time step for transport computed implicitly is set to 0.1 and
the output is written every 0.1.

Other parameters are the same as in test 02.

Verification

This test verifies the same features as the test 02 does but on a simpler geometry.

7.4 Test 05 – Darcy flow boundary conditions

There are three types of boundary conditions – Dirichlet, Neumann and Robin that are
tested. All three test have the same geometry and boundary conditions are derived from
the same analytical solution.

We will prescribe analytical solution u = xy of Laplace equation −∆u = 0.

• problem type – sequential coupling,

• primary equation – steady mixed hybrid

Geometry and boundary conditions

The geometry is simple – square plane in xy coordinates with corner points [0,0] and
[1,1]. Each side has its own boundary regions called .bc_south, .bc_east, .bc_north,
.bc_west.

Dirichlet test. All sides have pressure prescribed. These are south: uD = 0; east:
uD = y; north: uD = x; west: uD = 0.

Neumann test. Two sides have pressure prescribed for the Dirichlet boundary condi-
tion: east: uD = y; west: uD = 0. Two other sides have flux prescribed: south: qN = x;
north qN = −x.

Robin test. Two sides have pressure prescribed for the Dirichlet boundary condition:
east: uD = y; west: uD = 0. For Robin boundary condition we get from the equation
boundary pressure

uR =
1 + σR
σR

x. (7.1)

We choose σR = 0.5 and then we get uR = −2x on the south side and uR = 3x on the
north side.

Parameters

• Conductivity: on region plane is 1.0.
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• Thickness: on region plane is by default 1.0 L.

• There are no other regions, no transport so there are not any other parameters.

Verification

This test verifies prescribing different types boundary conditions.

7.5 Test 06 – Coupling between dimensions in Darcy

flow

There are two tests – flow_32d.con for compatible coupling between 3D-2D and flow_21d.con

for compatible coupling between 2D-1D.

• problem type – sequential coupling,

• primary equation – steady mixed hybrid

We will discuss both the geometry and parameters at once.

3D-2D. There is a cube with vertices [0,0,0] [-1,-1,-1] which couples with a 2D crack
in the bottom (i.e. z = −1). We consider solution of the piezometric head in the
cube p3(x, y, z) = z. We will use it to prescribe Dirichlet boundary condition on the
non-coupling parts of the cube. There are no sources of a flow in the cube. We can
write the outflow through the bottom of the cube in following term q32 = q3 · n =
(−K3∇p3(x, y,−1)) · n, where n = (0, 0,−1). To obtain Laplace equation with zero
right hand side on the 2D crack, we prescribe a new source term (7.2) that eliminates
the inflow coming from the cube.

F2 = δ2f2 + q32 = 0

f2(x, y) = −q32

δ2

. (7.2)

When δ2 = 10, K3 = 2 are choosed then the source term is equal f2 = −0.2. Homogenous
Neumann condition is prescribed on the boundary of the fraction (zero outflow and
inflow).

From the flow coupling equation we can get the pressure (7.3) on the crack which we
can verify.

σ32(p3(x, y,−1)− p2(x, y)) = q32

p2(x, y) = − q32

σ32

+ p3(x, y,−1). (7.3)

When σ = 1 is set then the pressure in the crack is constant and equal p2(x, y) = −3.

2D-1D. The other tests geometry consists of a 2D crack in xy plane with vertices [0,0]
[1,1] and a 1D channel coupling with the crack on the left side (x = 0). Everything is then
analogical to the first test. We consider solution of the pressure in the crack p2(x, y) = x.
We will use it to prescribe Dirichlet boundary condition on the non-coupling parts of
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the crack. There are no sources of a flow in the crack. We can write the outflow through
the left side of the crack in following term q21 = q2 · n = (−δ2K2∇p2(0, y)) · n, where
n = (−1, 0). To obtain Laplace equation with zero right hand side on the channel, we
prescribe a new source term (7.4) that eliminates the inflow coming from the crack.

F1 = δ1f1 + q21 = 0

f1(x, y) = −q21

δ1

. (7.4)

When δ1 = 20, δ2 = 10 and K2 = 5 are choosed then the source term is equal f2 = −2.5.
Homogenous Neumann condition is prescribed on the boundary of the fraction (zero
outflow and inflow).

From the flow coupling equation we can get the pressure (7.5) on the plane which we
can verify.

δ2σ21(p2(0, y)− p2(y)) = q21

p1(y) = − q21

δ2σ21

+ p2(0, y). (7.5)

When σ21 = 1 is set then the pressure in the crack is constant and equal p1(y) = −2.5.

Verification

This test verifies correct communication between dimensions 3D-2D and 2D-1D in com-
patible coupling. We can also observe the results in the water_balance file. We should
see that all the inflow to the cube should be fully compensated by the negative source.
Homogenous Neumann boundary condition is prescribed on the crack so there should
be no outflow or inflow through the boundary of the crack. The situation in the second
test is similar. The inflow to the crack should be fully compensated by the negative
source in the channel which should have no other inflow or outflow.

7.6 Test 08 – Steady Darcy flow with source

This test is aimed at verifying steady Darcy flow with source which is prescribed by
space function formula. This formula is processed by the function parser.

We will solve Laplace equation −∆u = f where source f is prescribed by function:
f = 2(1− y2) + 2(1− x2).

We can easily prove that the analytic solution is u = (1− x2)(1− y2) by replacing it in
the Laplace equation.

• problem type – sequential coupling,

• primary equation – steady mixed hybrid

Geometry and boundary conditions

The domain is a square with opposite vertices [−1,−1] and [1, 1]. Zero dirichlet bound-
ary condition is prescribed on all boundaries – along the circumference of the square.
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Parameters

• Conductivity: The conductivity of plane material is 1.0.

• There are no other materials, no transport so there are not any other parameters.

Verification

As it was mentioned above, this test mainly verifies that the function parser works
properly. The source formula to be parsed is given in the key source_formula. The
solution (pressure) is a paraboloid with a top in [0, 0, 1].

7.7 Test 10 – Unsteady flow in 2D

Unsteady flow in 2D domain is simulated in this test and is computed by both mixed
hybrid and lumped mixed hybrid method. No transport is involved.

• problem type – sequential coupling,

• primary equation – unsteady mixed hybrid, unsteady lumped mixed hybrid

Geometry and boundary conditions

The domain is a square with oposite vertices [0, 0] and [1, 1]. Different Dirichlet boundary
condition for flow is prescribed on two opposite sides – 0.0 on the left and 100.0 on the
right.

Parameters

The flow is solved in time interval (0, 0.5) with step 0.01. The output is written every
0.1.

• Conductivity: The conductivity of plane material is 0.02.

• Initial pressure is set to zero everywhere.

• There are no other materials, no transport so there are not any other parameters.

Verification

This test verifies two different numerical methods – the problem is computed by both
mixed hybrid and lumped mixed hybrid method.

48



7.8 Test 11 – Radioactive decay chain with more

branches

8 isotopes are members of considered decay chain with three branches. Transport bound-
ary conditions does not matter because zero presure gradient is considered. Final con-
centrations of all isotopes except C decrease to zero after 20 time steps, whereas C
concentration grows to 0.36.

E −→ D −→ F −→ B
0.2B −→ A A −→ G
0.6B −→ H H −→ G
0.2B −→ G

G −→ C

• problem type – sequential coupling,

• primary equation – steady mixed hybrid

• secondary equation – transport operator splitting

• reactions – linear reactions

Geometry

The domain is a prism which base is a right-angled triangle with its ordinates 3.0 units
long. There are then only three tetrahedron elements in the mesh.

Parameters

The flow is steady and the transport is solved in time interval (0, 10.0). The output is
written every 0.5.

Half-lives are equal to 0.5 for all isotopes. Initial concentrations are summarized in the
table below:

isotop A B C D E F G H

initial concentration 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Verification

7.9 Test 12 – Radioactive decay

There are actually two tests of the radioactive decay. The first one considers first order
reaction of two isotopes determined by kinetic constant and the other one describes
radioactive decay chain of three isotopes.

• problem type – sequential coupling,

• primary equation – steady mixed hybrid
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• secondary equation – transport operator splitting

• reactions – linear reactions

Geometry and boundary conditions

The domain is a prism which base is a right-angled triangle with its ordinates 3.0 units
long. There are then only three tetrahedron elements in the mesh.

There are two Dirichlet boundary conditions for flow prescribed.

• Conductivity: The conductivity of the prism material is 0.01.

• There is no other parameter for flow or transport.

7.9.1 First order reaction determined by kinetic constant

The only linear reaction between D and F substances.

D
k−→ F

Parameters

The flow is steady and the transport is solved in time interval (0, 10.0). The output is
written every 0.5.

• Substances: 6 substances to be transported – A, B, C, D, E, F

• Kinetic constant: k = 0.277258872

Verification

7.9.2 Radioactive decay chain

The considered radioctive decay chain is:

D
t1/2,D−−−→ F

t1/2,F−−−→ B

Parameters

Time parameters are the same as they are above.

• Substances: 6 substances to be transported – A, B, C, D, E, F

• Decay half-lives: t1/2,D = t1/2,F = 2.5
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Verification

7.10 Test 13 – Solute mixing on the edge

This test realizes mixing of substances on the edges of planes and also does quantitative
test on a trivial transport problem. The problem is computed with both explicit and
implicit transport.

• problem type – sequential coupling,

• primary equation – steady mixed hybrid

• secondary equation – transport operator splitting (explicit), discontinuous Galerkin
method (implicit)

Geometry and boundary conditions

The domain is a fork where the main branch of length 5 with the incoming solute is
in the xy plane. Then it is divided into two other branches of length 5

√
2, one with

positive and the another with negative z coordinate. There are different conductivities
in each branch.

Dirichlet boundary conditions for flow and transport are prescribed at the beginning of
the main plane (x = 0) and at the end of the secondary branches (x = 10).

flow: hD = −x− z + 10.0 which gives 10.0 at point [0,0,0] and ±5 at points [10,0,∓5]
transport: concentration is 1.0 at point [0,0,0] and 0.0 at points [10,0,∓5]

Initial concentration of the substances is zero in the whole area.

Parameters

The flow is steady and the transport is solved in time interval (0, 100.0). The output
is written every 0.5. Time parameters for implicitly computed transport are the same
only initial time step and output time is set to 5.0.

• Thickness: all planes are set to 1.0 L.

• Conductivity: The conductivity of materials (isotropic planes):

– main branch (material num. 17): K = 1.

– branch (positive z, material num. 18): K = 0.1.

– branch (negative z, material num. 19): K = 0.1.

• Diffusivity coefficients: are used in implicit transport wth dispersion. Default
parameters are set (dm = 1e − 6, others are zero, see manual or parameters in
test02 in 7.2).
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Figure 7.3: Test 13 – mesh

Verification

7.11 Test 14 – Variable transport boundary condi-

tion

There is considered a time variable boundary condition for transport in this test. Steady
flow with constant velocity is caused by a pressure gradient from one side of a 2D strip
to another. Dirichlet boundary condition for transport evolving in time is prescribed on
the right side.

• problem type – sequential coupling,

• primary equation – steady mixed hybrid

• secondary equation – transport operator splitting (explicit), discontinuous Galerkin
method (implicit)

Geometry and boundary conditions

Flow boundary condition is prescribed all around the plane and is equal x and causes
constant flow from right to left (pressure prescribed on the upper and lower sides are
along x equal so have no influence). Transport boundary condition has the same pre-
scribtion as flow only the values evolves in time.
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Initial concentration is zero on the whole plane. Two pulses of nonzero concentration
are applied on the boundary. The changes of the boundary condition at specified times
are shown in the following table:

time 0 1 3 6 7
concentration 0 20 0 40 0

• Thickness: all planes are set to 1.0 L.

• Conductivity: The conductivity of material (isotropic plane): K = 0.1.

• Diffusivity coefficients: are used in implicit transport wth dispersion. Default
parameters are set except dgpenalty = 1e− 4 (see manual or parameters in test02
in 7.2).
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Figure 7.4: Test 14 – mesh

Parameters

The flow is steady and the transport is solved in time interval (0, 10.0). The output
is written every 1.0. Time parameters for implicitly computed transport are the same
only initial time step is set to 1.0.

Verification

7.12 Test 15 – Unsteady flow with transport

Transport of a single pulse of concentration moving along a 2D strip is solved. This test
involves unsteady flow computed by lumped hybrid method, transport is solved both
with explicit and implicit (involves dispersion) scheme.

• problem type – sequential coupling,

• primary equation – unsteady lumped mixed hybrid

• secondary equation – transport operator splitting (explicit), discontinuous Galerkin
method (implicit)
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Geometry and boundary conditions

The domain is a 2D strip with dimensions 1.0x16.0. Zero Dirichlet boundary for flow is
prescribed at x = 0, zero Neumann boundary is elsewhere.

Dirichlet transport boundary condition is set on the left side to 10.0 only at the begin-
ning. Then is this boundary condition zero.

Parameters

Initial pressure is zero everywhere. The source is prescribed with function f = −x along
the strip.

• Thickness: all planes are set to 1.0 L.

• Conductivity: The conductivity of material (isotropic plane): K = 1.0.

• Source formula: f = −x

• Diffusivity coefficients: are used in implicit transport wth dispersion. Default
parameters are set (dm = 1e − 6, others are zero, see manual or parameters in
test02 in 7.2).
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Figure 7.5: Test 15 – mesh

Verification

The test is similar to the test 10 but here in addition the computation of a transport in
an unsteady flow field is verified.

7.13 Test 16 – Substance concentration source in

transport

This test include a source of concentration of a substance. The domain is a 2D strip in
vertical direction. There is a steady flow with constant velocity in the vertical direction.
Two sources are situated on two elements at the top of the strip and the substance is
transported down along the strip. The concentration values of the sources are defined
in the tso input file.

• problem type – sequential coupling,
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• primary equation – steady mixed hybrid

• secondary equation – transport operator splitting

Geometry

Parameters

Verification

7.14 Test 17 – Radioactive decay – Pade approxi-

mation

This test solves radioactive decay chain of five isotopes using Pade approximation. The
considered radioctive decay chain is:

A
t1/2,A−−−→ B

t1/2,B−−−→ C
t1/2,C−−−→ D

t1/2,D−−−→ E

• problem type – sequential coupling,

• primary equation – steady mixed hybrid

• secondary equation – transport operator splitting

• reactions – Pade approximation

Geometry

The geometry and material and transport parameters are the same as in test 12.

Parameters

• Substances: 5 substances to be transported – A, B, C, D, E

• Polynomial degree of the nominator and the denominator of Pade approximation
is 3.

• Decay half-lives:
t1/2,A t1/2,B t1/2,C t1/2,D

1.3863 2.3105 1.5403 1.1552

Verification

7.15 Test 18 – Diffusion through fractures

This test is aimed at transport caused just by diffusion.
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There is a triangular domain with zero pressure everywhere so no flow is present. Tri-
angular element with high concentration of a substance lies in the middle of the domain
and its sides neighbour with fractures. The coeffients of molecular diffusion and diffusive
transfer through fractures are the parameters of the implicit transport and are set in
the configuration file.

Geometry

Parameters

Verification
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Chapter 8

Main input file reference

record: Root

Root record of JSON input for Flow123d.

problem = <abstract type: Problem>

Default: <obligatory>

Simulation problem to be solved.

pause after run = <Bool>

Default: false

If true, the program will wait for key press before it terminates.

output streams = <Array of record: OutputStream>

Default: <optional>

Array of formated output streams to open.

abstract type: Problem

Descendants:

The root record of description of particular the problem to solve.

SequentialCoupling

record: SequentialCoupling implements abstract type: Problem

Record with data for a general sequential coupling.

TYPE = <selection: Problem TYPE selection>

Default: SequentialCoupling

Sub-record selection.

description = <String (generic)>

Default: <optional>

Short description of the solved problem. Is displayed in the main log, and possibly
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in other text output files.

mesh = <record: Mesh>

Default: <obligatory>

Computational mesh common to all equations.

time = <record: TimeGovernor>

Default: <optional>

Simulation time frame and time step.

primary equation = <abstract type: DarcyFlowMH>

Default: <obligatory>

Primary equation, have all data given.

secondary equation = <abstract type: Transport>

Default: <optional>

The equation that depends (the velocity field) on the result of the primary equa-
tion.

record: Mesh

Record with mesh related data.

mesh file = <input file name>

Default: <obligatory>

Input file with mesh description.

regions = <Array of record: Region>

Default: <optional>

List of additional region definitions not contained in the mesh.

sets = <Array of record: RegionSet>

Default: <optional>

List of region set definitions. There are three region sets implicitly defined: ALL
(all regions of the mesh), BOUNDARY (all boundary regions), and BULK (all
bulk regions)

partitioning = <record: Partition>

Default: any neighboring

Parameters of mesh partitioning algorithms.

record: Region

Definition of region of elements.

name = <String (generic)>

Default: <obligatory>
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Label (name) of the region. Has to be unique in one mesh.

id = <Integer [0, ]>

Default: <obligatory>

The ID of the region to which you assign label.

element list = <Array of Integer [0, ]>

Default: <optional>

Specification of the region by the list of elements. This is not recomended

record: RegionSet

Definition of one region set.

name = <String (generic)>

Default: <obligatory>

Unique name of the region set.

region ids = <Array of Integer [0, ]>

Default: <optional>

List of region ID numbers that has to be added to the region set.

region labels = <Array of String (generic)>

Default: <optional>

List of labels of the regions that has to be added to the region set.

union = <Array [2, 2] of String (generic)>

Default: <optional>

Defines region set as a union of given pair of sets. Overrides previous keys.

intersection = <Array [2, 2] of String (generic)>

Default: <optional>

Defines region set as an intersection of given pair of sets. Overrides previous
keys.

difference = <Array [2, 2] of String (generic)>

Default: <optional>

Defines region set as a difference of given pair of sets. Overrides previous keys.

record: Partition constructible from key: graph type

Setting for various types of mesh partitioning.

tool = <selection: PartTool>

Default: METIS

Software package used for partitioning. See corresponding selection.
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graph type = <selection: GraphType>

Default: any neighboring

Algorithm for generating graph and its weights from a multidimensional mesh.

selection type: PartTool

Select the partitioning tool to use.

Possible values:

PETSc : Use PETSc interface to various partitioning tools.

METIS : Use direct interface to Metis.

selection type: GraphType

Different algorithms to make the sparse graph with weighted edges from the multidi-
mensional mesh. Main difference is dealing with neighborings of elements of different
dimension.

Possible values:

any neighboring : Add edge for any pair of neighboring elements.

any wight lower dim cuts : Same as before and assign higher weight to cuts of lower
dimension in order to make them stick to one face.

same dimension neghboring : Add edge for any pair of neighboring elements of same
dimension (bad for matrix multiply).

record: TimeGovernor

Setting of the simulation time. (can be specific to one eqaution)

start time = <Double >

Default: 0.0

Start time of the simulation.

end time = <Double >

Default: <obligatory>

End time of the simulation.

init dt = <Double [0, ]>

Default: <optional>

Initial guess for the time step. The time step is fixed if hard time step limits are
not set.

min dt = <Double [0, ]>

Default: ”Machine precision or ’init dt’ if specified”

Hard lower limit for the time step.

max dt = <Double [0, ]>
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Default: ”Whole time of the simulation or ’init dt’ if specified”

Hard upper limit for the time step.

abstract type: DarcyFlowMH

Descendants:

Mixed-Hybrid solver for saturated Darcy flow.

Steady MH

Unsteady MH

Unsteady LMH

record: Steady MH implements abstract type: DarcyFlowMH

Mixed-Hybrid solver for STEADY saturated Darcy flow.

TYPE = <selection: DarcyFlowMH TYPE selection>

Default: Steady MH

Sub-record selection.

n schurs = <Integer [0, 2]>

Default: 2

Number of Schur complements to perform when solving MH sytem.

solver = <abstract type: Solver>

Default: <obligatory>

Linear solver for MH problem.

output = <record: DarcyMHOutput>

Default: <obligatory>

Parameters of output form MH module.

mortar method = <selection: MH MortarMethod>

Default: None

Method for coupling Darcy flow between dimensions.

bc data = <Array of record: DarcyFlowMH Steady BoundaryData>

Default: <obligatory>

bulk data = <Array of record: DarcyFlowMH Steady BulkData>

Default: <obligatory>

abstract type: Solver

Descendants:

Solver setting.
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Petsc

Bddc

record: Petsc implements abstract type: Solver

Solver setting.

TYPE = <selection: Solver TYPE selection>

Default: Petsc

Sub-record selection.

a tol = <Double [0, ]>

Default: 1.0e-9

Absolute residual tolerance.

r tol = <Double [0, 1]>

Default: 1.0e-7

Relative residual tolerance (to initial error).

max it = <Integer [0, ]>

Default: 10000

Maximum number of outer iterations of the linear solver.

options = <String (generic)>

Default:

Options passed to the petsc instead of default setting.

record: Bddc implements abstract type: Solver

Solver setting.

TYPE = <selection: Solver TYPE selection>

Default: Bddc

Sub-record selection.

a tol = <Double [0, ]>

Default: 1.0e-9

Absolute residual tolerance.

r tol = <Double [0, 1]>

Default: 1.0e-7

Relative residual tolerance (to initial error).

max it = <Integer [0, ]>

Default: 10000

Maximum number of outer iterations of the linear solver.
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record: DarcyMHOutput

Parameters of MH output.

save step = <Double [0, ]>

Default: 1.0

Regular step between MH outputs.

output stream = <record: OutputStream>

Default: <obligatory>

Parameters of output stream.

velocity p0 = <String (generic)>

Default: <optional>

Output stream for P0 approximation of the velocity field.

pressure p0 = <String (generic)>

Default: <optional>

Output stream for P0 approximation of the pressure field.

pressure p1 = <String (generic)>

Default: <optional>

Output stream for P1 approximation of the pressure field.

piezo head p0 = <String (generic)>

Default: <optional>

Output stream for P0 approximation of the piezometric head field.

balance output = <output file name>

Default: water balance.txt

Output file for water balance table.

subdomains = <String (generic)>

Default: <optional>

Output stream for subdomain indices (partitioning of mesh elements) used by
DarcyFlow module.

raw flow output = <output file name>

Default: <optional>

Output file with raw data form MH module.

record: OutputStream

Parameters of output.

name = <String (generic)>
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Default: <obligatory>

The name of this stream. Used to reference the output stream.

file = <output file name>

Default: <obligatory>

File path to the connected output file.

format = <abstract type: OutputFormat>

Default: <optional>

Format of output stream and possible parameters.

abstract type: OutputFormat

Descendants:

Format of output stream and possible parameters.

vtk

gmsh

record: vtk implements abstract type: OutputFormat

Parameters of vtk output format.

TYPE = <selection: OutputFormat TYPE selection>

Default: vtk

Sub-record selection.

variant = <selection: VTK variant (ascii or binary)>

Default: ascii

Variant of output stream file format.

parallel = <Bool>

Default: false

Parallel or serial version of file format.

compression = <selection: Type of compression of VTK file format>

Default: none

Compression used in output stream file format.

selection type: VTK variant (ascii or binary)

Possible values:

ascii : ASCII variant of VTK file format

binary : Binary variant of VTK file format (not supported yet)
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selection type: Type of compression of VTK file format

Possible values:

none : Data in VTK file format are not compressed

zlib : Data in VTK file format are compressed using zlib (not supported yet)

record: gmsh implements abstract type: OutputFormat

Parameters of gmsh output format.

TYPE = <selection: OutputFormat TYPE selection>

Default: gmsh

Sub-record selection.

selection type: MH MortarMethod

Possible values:

None : Mortar space: P0 on elements of lower dimension.

P0 : Mortar space: P0 on elements of lower dimension.

P1 : Mortar space: P1 on intersections, using non-conforming pressures.

record: DarcyFlowMH Steady BoundaryData

Record to set BOUNDARY fields of the equation ’DarcyFlowMH Steady’. The
fields are set only on the domain specified by one of the keys: ’region’, ’rid’,
’r set’ and after the time given by the key ’time’. The field setting can be over-
ridden by any DarcyFlowMH Steady BoundaryData record that comes later in
the boundary data array.

r set = <String (generic)>

Default: <optional>

Name of region set where to set fields.

region = <String (generic)>

Default: <optional>

Label of the region where to set fields.

rid = <Integer [0, ]>

Default: <optional>

ID of the region where to set fields.

time = <Double [0, ]>

Default: 0.0

Apply field setting in this record after this time. These times have to form an
increasing sequence.

bc type = <abstract type: Field:R3 -¿ Enum>
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Default: <optional>

Boundary condition type, possible values:

bc pressure = <abstract type: Field:R3 -¿ Real>

Default: <optional>

Dirichlet BC condition value for pressure.

bc flux = <abstract type: Field:R3 -¿ Real>

Default: <optional>

Flux in Neumman or Robin boundary condition.

bc robin sigma = <abstract type: Field:R3 -¿ Real>

Default: <optional>

Conductivity coefficient in Robin boundary condition.

bc piezo head = <abstract type: Field:R3 -¿ Real>

Default: <optional>

Boundary condition for pressure as piezometric head.

flow old bcd file = <input file name>

Default: <optional>

abstract type: Field:R3 -¿ Enum default descendant: FieldConstant

Descendants:

Abstract record for all time-space functions.

FieldConstant

FieldFormula

FieldPython

FieldElementwise

record: FieldConstant implements abstract type: Field:R3 -¿ Enum constructible from
key: value

R3 -¿ Enum Field constant in space.

TYPE = <selection: Field:R3 -¿ Enum TYPE selection>

Default: FieldConstant

Sub-record selection.

value = <selection: EqData bc Type>

Default: <obligatory>

Value of the constant field. For vector values, you can use scalar value to enter
constant vector. For square NxN-matrix values, you can use: * vector of size N
to enter diagonal matrix * vector of size (N+1)*N/2 to enter symmetric matrix
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(upper triangle, row by row) * scalar to enter multiple of the unit matrix.

selection type: EqData bc Type

Possible values:

none : Homogeneous Neoumann BC.

dirichlet :

neumann :

robin :

total flux :

record: FieldFormula implements abstract type: Field:R3 -¿ Enum

R3 -¿ Enum Field given by runtime interpreted formula.

TYPE = <selection: Field:R3 -¿ Enum TYPE selection>

Default: FieldFormula

Sub-record selection.

value = <String (generic)>

Default: <obligatory>

String, array of strings, or matrix of strings with formulas for individual entries
of scalar, vector, or tensor value respectively. For vector values, you can use just
one string to enter homogeneous vector. For square NxN-matrix values, you can
use: * array of strings of size N to enter diagonal matrix * array of strings of
size (N+1)*N/2 to enter symmetric matrix (upper triangle, row by row) * just
one string to enter (spatially variable) multiple of the unit matrix. Formula can
contain variables x,y,z,t and usual operators and functions.

record: FieldPython implements abstract type: Field:R3 -¿ Enum

R3 -¿ Enum Field given by a Python script.

TYPE = <selection: Field:R3 -¿ Enum TYPE selection>

Default: FieldPython

Sub-record selection.

script string = <String (generic)>

Default: ”Obligatory if ’script file’ is not given.”

Python script given as in place string

script file = <input file name>

Default: ”Obligatory if ’script striong’ is not given.”

Python script given as external file

function = <String (generic)>
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Default: <obligatory>

Function in the given script that returns tuple containing components of the
return type. For NxM tensor values: tensor(row,col) = tuple( M*row + col ).

record: FieldElementwise implements abstract type: Field:R3 -¿ Enum

R3 -¿ Enum Field constant in space.

TYPE = <selection: Field:R3 -¿ Enum TYPE selection>

Default: FieldElementwise

Sub-record selection.

gmsh file = <input file name>

Default: <obligatory>

Input file with ASCII GMSH file format.

field name = <String (generic)>

Default: <obligatory>

The values of the Field are read from the $ElementData section with field name
given by this key.

abstract type: Field:R3 -¿ Real default descendant: FieldConstant

Descendants:

Abstract record for all time-space functions.

FieldConstant

FieldPython

FieldFormula

FieldElementwise

FieldInterpolatedP0

record: FieldConstant implements abstract type: Field:R3 -¿ Real constructible from
key: value

R3 -¿ Real Field constant in space.

TYPE = <selection: Field:R3 -¿ Real TYPE selection>

Default: FieldConstant

Sub-record selection.

value = <Double >

Default: <obligatory>

Value of the constant field. For vector values, you can use scalar value to enter
constant vector. For square NxN-matrix values, you can use: * vector of size N
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to enter diagonal matrix * vector of size (N+1)*N/2 to enter symmetric matrix
(upper triangle, row by row) * scalar to enter multiple of the unit matrix.

record: FieldPython implements abstract type: Field:R3 -¿ Real

R3 -¿ Real Field given by a Python script.

TYPE = <selection: Field:R3 -¿ Real TYPE selection>

Default: FieldPython

Sub-record selection.

script string = <String (generic)>

Default: ”Obligatory if ’script file’ is not given.”

Python script given as in place string

script file = <input file name>

Default: ”Obligatory if ’script striong’ is not given.”

Python script given as external file

function = <String (generic)>

Default: <obligatory>

Function in the given script that returns tuple containing components of the
return type. For NxM tensor values: tensor(row,col) = tuple( M*row + col ).

record: FieldFormula implements abstract type: Field:R3 -¿ Real

R3 -¿ Real Field given by runtime interpreted formula.

TYPE = <selection: Field:R3 -¿ Real TYPE selection>

Default: FieldFormula

Sub-record selection.

value = <String (generic)>

Default: <obligatory>

String, array of strings, or matrix of strings with formulas for individual entries
of scalar, vector, or tensor value respectively. For vector values, you can use just
one string to enter homogeneous vector. For square NxN-matrix values, you can
use: * array of strings of size N to enter diagonal matrix * array of strings of
size (N+1)*N/2 to enter symmetric matrix (upper triangle, row by row) * just
one string to enter (spatially variable) multiple of the unit matrix. Formula can
contain variables x,y,z,t and usual operators and functions.

record: FieldElementwise implements abstract type: Field:R3 -¿ Real

R3 -¿ Real Field constant in space.

TYPE = <selection: Field:R3 -¿ Real TYPE selection>
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Default: FieldElementwise

Sub-record selection.

gmsh file = <input file name>

Default: <obligatory>

Input file with ASCII GMSH file format.

field name = <String (generic)>

Default: <obligatory>

The values of the Field are read from the $ElementData section with field name
given by this key.

record: FieldInterpolatedP0 implements abstract type: Field:R3 -¿ Real

R3 -¿ Real Field constant in space.

TYPE = <selection: Field:R3 -¿ Real TYPE selection>

Default: FieldInterpolatedP0

Sub-record selection.

gmsh file = <input file name>

Default: <obligatory>

Input file with ASCII GMSH file format.

field name = <String (generic)>

Default: <obligatory>

The values of the Field are read from the $ElementData section with field name
given by this key.

record: DarcyFlowMH Steady BulkData

Record to set BULK fields of the equation ’DarcyFlowMH Steady’. The fields
are set only on the domain specified by one of the keys: ’region’, ’rid’, ’r set’
and after the time given by the key ’time’. The field setting can be overridden
by any DarcyFlowMH Steady BulkData record that comes later in the bulk data
array.

r set = <String (generic)>

Default: <optional>

Name of region set where to set fields.

region = <String (generic)>

Default: <optional>

Label of the region where to set fields.

rid = <Integer [0, ]>
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Default: <optional>

ID of the region where to set fields.

time = <Double [0, ]>

Default: 0.0

Apply field setting in this record after this time. These times have to form an
increasing sequence.

anisotropy = <abstract type: Field:R3 -¿ Real[3,3]>

Default: <optional>

Anisotropy of the conductivity tensor.

cross section = <abstract type: Field:R3 -¿ Real>

Default: <optional>

Complement dimension parameter (cross section for 1D, thickness for 2D).

conductivity = <abstract type: Field:R3 -¿ Real>

Default: <optional>

Isotropic conductivity scalar.

sigma = <abstract type: Field:R3 -¿ Real>

Default: <optional>

Transition coefficient between dimensions.

water source density = <abstract type: Field:R3 -¿ Real>

Default: <optional>

Water source density.

init pressure = <abstract type: Field:R3 -¿ Real>

Default: <optional>

Initial condition as pressure

storativity = <abstract type: Field:R3 -¿ Real>

Default: <optional>

Storativity.

init piezo head = <abstract type: Field:R3 -¿ Real>

Default: <optional>

Initial condition for pressure as piezometric head.

abstract type: Field:R3 -¿ Real[3,3] default descendant: FieldConstant

Descendants:

Abstract record for all time-space functions.

FieldConstant
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FieldPython

FieldFormula

FieldElementwise

FieldInterpolatedP0

record: FieldConstant implements abstract type: Field:R3 -¿ Real[3,3] constructible
from key: value

R3 -¿ Real[3,3] Field constant in space.

TYPE = <selection: Field:R3 -¿ Real[3,3] TYPE selection>

Default: FieldConstant

Sub-record selection.

value = <Array [1, ] of Array [1, ] of Double >

Default: <obligatory>

Value of the constant field. For vector values, you can use scalar value to enter
constant vector. For square NxN-matrix values, you can use: * vector of size N
to enter diagonal matrix * vector of size (N+1)*N/2 to enter symmetric matrix
(upper triangle, row by row) * scalar to enter multiple of the unit matrix.

record: FieldPython implements abstract type: Field:R3 -¿ Real[3,3]

R3 -¿ Real[3,3] Field given by a Python script.

TYPE = <selection: Field:R3 -¿ Real[3,3] TYPE selection>

Default: FieldPython

Sub-record selection.

script string = <String (generic)>

Default: ”Obligatory if ’script file’ is not given.”

Python script given as in place string

script file = <input file name>

Default: ”Obligatory if ’script striong’ is not given.”

Python script given as external file

function = <String (generic)>

Default: <obligatory>

Function in the given script that returns tuple containing components of the
return type. For NxM tensor values: tensor(row,col) = tuple( M*row + col ).

record: FieldFormula implements abstract type: Field:R3 -¿ Real[3,3]

R3 -¿ Real[3,3] Field given by runtime interpreted formula.
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TYPE = <selection: Field:R3 -¿ Real[3,3] TYPE selection>

Default: FieldFormula

Sub-record selection.

value = <Array [1, ] of Array [1, ] of String (generic)>

Default: <obligatory>

String, array of strings, or matrix of strings with formulas for individual entries
of scalar, vector, or tensor value respectively. For vector values, you can use just
one string to enter homogeneous vector. For square NxN-matrix values, you can
use: * array of strings of size N to enter diagonal matrix * array of strings of
size (N+1)*N/2 to enter symmetric matrix (upper triangle, row by row) * just
one string to enter (spatially variable) multiple of the unit matrix. Formula can
contain variables x,y,z,t and usual operators and functions.

record: FieldElementwise implements abstract type: Field:R3 -¿ Real[3,3]

R3 -¿ Real[3,3] Field constant in space.

TYPE = <selection: Field:R3 -¿ Real[3,3] TYPE selection>

Default: FieldElementwise

Sub-record selection.

gmsh file = <input file name>

Default: <obligatory>

Input file with ASCII GMSH file format.

field name = <String (generic)>

Default: <obligatory>

The values of the Field are read from the $ElementData section with field name
given by this key.

record: FieldInterpolatedP0 implements abstract type: Field:R3 -¿ Real[3,3]

R3 -¿ Real[3,3] Field constant in space.

TYPE = <selection: Field:R3 -¿ Real[3,3] TYPE selection>

Default: FieldInterpolatedP0

Sub-record selection.

gmsh file = <input file name>

Default: <obligatory>

Input file with ASCII GMSH file format.

field name = <String (generic)>

Default: <obligatory>

The values of the Field are read from the $ElementData section with field name
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given by this key.

record: Unsteady MH implements abstract type: DarcyFlowMH

Mixed-Hybrid solver for unsteady saturated Darcy flow.

TYPE = <selection: DarcyFlowMH TYPE selection>

Default: Unsteady MH

Sub-record selection.

n schurs = <Integer [0, 2]>

Default: 2

Number of Schur complements to perform when solving MH sytem.

solver = <abstract type: Solver>

Default: <obligatory>

Linear solver for MH problem.

output = <record: DarcyMHOutput>

Default: <obligatory>

Parameters of output form MH module.

mortar method = <selection: MH MortarMethod>

Default: None

Method for coupling Darcy flow between dimensions.

time = <record: TimeGovernor>

Default: <obligatory>

Time governor setting for the unsteady Darcy flow model.

bc data = <Array of record: DarcyFlowMH Steady BoundaryData>

Default: <obligatory>

bulk data = <Array of record: DarcyFlowMH Steady BulkData>

Default: <obligatory>

record: Unsteady LMH implements abstract type: DarcyFlowMH

Lumped Mixed-Hybrid solver for unsteady saturated Darcy flow.

TYPE = <selection: DarcyFlowMH TYPE selection>

Default: Unsteady LMH

Sub-record selection.

n schurs = <Integer [0, 2]>

Default: 2

Number of Schur complements to perform when solving MH sytem.
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solver = <abstract type: Solver>

Default: <obligatory>

Linear solver for MH problem.

output = <record: DarcyMHOutput>

Default: <obligatory>

Parameters of output form MH module.

mortar method = <selection: MH MortarMethod>

Default: None

Method for coupling Darcy flow between dimensions.

time = <record: TimeGovernor>

Default: <obligatory>

Time governor setting for the unsteady Darcy flow model.

bc data = <Array of record: DarcyFlowMH Steady BoundaryData>

Default: <obligatory>

bulk data = <Array of record: DarcyFlowMH Steady BulkData>

Default: <obligatory>

abstract type: Transport

Descendants:

Secondary equation for transport of substances.

TransportOperatorSplitting

AdvectionDiffusion DG

record: TransportOperatorSplitting implements abstract type: Transport

Explicit FVM transport (no diffusion) coupled with reaction and sorption model
(ODE per element) via operator splitting.

TYPE = <selection: Transport TYPE selection>

Default: TransportOperatorSplitting

Sub-record selection.

time = <record: TimeGovernor>

Default: <obligatory>

Time governor setting for the transport model.

substances = <Array of String (generic)>

Default: <obligatory>

Names of transported substances.
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sorption enable = <Bool>

Default: false

Model of sorption.

dual porosity = <Bool>

Default: false

Dual porosity model.

output = <record: TransportOutput>

Default: <obligatory>

Parameters of output stream.

reactions = <abstract type: Reactions>

Default: <optional>

Initialization of per element reactions.

adsorptions = <record: Sorptions>

Default: <optional>

Initialization of per element sorptions.

bc data = <Array of record: TransportOperatorSplitting BoundaryData>

Default: <obligatory>

bulk data = <Array of record: TransportOperatorSplitting BulkData>

Default: <obligatory>

record: TransportOutput

Output setting for transport equations.

output stream = <record: OutputStream>

Default: <obligatory>

Parameters of output stream.

save step = <Double [0, ]>

Default: <obligatory>

Interval between outputs.

output times = <Array of Double [0, ]>

Default: <optional>

Explicit array of output times (can be combined with ’save step’.

conc mobile p0 = <String (generic)>

Default: <optional>

Name of output stream for P0 approximation of the concentration in mobile
phase.
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conc immobile p0 = <String (generic)>

Default: <optional>

Name of output stream for P0 approximation of the concentration in immobile
phase.

conc mobile sorbed p0 = <String (generic)>

Default: <optional>

Name of output stream for P0 approximation of the surface concentration of
sorbed mobile phase.

conc immobile sorbed p0 = <String (generic)>

Default: <optional>

Name of output stream for P0 approximation of the surface concentration of
sorbed immobile phase.

abstract type: Reactions

Descendants:

Equation for reading information about simple chemical reactions.

Sorptions

LinearReactions

PadeApproximant

Isotope

record: Sorptions implements abstract type: Reactions

Information about all the limited solubility affected sorptions.

TYPE = <selection: Reactions TYPE selection>

Default: Sorptions

Sub-record selection.

solvent dens = <Double >

Default: 1.0

Density of the solvent.

substeps = <Integer >

Default: 100

Number of equidistant substeps, molar mass and isotherm intersections

species = <Array of String (generic)>

Default: <obligatory>

Names of all the sorbing species

molar masses = <Array of Double >
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Default: <obligatory>

Specifies molar masses of all the sorbing species

solubility = <Array of Double >

Default: <obligatory>

Specifies solubility limits of all the sorbing species

bulk data = <Array of record: Sorption BulkData>

Default: <obligatory>

Containes region specific data necessery to construct isotherms.

record: Sorption BulkData

Record to set BULK fields of the equation ’Sorption’. The fields are set only
on the domain specified by one of the keys: ’region’, ’rid’, ’r set’ and after the
time given by the key ’time’. The field setting can be overridden by any Sorp-
tion BulkData record that comes later in the bulk data array.

r set = <String (generic)>

Default: <optional>

Name of region set where to set fields.

region = <String (generic)>

Default: <optional>

Label of the region where to set fields.

rid = <Integer [0, ]>

Default: <optional>

ID of the region where to set fields.

time = <Double [0, ]>

Default: 0.0

Apply field setting in this record after this time. These times have to form an
increasing sequence.

rock density = <abstract type: Field:R3 -¿ Real>

Default: <optional>

Rock matrix density.

sorption types = <abstract type: Field:R3 -¿ Enum[n]>

Default: <optional>

Considered adsorption is described by selected isotherm.

mult coefs = <abstract type: Field:R3 -¿ Real[n]>

Default: <optional>

Multiplication parameters (k, omega) in either Langmuir c s = omega * (al-
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pha*c a)/(1- alpha*c a) or in linear c s = k * c a isothermal description.

second params = <abstract type: Field:R3 -¿ Real[n]>

Default: <optional>

Second parameters (alpha, ...) defining isotherm c s = omega * (alpha*c a)/(1-
alpha*c a).

mob porosity = <abstract type: Field:R3 -¿ Real>

Default: <optional>

Mobile porosity of the rock matrix.

abstract type: Field:R3 -¿ Enum[n] default descendant: FieldConstant

Descendants:

Abstract record for all time-space functions.

FieldConstant

FieldFormula

FieldPython

FieldElementwise

record: FieldConstant implements abstract type: Field:R3 -¿ Enum[n] constructible
from key: value

R3 -¿ Enum[n] Field constant in space.

TYPE = <selection: Field:R3 -¿ Enum[n] TYPE selection>

Default: FieldConstant

Sub-record selection.

value = <Array [1, ] of selection: SorptionType>

Default: <obligatory>

Value of the constant field. For vector values, you can use scalar value to enter
constant vector. For square NxN-matrix values, you can use: * vector of size N
to enter diagonal matrix * vector of size (N+1)*N/2 to enter symmetric matrix
(upper triangle, row by row) * scalar to enter multiple of the unit matrix.

selection type: SorptionType

Possible values:

none : No sorption considered

linear : Linear isotherm described sorption considered.

langmuir : Langmuir isotherm described sorption considered

freundlich : Freundlich isotherm described sorption considered
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record: FieldFormula implements abstract type: Field:R3 -¿ Enum[n]

R3 -¿ Enum[n] Field given by runtime interpreted formula.

TYPE = <selection: Field:R3 -¿ Enum[n] TYPE selection>

Default: FieldFormula

Sub-record selection.

value = <Array [1, ] of String (generic)>

Default: <obligatory>

String, array of strings, or matrix of strings with formulas for individual entries
of scalar, vector, or tensor value respectively. For vector values, you can use just
one string to enter homogeneous vector. For square NxN-matrix values, you can
use: * array of strings of size N to enter diagonal matrix * array of strings of
size (N+1)*N/2 to enter symmetric matrix (upper triangle, row by row) * just
one string to enter (spatially variable) multiple of the unit matrix. Formula can
contain variables x,y,z,t and usual operators and functions.

record: FieldPython implements abstract type: Field:R3 -¿ Enum[n]

R3 -¿ Enum[n] Field given by a Python script.

TYPE = <selection: Field:R3 -¿ Enum[n] TYPE selection>

Default: FieldPython

Sub-record selection.

script string = <String (generic)>

Default: ”Obligatory if ’script file’ is not given.”

Python script given as in place string

script file = <input file name>

Default: ”Obligatory if ’script striong’ is not given.”

Python script given as external file

function = <String (generic)>

Default: <obligatory>

Function in the given script that returns tuple containing components of the
return type. For NxM tensor values: tensor(row,col) = tuple( M*row + col ).

record: FieldElementwise implements abstract type: Field:R3 -¿ Enum[n]

R3 -¿ Enum[n] Field constant in space.

TYPE = <selection: Field:R3 -¿ Enum[n] TYPE selection>

Default: FieldElementwise

Sub-record selection.
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gmsh file = <input file name>

Default: <obligatory>

Input file with ASCII GMSH file format.

field name = <String (generic)>

Default: <obligatory>

The values of the Field are read from the $ElementData section with field name
given by this key.

abstract type: Field:R3 -¿ Real[n] default descendant: FieldConstant

Descendants:

Abstract record for all time-space functions.

FieldConstant

FieldPython

FieldFormula

FieldElementwise

FieldInterpolatedP0

record: FieldConstant implements abstract type: Field:R3 -¿ Real[n] constructible
from key: value

R3 -¿ Real[n] Field constant in space.

TYPE = <selection: Field:R3 -¿ Real[n] TYPE selection>

Default: FieldConstant

Sub-record selection.

value = <Array [1, ] of Double >

Default: <obligatory>

Value of the constant field. For vector values, you can use scalar value to enter
constant vector. For square NxN-matrix values, you can use: * vector of size N
to enter diagonal matrix * vector of size (N+1)*N/2 to enter symmetric matrix
(upper triangle, row by row) * scalar to enter multiple of the unit matrix.

record: FieldPython implements abstract type: Field:R3 -¿ Real[n]

R3 -¿ Real[n] Field given by a Python script.

TYPE = <selection: Field:R3 -¿ Real[n] TYPE selection>

Default: FieldPython

Sub-record selection.

script string = <String (generic)>
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Default: ”Obligatory if ’script file’ is not given.”

Python script given as in place string

script file = <input file name>

Default: ”Obligatory if ’script striong’ is not given.”

Python script given as external file

function = <String (generic)>

Default: <obligatory>

Function in the given script that returns tuple containing components of the
return type. For NxM tensor values: tensor(row,col) = tuple( M*row + col ).

record: FieldFormula implements abstract type: Field:R3 -¿ Real[n]

R3 -¿ Real[n] Field given by runtime interpreted formula.

TYPE = <selection: Field:R3 -¿ Real[n] TYPE selection>

Default: FieldFormula

Sub-record selection.

value = <Array [1, ] of String (generic)>

Default: <obligatory>

String, array of strings, or matrix of strings with formulas for individual entries
of scalar, vector, or tensor value respectively. For vector values, you can use just
one string to enter homogeneous vector. For square NxN-matrix values, you can
use: * array of strings of size N to enter diagonal matrix * array of strings of
size (N+1)*N/2 to enter symmetric matrix (upper triangle, row by row) * just
one string to enter (spatially variable) multiple of the unit matrix. Formula can
contain variables x,y,z,t and usual operators and functions.

record: FieldElementwise implements abstract type: Field:R3 -¿ Real[n]

R3 -¿ Real[n] Field constant in space.

TYPE = <selection: Field:R3 -¿ Real[n] TYPE selection>

Default: FieldElementwise

Sub-record selection.

gmsh file = <input file name>

Default: <obligatory>

Input file with ASCII GMSH file format.

field name = <String (generic)>

Default: <obligatory>

The values of the Field are read from the $ElementData section with field name
given by this key.
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record: FieldInterpolatedP0 implements abstract type: Field:R3 -¿ Real[n]

R3 -¿ Real[n] Field constant in space.

TYPE = <selection: Field:R3 -¿ Real[n] TYPE selection>

Default: FieldInterpolatedP0

Sub-record selection.

gmsh file = <input file name>

Default: <obligatory>

Input file with ASCII GMSH file format.

field name = <String (generic)>

Default: <obligatory>

The values of the Field are read from the $ElementData section with field name
given by this key.

record: LinearReactions implements abstract type: Reactions

Information for a decision about the way to simulate radioactive decay.

TYPE = <selection: Reactions TYPE selection>

Default: LinearReactions

Sub-record selection.

decays = <Array of record: Substep>

Default: <obligatory>

Description of particular decay chain substeps.

matrix exp on = <Bool>

Default: false

Enables to use Pade approximant of matrix exponential.

record: Substep

Equation for reading information about radioactive decays.

parent = <String (generic)>

Default: <obligatory>

Identifier of an isotope.

half life = <Double >

Default: <optional>

Half life of the parent substance.

kinetic = <Double >

83



Default: <optional>

Kinetic constants describing first order reactions.

products = <Array of String (generic)>

Default: <obligatory>

Identifies isotopes which decays parental atom to.

branch ratios = <Array of Double >

Default: 1.0

Decay chain branching percentage.

record: PadeApproximant implements abstract type: Reactions

Abstract record with an information about pade approximant parameters.

TYPE = <selection: Reactions TYPE selection>

Default: PadeApproximant

Sub-record selection.

decays = <Array of record: Substep>

Default: <obligatory>

Description of particular decay chain substeps.

nom pol deg = <Integer >

Default: 2

Polynomial degree of the nominator of Pade approximant.

den pol deg = <Integer >

Default: 2

Polynomial degree of the nominator of Pade approximant

record: Isotope implements abstract type: Reactions

Definition of information about a single isotope.

TYPE = <selection: Reactions TYPE selection>

Default: Isotope

Sub-record selection.

identifier = <Integer >

Default: <obligatory>

Identifier of the isotope.

half life = <Double >

Default: <obligatory>

Half life parameter.
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record: TransportOperatorSplitting BoundaryData

Record to set BOUNDARY fields of the equation ’TransportOperatorSplitting’.
The fields are set only on the domain specified by one of the keys: ’region’,
’rid’, ’r set’ and after the time given by the key ’time’. The field setting can be
overridden by any TransportOperatorSplitting BoundaryData record that comes
later in the boundary data array.

r set = <String (generic)>

Default: <optional>

Name of region set where to set fields.

region = <String (generic)>

Default: <optional>

Label of the region where to set fields.

rid = <Integer [0, ]>

Default: <optional>

ID of the region where to set fields.

time = <Double [0, ]>

Default: 0.0

Apply field setting in this record after this time. These times have to form an
increasing sequence.

bc conc = <abstract type: Field:R3 -¿ Real[n]>

Default: <optional>

Boundary conditions for concentrations.

old boundary file = <input file name>

Default: <optional>

Input file with boundary conditions (obsolete).

bc times = <Array of Double >

Default: <optional>

Times for changing the boundary conditions (obsolete).

record: TransportOperatorSplitting BulkData

Record to set BULK fields of the equation ’TransportOperatorSplitting’. The
fields are set only on the domain specified by one of the keys: ’region’, ’rid’, ’r set’
and after the time given by the key ’time’. The field setting can be overridden
by any TransportOperatorSplitting BulkData record that comes later in the bulk
data array.

r set = <String (generic)>
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Default: <optional>

Name of region set where to set fields.

region = <String (generic)>

Default: <optional>

Label of the region where to set fields.

rid = <Integer [0, ]>

Default: <optional>

ID of the region where to set fields.

time = <Double [0, ]>

Default: 0.0

Apply field setting in this record after this time. These times have to form an
increasing sequence.

init conc = <abstract type: Field:R3 -¿ Real[n]>

Default: <optional>

Initial concentrations.

por m = <abstract type: Field:R3 -¿ Real>

Default: <optional>

Mobile porosity

sources density = <abstract type: Field:R3 -¿ Real[n]>

Default: <optional>

Density of concentration sources.

sources sigma = <abstract type: Field:R3 -¿ Real[n]>

Default: <optional>

Concentration flux.

sources conc = <abstract type: Field:R3 -¿ Real[n]>

Default: <optional>

Concentration sources threshold.

por imm = <abstract type: Field:R3 -¿ Real>

Default: <optional>

Porosity material parameter of the immobile zone. Vector, one value for every
substance.

alpha = <abstract type: Field:R3 -¿ Real[n]>

Default: <optional>

Diffusion coefficient of non-equilibrium linear exchange between mobile and im-
mobile zone (dual porosity). Vector, one value for every substance.

sorp type = <abstract type: Field:R3 -¿ Enum[n]>
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Default: <optional>

Type of sorption isotherm.

sorp coef0 = <abstract type: Field:R3 -¿ Real[n]>

Default: <optional>

First parameter of sorption: Scaling of the isothem for all types. Vector, one
value for every substance.

sorp coef1 = <abstract type: Field:R3 -¿ Real[n]>

Default: <optional>

Second parameter of sorption: exponent( Freundlich isotherm), limit concentra-
tion (Langmuir isotherm). Vector, one value for every substance.

phi = <abstract type: Field:R3 -¿ Real>

Default: <optional>

Fraction of the total sorption surface exposed to the mobile zone, in interval (0,1).
Used only in combination with dual porosity model. Vector, one value for every
substance.

record: AdvectionDiffusion DG implements abstract type: Transport

DG solver for transport with diffusion.

TYPE = <selection: Transport TYPE selection>

Default: AdvectionDiffusion DG

Sub-record selection.

time = <record: TimeGovernor>

Default: <obligatory>

Time governor setting for the transport model.

substances = <Array of String (generic)>

Default: <obligatory>

Names of transported substances.

sorption enable = <Bool>

Default: false

Model of sorption.

dual porosity = <Bool>

Default: false

Dual porosity model.

output = <record: TransportOutput>

Default: <obligatory>

Parameters of output stream.
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solver = <abstract type: Solver>

Default: <obligatory>

Linear solver for MH problem.

bc data = <Array of record: TransportDG BoundaryData>

Default: <obligatory>

bulk data = <Array of record: TransportDG BulkData>

Default: <obligatory>

dg variant = <selection: DG variant>

Default: non-symmetric

Variant of interior penalty discontinuous Galerkin method.

dg order = <Integer [0, 2]>

Default: 1

Polynomial order for finite element in DG method (order 0 is suitable if there is
no diffusion/dispersion).

record: TransportDG BoundaryData

Record to set BOUNDARY fields of the equation ’TransportDG’. The fields are
set only on the domain specified by one of the keys: ’region’, ’rid’, ’r set’ and
after the time given by the key ’time’. The field setting can be overridden by
any TransportDG BoundaryData record that comes later in the boundary data
array.

r set = <String (generic)>

Default: <optional>

Name of region set where to set fields.

region = <String (generic)>

Default: <optional>

Label of the region where to set fields.

rid = <Integer [0, ]>

Default: <optional>

ID of the region where to set fields.

time = <Double [0, ]>

Default: 0.0

Apply field setting in this record after this time. These times have to form an
increasing sequence.

bc conc = <abstract type: Field:R3 -¿ Real[n]>

Default: <optional>
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Boundary conditions for concentrations.

old boundary file = <input file name>

Default: <optional>

Input file with boundary conditions (obsolete).

bc times = <Array of Double >

Default: <optional>

Times for changing the boundary conditions (obsolete).

record: TransportDG BulkData

Record to set BULK fields of the equation ’TransportDG’. The fields are set
only on the domain specified by one of the keys: ’region’, ’rid’, ’r set’ and after
the time given by the key ’time’. The field setting can be overridden by any
TransportDG BulkData record that comes later in the bulk data array.

r set = <String (generic)>

Default: <optional>

Name of region set where to set fields.

region = <String (generic)>

Default: <optional>

Label of the region where to set fields.

rid = <Integer [0, ]>

Default: <optional>

ID of the region where to set fields.

time = <Double [0, ]>

Default: 0.0

Apply field setting in this record after this time. These times have to form an
increasing sequence.

init conc = <abstract type: Field:R3 -¿ Real[n]>

Default: <optional>

Initial concentrations.

por m = <abstract type: Field:R3 -¿ Real>

Default: <optional>

Mobile porosity

sources density = <abstract type: Field:R3 -¿ Real[n]>

Default: <optional>

Density of concentration sources.

sources sigma = <abstract type: Field:R3 -¿ Real[n]>
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Default: <optional>

Concentration flux.

sources conc = <abstract type: Field:R3 -¿ Real[n]>

Default: <optional>

Concentration sources threshold.

disp l = <abstract type: Field:R3 -¿ Real[n]>

Default: <optional>

Longitudal dispersivity (for each substance).

disp t = <abstract type: Field:R3 -¿ Real[n]>

Default: <optional>

Transversal dispersivity (for each substance).

diff m = <abstract type: Field:R3 -¿ Real[n]>

Default: <optional>

Molecular diffusivity (for each substance).

sigma c = <abstract type: Field:R3 -¿ Real[n]>

Default: <optional>

Coefficient of diffusive transfer through fractures (for each substance).

dg penalty = <abstract type: Field:R3 -¿ Real[n]>

Default: <optional>

Penalty parameter influencing the discontinuity of the solution (for each sub-
stance). Its default value 1 is sufficient in most cases. Higher value diminishes
the inter-element jumps.

selection type: DG variant

Type of penalty term.

Possible values:

non-symmetric : non-symmetric weighted interior penalty DG method

incomplete : incomplete weighted interior penalty DG method

symmetric : symmetric weighted interior penalty DG method
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