
Technical university of Liberec

Faculty of mechatronics, informatics
and interdisciplinary studies

FLOW123D

version 1.6.0

Documentation of file formats
and brief user manual.

Liberec, 2010
Acknowledgement. This work was realized under the state subsidy of the Czech Republic

within the research and development project “Advanced Remediation Technologies and
Processes Center“ 1M0554 – Program of Research Centers PP2-D01 supported by Ministry

of Education.

2

Flow123D

Introduction

Flow123D is a software for simulation of water flow, solute transport and sorption in a het-
erogenous porous and fractured medium. In particular it is suited for simulation of un-
derground processes in a granite rock masive. The program is able to describe explicitely
processes in 3D medium, 2D fractures, and 1D chanels and exchange between those dimen-
sions. The computational mesh is therefore collection of 3D tetrahedrons, 2D trinagles and
1D line segments.

The water flow model assumes a saturated medium described by Darcy law. For dis-
cretization we use mixed hybrid FEM. This version allows only calculation of steady water
flow.

The solute transport model can deal with several dissolved substances. It contains non-
equilibrium dual porosity model, i.e. exchange between mobile and immobile pores. There is
also model for several types of sorption in both the mobile and immobile zone. The imlemented
sorption models are linear sorption, Freundlich isotherm and Langmuir isotherm. The solute
transport model uses finite volume discretization with upwinding in space and explicit Euler
discretization in time. The dual porosity and the sorption are introduced into transport by
operator spliting. The dual porosity model use analytic solution and the non-linear adsorption
is solved numerically by the Newton method.

The program is implemented in C/C++ using essentialy PETSC library for linear algebra.
The water flow as well as the transport simulation can be computed in parallel using MPI
environment. This version also support output into VTK format, which is widely supported.
In particular we recommend Paraview for visualization and postprocessing of the results.

The program is distributed under GNU GPL v. 3 licence and is available on the project
web page: http://dev.nti.tul.cz/trac/flow123d

Usage

On the Linux system the program can be started either directly or through a script run_flow.sh.
When started directly by command

> flow123d -s example.ini

the program accepts one argument after swith -s which is the name of the principila input
file. When you want to start a parallel job you shloud rather use starting script. Basic usage
is:

> run_flow.sh -np 2 -s example.ini

which run simulation on 2 processes using the same INI file as before. For other possible
arguments see the begining of the script.

On the Windows system you can start a squential run by command:

> flow123d.exe -s example.ini

or a parallel run by command:

> mpiexec.exe -np 2 flow123d.exe -s example.ini

2

The principial input file of the program is an INI file which contains names of other
necesaryinput files. Those are the file with calculation mesh (*.msh), the file with specification
of neigbourings between dimensions (*.ngh), the file with material description (*.mtr) and
the file with boundary conditions for the water flow problem (*.bcd).

In the case of transport simulation one have to specify also the file with transport boundary
conditions (*.tbc) and the file with transport initial condition for individual substances
(*.tic).

fbc - file

tic - file

fic - file

pos - file

flow ini - file tbc - file

FLOW123D

mtr - file

msh - file

ngh - file

Required inputs Problem dependent
inputsgeo - file

ngh - file

ngh ini - file

msh - file

GMSH NGH

fbc - file
tbc - file
tic - file

bcd ini - file

BCD

Figure 1: Preparation of input files.

For the preparation of input files we use several utitlities (see Figure 1). We usualy begin
with a *.geo file as a description of the domain geomery. This come as an input for the GMSH
mesh generator, which produce the mesh file. Then we run program ngh to produce file of
neigbourings. Finally we can use program bcd for the preparation of files with boundary and
initial conditions. The file with material properties has to be created manualy, preferably by
modifying some of the example problems. The programs ngh and bcd are distributed together
with flow123d with their own limited documentation.

The output files can be either *.pos files accepted by the GMSH or one can use VTK
format that can be postprocessed by Paraview.

In following sections we briefly describe structure of individual input files.

3

Flow123D ini file format

Section: [Global]

KEY TYPE DEFAULT DESCRIPTION

Problem type int NULL Type of solved problem. Currently supported:
1 = steady saturated flow

Description string undefined Short description of solved problem - any text.

Stop time double 1.0 Time interval of the whole problem.[time units]

Save step double 1.0 The output with transport is written every
Save step. [time units]

Section: [Input]

KEY TYPE DEFAULT DESCRIPTION

Mesh string NULL Name of file containig definition of the mesh for
the problem.

Material string NULL Name of file with hydraulical properties of the
elements.

Boundary string NULL Name of file with boundary condition data.

Neighbouring string NULL Name of file describing topology of the mesh.

Sources string NULL Name of file with definition of fluid sources. This
is optional file, if this key is not defined,
calculation goes on without sources.

4

Section: [Transport]

KEY TYPE DEFAULT DESCRIPTION

Transport on YES/NO NO If set ”YES” program compute
transport too.

Sorption YES/NO NO If set ”YES” program include
sorption too.

Dual porosity YES/NO NO If set ”YES” program include dual
porosity too.

Reactions YES/NO NO If set ”YES” program include
reactions too.

Concentration string NULL Name of file with initial
concentration.

Transport BCD string NULL Name of file with boundary
condition for transport.

Transport out string NULL Name of transport output file.

Transport out im string NULL Name of transport immobile
output file.

Transport out sorp string NULL Name of transport sorbed output
file.

Transport out im sorp string NULL Name of transport sorbed
immobile output file.

N substances int -1 Number of substances.

Substances string undefined Names of the substances separated
by commas.

Substances density scales list of
doubles

1.0 Scales of substances for the density
flow calculation.

Section: [Constants]

KEY TYPE DEFAULT DESCRIPTION

g double 1.0 Gravity acceleration.

rho double 1.0 Density of fluid.

Section: [Run]

KEY TYPE DEFAULT DESCRIPTION

Screen verbosity int 8 Amount of messages printed on the screen. (0
= no messages, ..., 7 = all messages)

Pause after run YES/NO NO If set to ”YES”, the program waits for a key
press before it finishes.

5

Section: [Solver]

KEY TYPE DEFAULT DESCRIPTION

Use last solution YES/NO NO If set to ”YES”, uses last known solution for
chosen solver.

Solver name string petsc Type of linear solver.
Supported solvers are: petsc, petsc matis

(experimental)

Solver params string NULL PETSc options to override default choice of
iterative solver and preconditioner (use with
care). In particular to use UMFPACK
sequantial direct solver set:
Solve params = "-ksp preonly -pc type

lu -pc factor mat solver package

umfpack"

To use parallel direct solver MUMPS use:
Solve params = "-ksp preonly -pc type

lu -pc factor mat solver package mumps

-mat mumps icntl 14 5"

Keep solver files YES/NO NO If set to ”YES”, files for solver are not
deleted after the run of the solver.

Manual solver run YES/NO NO If set to ”YES”, programm stops after
writing input files for solver and lets user to
run it.

Use control file YES/NO NO If set to ”YES”, programm do not create
control file for solver, it uses given file.

Control file string NULL Name of control file for situation, when
Use control file ȲES.

NSchurs int 2 Number of Schur complements to use. Valid
values are 0,1,2. The last one should be the
fastest.

Solver accuracy double 1e-6 When to stop solver run - value of residum
of matrix. Useful values from 1e-4 to 1e-10.
Bigger number = faster run, less accuracy.

max it int 200 Maximum number of iteration of linear
solver.

6

Section: [Output]

KEY TYPE DEFAULT DESCRIPTION

Write output file YES/NO NO If set to ”YES”, writes output file.

Output file string NULL Name of the output file (type 1).

Output file 2 string NULL Name of the output file (type 2).

Output digits int 6 Number of digits used for floating point
numbers in output file.

Output file type int 1 Type of output file
1 - GMSH like format
2 - Flow data file
3 - both files (two separate names)

POS view params double[8] 0 0 0
1 1 1
0 0

[x y z] angle of rotation ”RotationX”
[x y z] scaling ”ScaleX”
[x y] screen position shift ”TranslationX”

Pos format string ASCII Output file format. One can use: ASCII,
BIN, or VTK SERIAL ASCII

Description: Options controling output file of the programm

7

Mesh file format version 2.0

The mesh file format comes from the GMSH system. Following text is copied from the GMSH
documentation.

=============== BEGIN OF INSERTED TEXT ===============

Version 2.0 of the .MSH file format is Gmsh’s new native mesh file format. It is very similar to
the old one (Version 1.0), but is more general: it contains information about itself and allows
to associate an arbitrary number of integer tags with each element.
The .MSH file format, version 2.0, is divided in three sections, defining the file format ($MeshFormat-
$EndMeshFormat), the nodes ($Nodes-$EndNodes) and the elements ($Elements-$EndElements)
in the mesh:

$MeshFormat

2.0 file-type data-size
$EndMeshFormat

$Nodes

number-of-nodes
node-number x-coord y-coord z-coord
...

$EndNodes

$Elements

number-of-elements
elm-number elm-type number-of-tags <tags> node-number-list
...

$EndElements

where:

file-type is an integer equal to 0 in the ASCII file format.

data-size is an integer equal to the size of the floating point numbers used in the file (usually,
data-size = sizeof(double)).

number-of-nodes is the number of nodes in the mesh.

node-number is the number (index) of the n-th node in the mesh. Note that the node-numbers
do not have to be given in a consecutive (or even an ordered) way.

x-coord y-coord z-coord are the floating point values giving the X, Y and Z coordinates of the
n-th node.

number-of-elements is the number of elements in the mesh.

elm-number is the number (index) of the n-th element in the mesh. Note that the elm-numbers
do not have to be given in a consecutive (or even an ordered) way.

elm-type defines the geometrical type of the n-th element:

8

1 Line (2 nodes)
2 Triangle (3 nodes)
3 Quadrangle (4 nodes)
4 Tetrahedron (4 nodes)
5 Hexahedron (8 nodes)
6 Prism (6 nodes)
7 Pyramid (5 nodes)
8 Second order line (3 nodes)
9 Second order triangle (6 nodes)
11 Second order tetrahedron (10 nodes)
15 Point (1 node)

number-of-tags gives the number of tags for the n-th element. By default, Gmsh generates
meshes with two tags and reads files with an arbitrary number of tags: see below.

tag is an integer tag associated with the n-th element. By default, the first tag is the number
of the physical entity to which the element belongs; the second is the number of the
elementary geometrical entity to which the element belongs; the third is the number of
a mesh partition to which the element belongs.

node-number-list is the list of the node numbers of the n-th element (separated by white
space, without commas). The ordering of the nodes is given in Gmsh node ordering;
for second order elements, the first order nodes are given first, followed by the nodes
associated with the edges, followed by the nodes associated with the faces (if any). The
ordering of these additional nodes follows the ordering of the edges/faces given in Gmsh
node ordering.

=============== END OF INSERTED TEXT ===============

More information about GMSH can be found at its homepage:
http://www.geuz.org/gmsh/

Comments concerning 1-2-3-FLOW:

• Every inconsistency of the file stops the calculation. These are:

– Existence of nodes with the same node-number.

– Existence of elements with the same elm-number.

– Reference to non-existing node.

– Reference to non-existing material (see below).

– Difference between number-of-nodes and actual number of lines in nodes’ section.

– Difference between number-of-elements and actual number of lines in elements’
section.

• By default 1-2-3-FLOW uses meshes with number-of-tags = 2.

tag1 is number of region in which the element lies.

tag2 is number of material (reference to .MTR file) in the element.

9

• Currently, line (type = 1), triangle (type = 2) and tetrahedron (type = 4) are the
only supported types of elements. Existence of an element of different type stops the
calculation.

• Wherever possible, we use the file extension .MSH. It is not required, but highly re-
comended.

10

Material properties file format, version 1.0

The file is divided in two sections, header and data. The extension .MTR is highly recomended
for files of this type.

$MaterialFormat

1.0 file-type data-size
$EndMaterialFormat

$Materials

number-of-materials
material-number material-type <material-type-specific-data> [text]
...

$EndMaterials

$Storativity

material-number <storativity-coefficient> [text]
...

$EndStorativity

$Geometry

material-number geometry-type <geometry-type-specific-coefficient> [text]
...

$EndGeometry

$Sorption

material-number substance-id sorption-type <sorption-type-specific-data> [text]
...

$EndSorption

$SorptionFraction

material-number <sorption-fraction-coefficient> [text]
...

$EndSorptionFraction

$DualPorosity

material-number <mobile-porosity-coefficient> <immobile-porosity-coefficient>
<nonequillibrium-coefficient-substance(0)> ...<nonequilibrium-coefficient-substance(n-1)>
[text]
...

$EndDualPorosity

$Reactions

reaction-type <reaction-type-specific-coefficient> [text]
...

$EndReactions

where:

file-type int — is equal 0 for the ASCII file format.

data-size int — the size of the floating point numbers used in the file. Usually data-size =
sizeof(double).

number-of-materials int — Number of materials defined in the file.

material-number int — is the number (index) of the n-th material. These numbers do not
have to be given in a consecutive (or even an ordered) way. Each number has to be

11

given only onece, multiple definition are treated as inconsistency of the file and cause
stopping the calculation (exception $Sorption section).

material-type int — is type of the material, see table.

<material-type-specific-data > — format of this list depends on the material - type.

<storativity-coefficient> double — coefficient of storativity

geometry-type int — type of complement dimension parameter (only for 1D and 2D mate-
rial), for 1D element is supported type 1 - cross-section area, for 2D element is supported
type 2 - thickness.

<geometry-type-specific-coefficient> double — cross-section for 1D element or thickness for
2D element.

substance-id int — refers to number of transported substance, numbering starts on 0.

sorption-type int — type 1 - linear sorption isotherm, type 2 - Freundlich sorption isotherm,
type 3 - Langmuir sorption isotherm.

<sorption-type-specific-data > — format of this list depends on the sorption - type, see table.

Note: Section $Sorption is needed for calculation only if Sorption is turned on in the
ini file.

<sorption-fraction-coefficient> double — ratio of the ”mobile” solid surface in the contact
with ”mobile” water to the total solid surface (this parameter (section) is needed for
calculation only if Dual porosity and Sorption is together turned on in the ini file).

<mobile-porosity-coefficient> double — ratio of the mobile pore volume to the total volume
(this parameter is needed only if Transport on is turned on in the ini file).

<immobile-porosity-coefficient> double — ratio of the immobile pore volu-me to the total
pore volume (this parameter is needed only if Dual porosity is turned on in the ini file).

<nonequilibrium-coefficient-substance(i)> double — nonequilibrium coefficient for substance
i, ∀i ∈ 〈0, n−1〉 where n is number of transported substances (this parameter is needed
only if Dual porosity is turned on in the ini file).

reaction-type int — type 0 - zero order reaction

<reaction-type-specific-data > — format of this list depends on the reaction - type, see table.

12

material-type material-type-specific-data Description

11 k K = (k)
-11 a A = K−1 = (a)

21 k K =

(
k 0
0 k

)
22 kx ky K =

(
kx 0
0 ky

)
23 kx ky kxy K =

(
kx kxy
kxy ky

)
-21 a A = K−1 =

(
a 0
0 a

)
-22 ax ay A = K−1 =

(
ax 0
0 ay

)
-23 ax ay axy A = K−1 =

(
ax axy
axy ay

)
31 k K =

 k 0 0
0 k 0
0 0 k


33 kx ky kz K =

 kx 0 0
0 ky 0
0 0 kz


36 kx ky kz kxy kxz kyz K =

 kx kxy kxz
kxy ky kyz
kxz kyz kz


-31 a A = K−1 =

 a 0 0
0 a 0
0 0 a


-33 ax ay az A = K−1 =

 ax 0 0
0 ay 0
0 0 az


-36 ax ay az axy axz ayz A = K−1 =

 ax axy axz
axy ay ayz
axz ayz az


Note: all variables (k, kx, ky, kz, kxy, kxz, kyz, a, ax, ay, az, axy, axz, ayz) are of the
double type.

sorption-type sorption-type-specific-data Description

1 kD[1] s = kDc

2 kF [(L−3 ·M1)(1−α)] α[1] s = kF c
α

3 KL[L3 ·M−1] smax[L−3 ·M1] s = KLs
max c

1+KLc

Note: all variables (kD, kF , α, KL, smax) are of the double type.

reaction-type reaction-type-specific-data Description

0 substance-id[1] k[M · L−3 · T−1] ∂c
[substance-id]
m

∂t
= k

Where c
[substance-id]
m is mobile concentration of substance with id substance-id and ∆t is

the internal transport time step defined by CFL condition.

text char[] — is a text description of the material, up to 256 chars. This parameter is

13

optional.

Comments concerning 1-2-3-FLOW:

• If number-of-materials differs from actual number of material lines in the file, it stops
the calculation.

14

Boundary conditions file format, version 1.0

The file is divided in two sections, header and data.

$BoundaryFormat

1.0 file-type data-size
$EndBoundaryFormat

$BoundaryConditions

number-of-conditions
condition-number type <type-specific-data> where <where-data> number-of-tags <tags>
[text]
...

$EndBoundaryConditions

where

file-type int — is equal 0 for the ASCII file format.

data-size int — the size of the floating point numbers used in the file. Usually data-size =
sizeof(double).

number-of-conditions int — Number of boundary conditions defined in the file.

condition-number int — is the number (index) of the n-th boundary condition. These num-
bers do not have to be given in a consecutive (or even an ordered) way. Each number
has to be given only onece, multiple definition are treated as inconsistency of the file
and cause stopping the calculation.

type int — is type of the boundary condition. See below for definitions of the types.

<type-specific-data> — format of this list depends on the type. See below for specification
of the type-specific-data for particular types of the boundary conditions.

where int — defines the way, how the place for the contidion is prescribed. See below for
details.

<where-data> — format of this list depends on where and actually defines the place for the
condition. See below for details.

number-of-tags int — number of integer tags of the boundary condition. It can be zero.

< tags > number-of-tags*int — list of tags of the boundary condition. Values are separated
by spaces or tabs. By default we set number-of-tags=1, where tag1 defines group of
boundary conditions, ”type of water” in our jargon.

[text] char[] — arbitrary text, description of the fracture, notes, etc., up to 256 chars. This
is an optional parameter.

15

Types of boundary conditions and their data

type = 1 — Boundary condition of the Dirichlet’s type

type = 2 — Boundary condition of the Neumann’s type

type = 3 — Boundary condition of the Newton’s type

type type-specific-data Description

1 scalar Prescribed value of pressure or piez. head
2 flux Prescribed value of flux through the boundary
3 scalar sigma Scalar value and the σ coefficient

scalar, flux and sigma are of the double type.

Ways of defining the place for the boundary condition

where = 1 — Condition on a node

where = 2 — Condition on a (generalized) side

where = 3 — Condition on side for element with only one external side.

where <where-data> Description

1 node-id Node id number, according to .MSH file
2 elm-id sid-id Elm. id number, local number of side
3 elm-id Elm. id number

The variables node-id, elm-id, sid-id are of the int type.

Comments concerning 1-2-3-FLOW:

• We assume homegemous Neumman’s condition as the default one. Therefore we do not
need to prescribe conditions on the whole boundary.

• If the condition is given on the inner edge, it is treated as an error and stops calculation.

• Any inconsistence in the file stops calculation. (Bad number of conditions, multiple
definition of condition, reference to non-existing node, etc.)

• At least one of the conditions has to be of the Dirichlet’s or Newton’s type. This is
well-known fact from the theory of the PDE’s.

• Local numbers of sides for where = 2 must be lower than the number of sides of the
particular element and greater then or equal to zero.

• The element specified for where = 3 must have only one external side, otherwise the
program stops.

16

Neighbouring file format, version 1.0

The file is divided in two sections, header and data. The extension .NGH is highly recomended
for files of this type.

$NeighbourFormat

1.0 file-type data-size
$EndNeighbourFormat

$Neighbours

number-of-neighbours
neighbour-number type <type-specific-data>
...

$EndNeighbours

where

file-type int — is equal 0 for the ASCII file format.

data-size int — the size of the floating point numbers used in the file. Usually data-size =
sizeof(double).

number-of-neighbours int — Number of neighbouring defined in the file.

neighbour-number int — is the number (index) of the n-th neighbouring. These numbers do
not have to be given in a consecutive (or even an ordered) way. Each number has to be
given only onece, multiple definition are treated as inconsistency of the file and cause
stopping the calculation.

type int — is type of the neighbouring.

<type-specific-data> — format of this list depends on the type.

Types of neighbouring and their specific data

type = 10 — “Edge with common nodes”, i.e. sides of elements with common nodes. (Pos-
sible many elements)

type = 11 — “Edge with specified sides”, i.e. sides of the edge are explicitly defined. (Possible
many elements)

type = 20 — “Compatible”, i.e. volume of an element with a side of another element. (Only
two elements)

type = 30 — “Non-compatible” i.e. volume od an element with volume of another element.
(Only two elements)

type type-specific-data Description

10 n elm eid1 eid2 . . . number of elements and their ids
11 n sid eid1 sid1 eid2 sid2 . . . number of sides, their elements and local ids
20 eid1 eid2 sid2 coef Elm 1 has to have lower dimension
30 eid1 eid2 coef Elm 1 has to have lower dimension

coef is of the double type, other variables are ints.

17

Comments concerning 1-2-3-FLOW:

• Every inconsistency or error in the .NGH file causes stopping the calculation. These are
especially:

– Multiple usage of the same neighbour-number.

– Difference between number-of-neighbours and actual number of data lines.

– Reference to nonexisting element.

– Nonsence number of side.

• The variables sid? must be nonegative and lower than the number of sides of the
particular element.

18

Sources file format, version 1.0

The file is divided in two sections, header and data. The extension .SRC is highly recomended
for files of this type.

$SourceFormat

1.0 file-type data-size
$EndSourceFormat

$Sources

number-of-sources
eid density
...

$EndSources

where

file-type int — is equal 0 for the ASCII file format.

data-size int — the size of the floating point numbers used in the file. Usually data-size =
sizeof(double).

number-of-sources int — Number of sources defined in the file.

eid int — is id-number of the element, where the source lies.

density double — is the density of the source, in volume of fluid per time unit. Possitive
values are sources, negative are sinks.

Comments concerning 1-2-3-FLOW:

• Every inconsistency or error in the .SRC file causes stopping the calculation. These are
especially:

– Multiple usage of the same source-number.

– Difference between number-of-sources and actual number of data lines.

– Reference to nonexisting element.

19

ASCII post-processing file format version 1.2

File format of this file comes from the GMSH system. Following text is copied from the
GMSH documentation.

=============== BEGIN OF INSERTED TEXT ===============

The ASCII post-processing file is divided in several sections: one format section, enclosed
between $PostFormat-$EndPostFormat tags, and one or more post-processing views, enclosed
between $View-$EndView tags:

$PostFormat

1.2 file-type data-size
$EndPostFormat

$View

view-name nb-time-steps
nb-scalar-points nb-vector-points nb-tensor-points
nb-scalar-lines nb-vector-lines nb-tensor-lines
nb-scalar-triangles nb-vector-triangles nb-tensor-triangles
nb-scalar-quadrangles nb-vector-quadrangles nb-tensor-quadrangles
nb-scalar-tetrahedra nb-vector-tetrahedra nb-tensor-tetrahedra
nb-scalar-hexahedra nb-vector-hexahedra nb-tensor-hexahedra
nb-scalar-prisms nb-vector-prisms nb-tensor-prisms
nb-scalar-pyramids nb-vector-pyramids nb-tensor-pyramids
nb-text2d nb-text2d-chars nb-text3d nb-text3d-chars
<time-step-values>
<scalar-point-values>
<vector-point-values>
<tensor-point-values>
<scalar-line-values>
<vector-line-values>
<tensor-line-values>
<scalar-triangle-values>
<vector-triangle-values>
<tensor-triangle-values>
<scalar-quadrangle-values>
<vector-quadrangle-values>
<tensor-quadrangle-values>
<scalar-tetrahedron-values>
<vector-tetrahedron-values>
<tensor-tetrahedron-values>
<scalar-hexahedron-values>
<vector-hexahedron-values>
<tensor-hexahedron-values>
<scalar-prism-values>
<vector-prism-values>
<tensor-prism-values>
<scalar-pyramid-values>

20

<vector-pyramid-values>
<tensor-pyramid-values>
<text2d> <text2d-chars>
<text3d> <text3d-chars>
$EndView

where:

file-type is an integer equal to 0 in the ASCII file format.

data-size is an integer equal to the size of the floating point numbers used in the file (usually,
data-size = sizeof(double)).

view-name is a string containing the name of the view (max. 256 characters).

nb-time-steps is an integer giving the number of time steps in the view.

nb-scalar-points, nb-vector-points, . . . are integers giving the number of scalar points, vector
points,. . . in the view.

nb-text2d, nb-text3d are integers giving the number of 2D and 3D text strings in the view.

nb-text2d-chars, nb-text3d-chars are integers giving the total number of characters in the 2D
and 3D strings.

time-step-values is a list of nb-time-steps double precision numbers giving the value of the
time (or any other variable) for which an evolution was saved.

scalar-point-value, vector-point-value, . . . are lists of double precision numbers giving the
node coordinates and the values associated with the nodes of the nb-scalar-points scalar
points, nb-vector-points vector points,. . . , for each of the time-step-values.

For example, vector-triangle-value is defined as:

coord1-node1 coord1-node2 coord1-node3
coord2-node1 coord2-node2 coord2-node3
coord3-node1 coord3-node2 coord3-node3
comp1-node1-time1 comp2-node1-time1 comp3-node1-time1
comp1-node2-time1 comp2-node2-time1 comp3-node2-time1
comp1-node3-time1 comp2-node3-time1 comp3-node3-time1
comp1-node1-time2 comp2-node1-time2 comp3-node1-time2
comp1-node2-time2 comp2-node2-time2 comp3-node2-time2
comp1-node3-time2 comp2-node3-time2 comp3-node3-time2
...

text2d is a list of 4 double precision numbers:

coord1 coord2 style index

where coord1 and coord2 give the coordinates of the leftmost element of the 2D string
in screen coordinates, index gives the starting index of the string in text2d-chars and
style is currently unused.

21

text2d-chars is a list of nb-text2d-chars characters. Substrings are separated with the ‘∧’
character (which is a forbidden character in regular strings).

text3d is a list of 5 double precision numbers

coord1 coord2 coord3 style index

where coord1, coord2 and coord3 give the coordinates of the leftmost element of the 3D
string in model (real world) coordinates, index gives the starting index of the string in
text3d-chars and style is currently unused.

text3d-chars is a list of nb-text3d-chars chars. Substrings are separated with the ‘∧’ character.

=============== END OF INSERTED TEXT ===============

More information about GMSH can be found at its homepage:
http://www.geuz.org/gmsh/

Comments concerning FFLOW20:

• FFLOW20 generates .POS file with four views: Elements’ pressure, edges’ pressure, in-
terelement fluxes and complex view. First three views shows ”raw data”, results ob-
tained by the solver without any interpolations, smoothing etc. The fourth view contains
data processed in this way.

Elements’ pressure: Contains only scalar-triangle-values. Triangles are the same as
the elements of the original mesh. We prescribe constant value of the pressure on
the element, as it was calculated by the solver as the unknown p. Therefore, the
three values on every triangle are the same.

Edge pressure: Contains only scalar-line-values. The lines are the same as the edges
of the elements of the original mesh. We prescribe constant value of the pressure
on the edge, as it was calculated by the solver as the unknown λ. Therefore, the
two values on every edge are the same.

Interelement flux: Contains vector-point-values and scalar-triangle-values. The scalar-
triangle-values carry no information, all values are set to 0, these are in the file
only to define a shape of the elements. The points for the vector-point-values are
midpoints of the sides of the elements. The vectors are calculated as un, where
u is value of the flux calculated by the solver and n is normalized vector of outer
normal of the element’s side.

Complex view: Contains scalar-triangle-values and vector-point-values. The scalar-
triangle-values shows the shape of the pressure field. The triangles are the the same
as the elements of the original mesh. Values of pressure in nodes are interpolated
from ps and λs. The vector-point-values shows the velocity of the flow in the centres
of the elements.

22

