
Technical university of Liberec

Faculty of mechatronics, informatics
and interdisciplinary studies

Flow123d

version 3.9.0

User Guide and Input Reference

Liberec, 2022

Authors:

Jan Březina, Jan Stebel, David Flanderka, Pavel Exner

Acknowledgment

Release 3.9.0 was supported by the TAČR project no. TH03010227: Software pro
komplexńı a stochastické hydrogeologické modely.

2

Contents

1 Getting Started 5
1.1 Introduction . 5
1.2 Reading Documentation . 6
1.3 Installing Flow123d . 6

1.3.1 Installing Flow123d on Linux . 7
1.3.2 Installing Flow123d on Windows 7

1.4 Running Flow123d . 8
1.4.1 Running Flow123d on Linux . 8
1.4.2 Running Flow123d on Windows 10

1.5 Flow123d arguments . 11
1.6 Tutorial Problem . 13

1.6.1 Geometry . 13
1.6.2 YAML File Format . 14
1.6.3 Flow Setting . 15
1.6.4 Transport Setting . 16
1.6.5 Reaction Term . 17
1.6.6 Results . 19

2 Mathematical Models of Physical Reality 21
2.1 Meshes of Mixed Dimension . 21
2.2 Advection-Diffusion Processes on Fractures 22
2.3 Darcy Flow Model . 24

2.3.1 Coupling on mixed meshes . 25
2.3.2 Boundary conditions . 26
2.3.3 Steady and unsteady Darcian flow 27
2.3.4 Initial condition . 28
2.3.5 Water balance . 28
2.3.6 Richards Equation . 28
2.3.7 Coupling of dimensions for non-conforming meshes 29

2.4 Transport of Substances . 29
2.5 Reaction Term in Transport . 33

2.5.1 Dual Porosity . 35
2.5.2 Equilibrial Sorption . 35
2.5.3 Sorption in Dual Porosity Model 37
2.5.4 Radioactive Decay . 37
2.5.5 First Order Reaction . 39

2.6 Heat Transfer . 39
2.7 Mechanics . 42

3

3 Numerical Methods 45
3.1 Diagonalized Mixed-Hybrid Method . 45
3.2 Mixed-Hybrid Method on Non-conforming Mixed Meshes 47

3.2.1 P0 method . 48
3.2.2 P1 method . 48

3.3 Discontinuous Galerkin Method . 48
3.4 Finite Volume Method for Convective Transport 50
3.5 Solution Issues for Reaction Term . 51

3.5.1 Dual Porosity . 51
3.5.2 Equilibrial Sorption . 52
3.5.3 System of Linear Ordinary Differential Equations 54

4 File Formats 55
4.1 Main Input File . 55

4.1.1 YAML basics . 55
4.1.2 Flow123d input types . 58
4.1.3 Input subsystem . 63

4.2 Important Record Types of Flow123d Input 64
4.2.1 Mesh Record . 64
4.2.2 Input Fields . 65
4.2.3 Output Records . 68

4.3 Mesh and Data File Format MSH ASCII 69
4.4 Output Files . 71

4.4.1 Auxiliary Output Files . 71

5 Tutorials 75
5.1 1D column . 75
5.2 1D column transport . 78
5.3 2D tunnel . 81
5.4 Fractures and diffusion . 85
5.5 Fractures and sorption . 90
5.6 Fractures and dual porosity . 91
5.7 Heat transport . 92

6 Main Input File Reference 98

4

Chapter 1

Getting Started

1.1 Introduction

Flow123d is a software for simulating water flow, reactionary solute transport, heat
transfer, and mechanics in a heterogeneous porous and fractured medium. In partic-
ular, it is well-suited for simulations of underground processes in a crystalline rock.
The program is able to describe explicitly processes in 3D medium, 2D fractures, and
1D channels and exchange between domains of different dimensions. Therefore, the
computational mesh is a collection of tetrahedra, triangles, and line segments.
Two water flow models are available: a model for a saturated medium based on the Darcy
law and a model for a partially saturated medium described by Richards’ equation. Both
models use the mixed-hybrid finite element method for the space discretization and the
implicit Euler method for the time discretization. Both models can also switch between
a transient case and a sequence of steady states within a single simulation. The model
for unsaturated medium uses a lumped variant of the mixed-hybrid method to satisfy
the maximum principle and to guarantee stability for short time steps.
In the current version, only the model for saturated media can be sequentially coupled
with the transport models, including two models for the solute transport and one model
for the heat transfer.
The finite volume solute transport model can deal only with a pure advection of several
substances without any diffusion-dispersion term. It uses the explicit Euler method
for the time discretization. The discontinuou Galerkin (DG) solute transport model
describes a general advection with hydrodynamic dispersion for several substances. It
uses the implicit Euler method for time discretization and the discontinuous Galerkin
method of the variable order for the discretization in space. The operator splitting
method can be used to couple any of these two solute transport models with various
processes described by the reaction term. The reaction term can treat any meaningful
combination of the dual porosity, equilibrium sorptions, decays, and linear reactions.
The heat transfer model assumes equilibrium between the temperature of the rock and
of the fluid phase. It uses the same numerical scheme as the second transport model,
i.e., the DG method with the implicit time discretization.
The mechanical model computes linear elastic problems, taking into account the reduced
dimension approach. It can be coupled with the flow model to solve poroelastic problems.

5

This coupling is realized by an iterative scheme. Nonlinear dependency between strain
and hydraulic conductivity and nonlinearity due to contacts are supported. The shear
stress effects and friction model on the fractures is under development.
The program supports the output of all input and output fields into two file formats.
One can use the GMSH mesh generator and post-processor file format or the output
into widely supported VTK format. In particular, we recommend Paraview software for
the visualization and post-processing of the VTK data. Both formats can be used for
input as well.
The program is implemented in C/C++ using the PETSc library for linear algebra. All
models can run in parallel using the MPI environment; however, the scalability of the
whole program is limited due to serial mesh data structures.
The program is distributed under GNU GPL v. 3 license and is available on the project
web page: http://flow123d.github.io
with sources on the GitHub: https://github.com/flow123d/flow123d.

1.2 Reading Documentation

The Flow123d documentation has two main parts. Chapters 1 to 5 form a user manual,
while the last Chapter 6 provides an input reference. The user manual starts with
Chapter 1 giving instructions for the installation and execution of the program. The
Chapter 2 provides a detailed description of the implemented mathematical models.
The Chapter 3 presents used numerical methods. The input and output file formats are
documented in Chapter 4. Finally, Chapter 5 consists of tutorial problems.
The input reference guide, consisting only of Chapter 6, is automatically generated.
It mirrors the code directly and describes the whole structure of the main input file.
Description of input records, their structure, and default values are supplied there, and
bidirectional links to the user manual are provided.
The document is interactive; the blue text marks the links in the document, and the
magenta text marks the web links.

1.3 Installing Flow123d

Software Flow123d requires the tool Docker. Docker is an open-source project that auto-
mates the deployment of Linux applications inside software containers. Entire Flow123d
software is packed in a Docker image that also contains necessary libraries and crucial
components of the Linux operating system.
The installation process imports the Docker image into the user’s machine and person-
alizes the Docker image. The installation instructions for Linux and Windows operating
systems are provided in the two following sections.

6

http://flow123d.github.io
https://github.com/flow123d/flow123d
https://www.docker.com

1.3.1 Installing Flow123d on Linux

The installation is done under a regular user, who must be in the group ’docker’. Down-
load the Linux installation package archive

flow123d_<version>_linux_install.tar.gz

from Official pages and extract it to any folder:

$> tar -xzf flow123d_<version>_linux_install.tar.gz

This will create a directory flow123d_<version>. In the next step, navigate to this
directory and execute the install.sh script. Example output:

$> cd flow123d_3.0.4
$> ./install.sh
Pulling docker image ’flow123d/3.0.4’
...
flow123d/3.0.4
Installation of Flow123d finished successfully.
Run Flow123d using script fterm.sh or flow123d.sh in bin folder.
You can start by printing the version of Flow123d:

bin/fterm.sh run --version

The install script will download Docker image from the Docker Hub. Whole process
may take several minutes (depending on user’s machine performance and internet con-
nectivity).

1.3.2 Installing Flow123d on Windows

Before you install

This version uses Docker Desktop, previous versions which used Docker for Windows
and Docker Toolbox will stop working.
Make sure your system fullfills following requirements in order to support Docker Desktop:

• Windows 10 64bit: Pro, Enterprise or Education (1607 Anniversary Update, Build
14393 or later).

• Virtualization is enabled in BIOS. Typically, virtualization is enabled by default.
This is different from having Hyper-V enabled. For more detail see Virtualization
must be enabled in Troubleshooting.

• CPU SLAT-capable feature.

• At least 4GB of RAM.

7

http://flow123d.github.io/
https://hub.docker.com/u/flow123d
https://docs.docker.com/docker-for-windows/troubleshoot/#virtualization-must-be-enabled
https://docs.docker.com/docker-for-windows/troubleshoot/#virtualization-must-be-enabled

Installation

To install Flow123d on Windows, download installer from Official pages, execute it and
follow instructions on your screen.
If for some reason the installation failed, make sure everything below is in order:

Flow123d troubleshooting

• Powershell is installed: On the Windows systems we require PowerShell. Win-
dows PowerShell needs to be installed on Windows Server 2008 and Windows
Vista only. It is already installed on Windows Server 2008 R2 and Windows 7 and
higher. To install PowerShell follow instructions at Microsoft pages.

• Powershell is in the system PATH: Make sure powershell command is in the
system PATH. PowerShell executable location is specific to the particular Windows
version, but usual location is:

%SystemRoot%\system32\WindowsPowerShell\v1.0\powershell.exe

To add this location to the system PATH variable follow the instructions at Mi-
crosoft pages.

• For detailed instructions refer to Docker docs.

Uninstalling Flow123d

To uninstall Flow123d, in Windows open Apps & features (Aplikace a funkce in
Czech), find the Flow123d in the list and click uninstall. This will only uninstall the
Flow123d but not Docker Desktop.

Reinstalling Flow123d

If you are installing same version of Flow123d again, installation process will be the
same, except Docker Desktop installation will be skipped.

1.4 Running Flow123d

1.4.1 Running Flow123d on Linux

All necessary scripts for running Flow123d are located in the bin subdirectory of the
installation directory flow123d_<version>. From the user’s perspective, an unpleasant
issue with the Docker container is that it cannot easily interact with the host file system
by default. Using the supplied scripts in bin will make things a lot easier for the user.
The directory bin contains:

8

http://flow123d.github.io/
https://msdn.microsoft.com/en-us/powershell/scripting/setup/installing-windows-powershell
http://www.powershelladmin.com/wiki/PowerShell_Executables_File_System_Locations
https://msdn.microsoft.com/en-us/library/office/ee537574(v=office.14).aspx
https://msdn.microsoft.com/en-us/library/office/ee537574(v=office.14).aspx
https://docs.docker.com/desktop/windows/

Figure 1.1: Changing default font family and font size

• fterm.sh
The script will invoke a shell inside the Docker container and mount the user’s
home directory. In this shell, the user has access to the system path where
Flow123d is installed. By default, the command flow123d is in the PATH vari-
able.
Note: On some systems, the shell’s font is extremely small, you can change this
behavior by right-clicking on the window bar and selecting default or (vychozi
in Czech) see Figure 1.1.

• flow123d.sh
The script will run Flow123d inside the Docker container and mount the user’s
home directory. All arguments passed to this script will be passed to flow123d
binary file inside the container.

• runtest.sh
The script will run Flow123d tests inside the Docker container and mount the user’s
home directory. All arguments passed to this script will be passed to runtest.py
Python script inside the container.

Note: Using the above .sh scripts will mount the user’s home directory to the Docker
container under the same name. Also your current working directory will be the same.
The example below shows the behavior of the scripts:

$> pwd
/home/username/local/flow123d_3.0.4

$> ls
bin doc install.sh tests uninstall.sh

9

$> bin/fterm.sh
___ _ _ ___ ____ _

__		_____ __ _/	_)__ / __	
_		/ _ \ V V /	/ /	_ \/ _
_		____/_/_/	_/___	___/__,_

3.0.4
flow@flow:3.0.4 /home/username/local/flow123d_3.0.4$> ls
bin doc install.sh tests uninstall.sh

1.4.2 Running Flow123d on Windows

On system Windows you will have a shortcut on your desktop, to verify everything is
working. To run flow123d from anywhere simple type flow123d.bat or fterm.bat (in
terminal, powershell, Total Commander, . . .).
Each bat file serves a different purpose:

• flow123d.bat serves as a binary, it possible to run the bat file multiple times
(useful for a batch processing)

• fterm.bat serves as an interactive shell console session invoked inside Docker
container.

By default flow123d.bat will run the last installed version on your system. If you have
multiple version installed and want to run specific one, each version has a unique bat files
flow123d-<version>.bat and fterm-<version>.bat file (e.g. flow123d-3.0.9.bat
and fterm-3.0.9.bat).

Running from other batch file

The Windows system calls the batch files in the different way then the binaries. In
particular the calling batch file is not processed further after the child batch file is done.
In order to do so, one have to use the CALL command. This is especially necessary for
various calibration tools. The correct calling batch file may look like:

echo "Starting Flow123d ..."
call flow123d.bat a_simulation.yaml
echo "... simulation done."

Adjusting memory of virtual machine

To change the memory limits of the Virtual machine, open the Docker Settings dialog
(right click on the whale icon) and select Settings. Navigate to Advanced tab and
adjust the memory. Detailed instructions can be found Docker docs.

10

https://docs.docker.com/desktop/windows/#advanced

1.5 Flow123d arguments

When you are inside of the Docker container, you have access to the entire file system of
the container. Flow123d is installed in /opt/flow123d directory. Folder bin contains
binary files and is automatically added to the variable PATH, so that every executable in
this folder can be called from anywhere.
The main Flow123d binary is located in bin/flow123d and accepts the following argu-
ments:

--help
Help for parameters interpreted by Flow123d. Remaining parameters are passed
to PETSC.

-s, --solve <file>
Set principal input file. Can be in YAML (or JSON) file format. All relative paths
of the input files are relative to the location of the principal input file.

-i, --input_dir <directory>
The placeholder ${INPUT} used in the path of an input file will be replaced by the
<directory>. Default value is input.

-o, --output_dir <directory>
All paths for output files will be relative to this <directory>. Default value is
output.

-l, --log <file_name>
Set base name of log files. Default value is flow123d. The log files are individual
for every MPI process, placed in the output directory. The MPI rank of the process
and the log suffix are appended to the base name.

--version
Display version and build information.

--no_log
Turn off logging.

--no_profiler
Turn off profiler output.

--petsc_redirect <file>
Redirect all PETSc stdout and stderr to given file.

--input_format
Print a description of the main input file in JSON format. This is used by GeoMop
model editor and by python scripts for generating reference documentation in
Latex or HTML format.

--yaml_balance
Generate balance file also in machine readable YAML format. Will be default in
future, used by GeoMop.

11

--no_signal_handler
For debugging purpose.

The -s identifier can be ommited:

flow123d <main_input>.yaml <options> <PETSC options>

Any different parameters are passed to the PETSC library. An advanced user can
influence lot of parameters of linear solvers. In order to get list of supported options use
parameter -help together with a valid input file. Options for various PETSC modules
are displayed when the module is used for the first time.
Alternatively, you can use python script exec_parallel located in bin/python to start
parallel jobs or limit resources used by the program.
After double dash specify which mpiexec binary will be used (MPI-EXECUTABLE) and
then specify what should be executed. The script does not need to run solely flow123d.
If we want to run command whoami in parallel we can do:

bin $> exec_parallel -n 4 -- ./mpiexec whoami

To execute Flow123d in parallel we can do:

bin $> exec_parallel -n 4 -- ./mpiexec ./flow123d --help

exec_parallel [OPTIONS] -- [MPI-EXECUTABLE] [PARAMS]

The script has following options:

-h, --help
Usage overview.

--host <hostname>
Valid only when option --queue is set. Default value is the host name ob-
tained by python platform.node() call, this argument can be used to override
it. Resulting value is used to select a correct PBS module from lookup table
config/host_table.yaml.

-n <number of processes>
Specify number of MPI parallel processes for calculation.

-t, --limit-time <timeout>
Upper estimate for real running time of the calculation. Kill calculation after
timeout seconds. Value can also be float number. When in PBS mode, value can
also affect PBS queue.

-m, --limit-memory <memory limit>
Limits total available memory to <memory limit> MB in total.

12

-q, --queue <queue>
If set activates PBS mode. If argument queue is also set selects particular job
queue on PBS systems otherwise default PBS queue is used. Default PBS queue
automatically choose valid queue based on resources.

Another script which runs Flow123d is runtest.sh. This script will run tests speci-
fied as arguments. Script accepts both folders and yaml files. To see full details run
runtest.sh --help. The script will run yaml tests and then compare results with
reference output. Example usage of the script:

$> bin/runtest.sh tests/10_darcy/01_source.yaml
configuration:
--

yaml files 1
total cases 2

--
execution:

done [01 of 02] 1 x 10_darcy/01_source [00:03.070] [31 MiB] exitcode 0
done [02 of 02] 2 x 10_darcy/01_source [00:01.378] [31 MiB] exitcode 0

--
SUMMARY
--

[PASSED] | 1 x 10_darcy/01_source [2.76 sec]
[PASSED] | 2 x 10_darcy/01_source [1.07 sec]
--
[PASSED] | passed=2, failed=0, skipped=0 in [3.83 sec]

--

1.6 Tutorial Problem

In the following section, we shall provide an example cookbook for preparing and running
a model based on one of the test problems, namely

tests/21_solute_fv_frac/03_fv_dp_sorp_small.yaml.

We shall start with the preparation of the geometry using external software, and then
we shall go step by step through the commented main input file. The problem includes
steady Darcy flow, transport of two substances with explicit time discretization, and
a reaction term consisting of dual porosity and sorption models. More tutorials focused
on particular features can be found in Chapter 5.

1.6.1 Geometry

We consider a simple 2D problem with a branching 1D fracture (see Figure 1.2 for the
geometry). To prepare a mesh file we use the GMSH software. First, we construct
a geometry file. In our case the geometry consists of:

13

http://geuz.org/gmsh/

• one physical 2D domain corresponding to the whole square

• three 1D physical domains of the fracture

• four 1D boundary physical domains of the 2D domain

• three 0D boundary physical domains of the 1D domain

In this simple example, we can in fact combine physical domains in every group, however
we use this more complex setting for demonstration purposes. Using GMSH graphical
interface we can prepare the GEO file where physical domains are referenced by numbers,
then we use any text editor and replace numbers with string labels in such a way that
the labels of boundary physical domains start with the dot character. These are the
domains where we will not do any calculations but we will use them for setting boundary
conditions. Finally, we get the GEO file like this:

1 cl1 = 0.16;
2 Point(1) = {0, 1, 0, cl1};
3 Point(2) = {1, 1, 0, cl1};
4 Point(3) = {1, 0, 0, cl1};
5 Point(4) = {0, 0, 0, cl1};
6 Point(6) = {0.25, -0, 0, cl1};
7 Point(7) = {0, 0.25, 0, cl1};
8 Point(8) = {0.5, 0.5, -0, cl1};
9 Point(9) = {0.75, 1, 0, cl1};

10 Line(19) = {9, 8};
11 Line(20) = {7, 8};
12 Line(21) = {8, 6};
13 Line(22) = {2, 3};
14 Line(23) = {2, 9};
15 Line(24) = {9, 1};
16 Line(25) = {1, 7};
17 Line(26) = {7, 4};
18 Line(27) = {4, 6};
19 Line(28) = {6, 3};

20 Line Loop(30) = {20, -19, 24, 25};
21 Plane Surface(30) = {30};
22 Line Loop(32) = {23, 19, 21, 28, -22};
23 Plane Surface(32) = {32};
24 Line Loop(34) = {26, 27, -21, -20};
25 Plane Surface(34) = {34};
26 Physical Point(".1d_top") = {9};
27 Physical Point(".1d_left") = {7};
28 Physical Point(".1d_bottom") = {6};
29 Physical Line("1d_upper") = {19};
30 Physical Line("1d_lower") = {21};
31 Physical Line("1d_left_branch") = {20};
32 Physical Line(".2d_top") = {23, 24};
33 Physical Line(".2d_right") = {22};
34 Physical Line(".2d_bottom") = {27, 28};
35 Physical Line(".2d_left") = {25, 26};
36 Physical Surface("2d") = {30, 32, 34};

Notice the labeled physical domains on lines 26 – 36. Then we just set the discretization
step cl1 and use GMSH to create the mesh file. The mesh file contains both the ’bulk’
elements where we perform calculations and the ’boundary’ elements (on the boundary
physical domains) where we only set the boundary conditions.

1.6.2 YAML File Format

The main input file uses the YAML file format with some restrictions. We prefer to call
YAML objects records and we introduce also abstract records that mimic C++ abstract
classes. Arrays have only elements of the same type (possibly using abstract record
types for polymorphism). The usual keys are in lower case and without spaces (using
underscores instead). For detailed description see Section 4.1.
Having the computational mesh from the previous step, we can create the main input
file with the description of our problem.

14

1 flow123d_version: 3.1.0
2 problem: !Coupling_Sequential
3 description: ’Transport 1D-2D (convection, reaction term, sources).’
4 mesh:
5 mesh_file: ../00_mesh/square_1x1_frac_fork.msh
6 regions:
7 - !Union
8 name: 1d_domain
9 regions:

10 - 1d_upper
11 - 1d_lower
12 - 1d_left_branch

The version of Flow123d for which the file is a valid input is specified at the first line.
Then the description starts with a selection of the problem type (Coupling_Sequential),
and a textual problem description. Next, the computational mesh is defined; here it con-
sists of the name of the mesh file and the declaration of one region given as the union of
all 1D regions, i.e., representing the whole fracture. Other keys of the mesh record allow
labeling regions given only by numbers, defining new regions in terms of element num-
bers (e.g to have a leakage on single element), defining boundary regions, and several
operations with region sets, see Section 4.2.1 for details.

1.6.3 Flow Setting

Next, we setup the flow problem. We shall consider a steady flow (i.e. with zero stora-
tivity) driven only by the pressure gradient (no gravity), setting the Dirichlet bound-
ary condition on the whole boundary with the pressure head equal to x + y. The
conductivity will be k2 = 10−7 ms−1 on the 2D domain and k1 = 10−6 ms−1 on the 1D
domain. We leave the default value for the cross_section of the 2D domain, meaning
that the thickness of 2D domain is δ2 = 1 m. For the 1D fractures cross-section, we pre-
scribe δ1 = 0.04 m2 on the 1D domain. The transition coefficient σ2 between dimensions
can be scaled by setting the dimensionless parameter σ21 (sigma). This can be used for
simulating additional effects which prevent the liquid transition from/to a fracture, like
a thin resistance layer. Notice that the scaling parameter is set on the lower dimensional
domain, i.e. σ21 = 0.9 on line 18. Read Section 2.3 for more details.

13 flow_equation: !Flow_Darcy_MH
14 input_fields:
15 - region: 1d_domain
16 conductivity: 1.0e-06
17 cross_section: 0.04
18 sigma: 0.9
19 - region: 2d
20 conductivity: 1.0e-07
21 - region: .BOUNDARY
22 bc_type: dirichlet
23 bc_pressure: !FieldFormula
24 value: x+y

15

25 nonlinear_solver:
26 linear_solver: !Petsc
27 a_tol: 1.0e-12
28 r_tol: 1.0e-12
29 output:
30 fields:
31 - pressure_p0
32 - velocity_p0
33 output_stream:
34 file: flow.pvd
35 format: !vtk
36 variant: ascii

On line 13, we specify particular implementation (numerical method) of the flow solver,
in this case the Mixed-Hybrid solver for steady problems. On lines 14 – 24 in the
array input_fields, we set both mathematical fields that live on the computational
domain and those defining the boundary conditions. We use implicitly defined region
.BOUNDARY that contains all boundary regions and we set there Dirichlet boundary
condition in terms of the pressure head. In this case, the field is not of the implicit
type FieldConstant, so we must specify the type of the field !FieldFormula. See
Section 4.2.2 for other field types. Next, we specify the type of the linear solver and its
tolerances. On lines 29 – 32, we specify which output fields should be written to the
output stream (that means particular output file, with given format). See Section 4.4
for the list of available output fields. Currently, we support only one output_stream
per equation. We specify the filename and the format of the output stream (the used
ASCII VTK format is the default).

1.6.4 Transport Setting

The flow model is followed by a transport model in the record solute_equation be-
ginning on line 37. Here, we use an implementation called Solute_Advection_FV which
stands for an explicit finite volume solver of the convection equation (without diffu-
sion). The operator splitting method is used for equilibrium sorption as well as for dual
porosity model and first order reactions simulation.

37 solute_equation: !Coupling_OperatorSplitting
38 substances:
39 - name: age # water age
40 molar_mass: 0.018
41 - name: U235 # uranium 235
42 molar_mass: 0.235
43 transport: !Solute_Advection_FV
44 input_fields:
45 - region: ALL
46 init_conc: 0
47 porosity: 0.25
48 # source is in the whole volume (l+s) -> times porosity
49 sources_density:

16

50 - 0.25
51 - 0
52 - region: .BOUNDARY
53 bc_conc:
54 - 0.0
55 - 1.0
56 time:
57 end_time: 1000000
58 balance:
59 cumulative: true

On lines 38 – 42, we set the transported substances, which are identified by their
names. Here, the first one is the age of the water, with the molar mass of water, and
the second one U235 is the uranium isotope 235. On lines 44 – 55, we set the input
fields, in particular zero initial concentration for all substances, porosity θ = 0.25 and
sources of concentration by sources_density. Notice line 46 where we can see only
single value since an automatic conversion is applied to turn the scalar zero into the
zero vector (of size 2 according to the number of substances).
The boundary fields are set on lines 52 – 55. We do not need to specify the type of the
condition since there is only one type in the Solute_Advection_FV transport model.
The boundary condition is equal to 1 for the uranium 235 and 0 for the age of the water
and is automatically applied only on the inflow part of the boundary.
We also have to prescribe the time setting – here it is only the end time of the simulation
(in seconds: 106 s ≈ 11.57 days). The step size is determined automatically from the
CFL condition, however, a smaller time step can be enforced if necessary.
Reaction term of the transport model is described in the next subsection, including dual
porosity and sorption.

1.6.5 Reaction Term

The input information for dual porosity, equilibrial sorption and possibly first order
reactions are enclosed in the record reaction_term, lines 60 – 104. Go to section 2.5
to see how the models can be chained.
The type of the first process is determined by !DualPorosity, on line 60. The input_fields
of the dual porosity model are set on lines 61 – 69 and the output is disabled by setting
an empty array on line 71.

60 reaction_term: !DualPorosity
61 input_fields:
62 - region: ALL
63 diffusion_rate_immobile:
64 - 0.01
65 - 0.01
66 porosity_immobile: 0.25
67 init_conc_immobile:
68 - 0.0

17

69 - 0.0
70 output:
71 fields: []
72 reaction_mobile: !SorptionMobile
73 solvent_density: 1000.0 # water
74 substances:
75 - age
76 - U235
77 solubility:
78 - 1.0
79 - 1.0
80 input_fields: &anchor1
81 - region: ALL
82 rock_density: 2800.0 # granite
83 sorption_type:
84 - none
85 - freundlich
86 distribution_coefficient:
87 - 0
88 - 1.598e-4
89 isotherm_other:
90 - 0
91 - 1.0
92 output:
93 fields: []
94 reaction_immobile: !SorptionImmobile
95 solvent_density: 1000.0 # water
96 substances:
97 - age
98 - U235
99 solubility:

100 - 1.0
101 - 1.0
102 input_fields: *anchor1
103 output:
104 fields: []
105 output_stream:
106 file: transport.pvd
107 format: !vtk
108 variant: ascii
109 times:
110 - step: 100000.0

Next, we define the equilibrial sorption model such that SorptionMobile type takes
place in the mobile zone of the dual porosity model while SorptionImmobile type
takes place in its immobile zone, see lines 72 and 94. Isothermally described sorption
simulation can be used in the case of low concentrated solutions without competition
between multiple dissolved species.

18

On lines 73 – 79, we set the sorption related input information. The solvent is water so
the solvent_density is supposed to be constant all over the simulated area. The vector
substances contains the list of names of solute substances which are considered to be
affected by the sorption. Solubility is a material characteristic of a sorbing substance
related to the solvent. Elements of the vector solubility define the upper bound of
aqueous concentration which can appear. This constrain is necessary because some
substances might have limited solubility and if the solubility exceeds its limit they start
to precipitate. solubility is a crucial parameter for solving a set of nonlinear equations,
described further.
The record input_fields covers the region specific parameters. All implemented types
of sorption can take the rock density in the region into account. The value of rock_density
is a constant in our case. The sorption_type represents the empirically determined
isotherm type and can have one of four possible values: {"none", "linear", "freundlich",
"langmuir"}. Linear isotherm needs just one parameter given whereas Freundlich
and Langmuir isotherms require two parameters. We will use Freundlich isotherm for
demonstration but we will set the other parameter (exponent) α = 1 which means
it will be the same as the linear type. We use value Kd = 1.598 · 10−4 kg−1m3 for
the distribution_coefficient according to (www.skb.se, report R-10-48 by James
Crawford, 2010).
On line 102, notice the reference pointing to the definition of input fields on lines 80 –
91. Only entire records can be referenced which is why we have to repeat parts of the
input such as solvent density and solubility (records for reaction mobile and reaction
immobile have different types).
On lines 93 and 104, we define which sorption specific outputs are to be written to the
output file. An implicit set of outputs exists. In this case we define an empty set of
outputs thus overriding the implicit one. This means that no sorption specific outputs
will be written to the output file. On lines 105 – 110 we specify which output fields
should be written to the output stream. Currently, we support output into VTK and
GMSH data format. In the output record for time-dependent process we have to specify
the time step (line 110) which determines the frequency of output data writing.

1.6.6 Results

In Figure 1.2 one can see the results: the pressure and the velocity field on the left and
the concentration of U235 at time t = 9 · 105 s on the right. Even though the pressure
gradient is the same both in the 2D domain and in the fracture, the velocity field is ten
times faster in the fracture due to its higher conductivity. Since porosity is the same,
the substance is transported faster by the fracture. Therefore nonzero concentration
appears in the bottom left of the 2D domain long before the main wave propagating
solely through the 2D domain reaches that corner.

19

0.40

0.80

1.20

1.60

0.09

1.89
pressure head

(a) Elementwise pressure head and
velocity field denoted by triangles.
(Steady flow.)

0.20

0.40

0.60

0.80

0.01

concentration
1.00

(b) Propagation of U235 from the inflow part
of the boundary.
(At the time 9 · 105 s.)

Figure 1.2: Results of the tutorial problem.

20

Chapter 2

Mathematical Models
of Physical Reality

In this chapter we describe mathematical models used in Flow123d. Then in chapter 4
we briefly describe structure of individual input files, in particular the main YAML file.
The complete description of the YAML format is given in chapter 6.
Flow123d provides models for Darcy flow in porous media as well as for the transport
and reactions of solutes. In this section, we describe mathematical formulations of these
models together with physical meaning and units of all involved quantities. In the first
section we present basic notation and assumptions about computational domains and
meshes that combine different dimensions. In the next section we derive approximation
of thin fractures by lower dimensional interfaces for a general transport process. Latter
sections describe details for models of particular physical processes.

2.1 Meshes of Mixed Dimension

Unique feature common to all models in Flow123d is the support of domains with
mixed dimension. Let Ω3 ⊂ R3 be an open set representing continuous approximation
of porous and fractured medium. Similarly, we consider a set of 2D manifolds Ω2 ⊂ Ω3,
representing the 2D fractures and a set of 1D manifolds Ω1 ⊂ Ω2 representing the 1D
channels or preferential paths (see Fig 2.1). We assume that Ω2 and Ω1 are polytopic
(i.e. polygonal and piecewise linear, respectively). For every dimension d = 1, 2, 3, we
introduce a triangulation Td of the open set Ωd that consists of finite elements T id, i =
1, . . . , Nd

E. The elements are simplices, i.e. lines, triangles and tetrahedra, respectively.
Present numerical methods used by the software require meshes satisfying the compat-
ibility conditions

T id−1 ∩ Td ⊂ Fd, where Fd =
⋃
k

∂T kd (2.1)

and
T id−1 ∩ Fd is either T id−1 or ∅ (2.2)

for every i ∈ {1, . . . , Nd−1
E }, j ∈ {1, . . . , Nd

E}, and d = 2, 3. That is, the (d − 1)-
dimensional elements are either between d-dimensional elements and match their sides
or they poke out of Ωd. Support for a coupling between non-compatible meshes of

21

Figure 2.1: Scheme of a problem with domains of multiple dimensions.

different dimensions is under development and partially supported by the Darcy Flow
model.

2.2 Advection-Diffusion Processes on Fractures

This section presents derivation of an abstract advection-diffusion process on 2D and
1D manifolds and its coupling with the higher dimensional domains. The reader not
interested in the details of this approximation may skip directly to the later sections
describing mathematical models of individual physical processes.
As was already mentioned, the unique feature of Flow123d is support of models liv-
ing on 2D and 1D manifolds. The aim is to capture features significantly influencing
the solution despite of their small cross-section. Such a tiny features are challenging
for numerical simulations since a direct discretization requires highly refined computa-
tional mesh. One possible solution is to model these features (fractures, channels) as
lower dimensional objects (2D and 1D manifolds) and introduce their coupling with the
surrounding continuum. The equations modeling a physical process on a manifold as
well as its coupling to the model in the surrounding continuum has to be derived from
the model on the 3D continuum. This section presents such a procedure for the case
of the abstract advection-diffusion process inspired by the paper [8]. Later, we apply
this abstract approach to particular advection-diffusion processes: Darcy flow, solute
transport, and heat transfer.
Let us consider a fracture as a strip domain

Ωf ⊂ [0, δ]×Rd−1

for d = 2 or d = 3 and surrounding continuum domains

Ω1 ⊂ (−∞, 0)×Rd−1,Ω2 ⊂ (δ,∞)×Rd−1.

Further, we denote by γi, i = 1, 2 the fracture faces common with domains Ω1 and Ω2
respectively. By x, y we denote normal and tangential coordinate of a point in Ωf . We
consider the normal vector n = n1 = −n2 = (1, 0, 0)>. An advection-diffusion process

22

is given by equations:

∂twi + divji = fi on Ωi, i = 1, 2, f, (2.3)
ji = −Ai∇ui + biwi on Ωi, i = 1, 2, f, (2.4)
ui = uf on γi, i = 1, 2, (2.5)

ji · n = jf · n on γi, i = 1, 2, (2.6)

where wi = wi(ui) is the conservative quantity and ui is the principal unknown, ji is
the flux of wi, fi is the source term, Ai is the diffusivity tensor and bi is the velocity
field. We assume that the tensor Af is symmetric positive definite with one eigenvector
in the direction n. Consequently the tensor has the form:

Af =
(
an 0
0 At

)

Furthermore, we assume that Af (x,y) = Af (y) is constant in the normal direction.
Our next aim is to integrate equations on the fracture Ωf in the normal direction and
obtain their approximations on the surface γ = Ωf ∩ {x = δ/2} running through the
middle of the fracture. For the sake of clarity, we will not write subscript f for quantities
on the fracture. To make the following procedure mathematically correct we have to
assume that functions ∂xw, ∂x∇yu, ∂xby are continuous and bounded on Ωf . Here and
later on bx = (b · n) n is the normal part of the velocity field and by = b − bx is the
tangential part. The same notation will be used for normal and tangential part of the
field q.
We integrate (2.3) over the fracture opening [0, δ] and use approximations to get

∂t(δW)− j2 · n2 − j1 · n1 + divJ = δF, (2.7)

where for the first term, we have used mean value theorem, first order Taylor expansion,
and boundedness of ∂xw to obtain approximation:∫ δ

0
w(x,y) dx = δw(ξy,y) = δW (y) +O(δ2|∂xw|),

where
W (y) = w(δ/2,y) = w(u(δ/2,y)) = w(U(y)).

Next two terms in (2.7) come from the exact integration of the divergence of the normal
flux jx. Integration of the divergence of the tangential flux jy gives the fourth term,
where we introduced

J(y) =
∫ δ

0
jy(x,y) dx.

In fact, this flux on γ is scalar for the case d = 2. Finally, we integrate the right-hand
side to get ∫ δ

0
f(x,y) dx = δF (y) +O(δ2|∂xf |), F (y) = f(δ/2,y).

Due to the particular form of the tensor Af , we can separately integrate tangential
and normal part of the flux given by (2.4). Integrating the tangential part and using
approximations∫ δ

0
∇yu(x,y) dx = δ∇yu(ξy,y) = δ∇yU(y) +O

(
δ2|∂x∇yu|

)
23

and ∫ δ

0

(
byw

)
(x,y) dx = δB(y)W (y) +O

(
δ2|∂x(byw)|

)
where

B(y) = by(δ/2,y),
we obtain

J = −Atδ∇yU + δBW +O
(
δ2(|∂x∇yu|+ |∂x(byw)|)

)
. (2.8)

So far, we have derived equations for the state quantities U and J on the fracture
manifold γ. In order to get a well-posed problem, we have to prescribe two conditions
for boundaries γi, i = 1, 2. To this end, we perform integration of the normal flux jx,
given by (2.4), separately for the left and right half of the fracture. Similarly as before
we use approximations ∫ δ/2

0
jx dx = (j1 · n1)δ2 +O(δ2|∂xjx|)

and ∫ δ/2

0
bxw dx = (b1 · n1)w̃1

δ

2 +O(δ2|∂xbx||w|+ δ2|bx||∂xw|)

and their counter parts on the interval (δ/2, δ) to get

j1 · n1 = −2an
δ

(U − u1) + b1 · n1w̃1 (2.9)

j2 · n2 = −2an
δ

(U − u2) + b2 · n2w̃2 (2.10)

where w̃i can be any convex combination of wi and W . Equations (2.9) and (2.10) have
meaning of a semi-discretized flux from domains Ωi into fracture. In order to get a stable
numerical scheme, we introduce a kind of upwind already on this level using a different
convex combination for each flow direction:

ji · ni =− σi(U − ui)

+
[
bi · ni

]+(
ξwi + (1− ξ)W

)
+
[
bi · ni

]−(
(1− ξ)wi + ξW

)
, i = 1, 2 (2.11)

where σi = 2an
δ

is the transition coefficient and the parameter ξ ∈ [1
2 , 1] can be used to

interpolate between upwind (ξ = 1) and central difference (ξ = 1
2) scheme. Equations

(2.7), (2.8), and (2.11) describe the general form of the advection-diffusion process on
the fracture and its communication with the surrounding continuum which we shall later
apply to individual processes.

2.3 Darcy Flow Model

We consider the simplest model for the velocity of the steady or unsteady flow in porous
and fractured medium given by the Darcy flow:

w = −K∇H in Ωd, for d = 1, 2, 3. (2.12)

24

Here and later on, we drop the dimension index d of the quantities if it can be deduced
from the context. In (2.12), w [ms−1] is the superficial velocity, Kd is the conductivity
tensor, and H [m] is the piezometric head. The velocity wd is related to the flux qd
[m4−ds−1] through

qd = δdwd,

where δd [m3−d] is the cross section coefficient, in particular δ3 = 1, δ2 [m] is the thickness
of a fracture, and δ1 [m2] is the cross-section of a channel. The flux qd ·n is the volume
of the liquid (water) that passes through a unit square (d = 3), unit line (d = 2), or
through a point (d = 1) per one second. The conductivity tensor is given by the product
Kd = kdAd, where kd > 0 [ms−1] is the hydraulic conductivity and Ad is the 3 × 3
dimensionless anisotropy tensor which has to be symmetric and positive definite. The
piezometric-head Hd is related to the pressure head hd through

Hd = hd + z (2.13)

assuming that the gravity force acts in the negative direction of the z-axis. Combining
these relations, we get the Darcy law in the form:

q = −δkA∇(h+ z) in Ωd, for d = 1, 2, 3. (2.14)

Next, we employ the continuity equation for saturated porous medium and the dimen-
sional reduction from the preceding section (with w = u := H, j := w, A := K and
b := 0), which yields:

∂t(δS h) + divq = F + FM in Ωd, for d = 1, 2, 3, (2.15)

where Sd [m−1] is the storativity and Fd [m3−ds−1] is the source term. The extra source
term FM [m3−ds−1] due to mechanics is described in (2.52). In our setting the principal
unknowns of the system (2.14, 2.15) are the pressure head hd and the flux qd.
The storativity (or the volumetric specific storage) Sd > 0 can be expressed as

Sd = γw(βr + ϑβw), (2.16)

where γw [kgm−2s−2] is the specific weight of water, ϑ [−] is the porosity, βr is compress-
ibility of the bulk material of the pores (rock) and βw is compressibility of the water,
both with units [kg−1ms−2]. For steady problems, we set Sd = 0 for all dimensions
d = 1, 2, 3. The source term Fd on the right hand side of (2.15) consists of the volume
density of the water source fd[s−1] and flux from the from the higher dimension. Precise
form of Fd slightly differs for every dimension and will be discussed presently.
In Ω3 we simply have F3 = f3 [s−1].

2.3.1 Coupling on mixed meshes

In the set Ω2∩Ω3 the fracture is surrounded by at most one 3D surface from every side.
On ∂Ω3 ∩ Ω2 we prescribe a boundary condition of the Robin type:

q3 · n+ = q+
32 = σ3(h+

3 − h2),
q3 · n− = q−32 = σ3(h−3 − h2),

25

http://en.wikipedia.org/wiki/Superficial_velocity

where q3 · n+/− [ms−1] is the outflow from Ω3, h+/−
3 is a trace of the pressure head in

Ω3, h2 is the pressure head in Ω2, and σ3 [s−1] is the transition coefficient given by (see
section 2.2 and [8])

σ3 = σ32
2K2 : n2 ⊗ n2

δ2
.

Here n2 is the unit normal to the fracture (sign does not matter). On the other hand,
the sum of the interchange fluxes q+/−

32 forms a volume source in Ω2. Therefore F2 [ms−1]
on the right hand side of (2.15) is given by

F2 = δ2f2 + (q+
32 + q−32). (2.17)

The communication between Ω2 and Ω1 is similar. However, in the 3D ambient space,
a 1D channel can join multiple 2D fractures 1, . . . , n. Therefore, we have n independent
outflows from Ω2:

q2 · ni = qi21 = σ2(hi2 − h1),
where σ2 [ms−1] is the transition coefficient integrated over the width of the fracture i:

σ2 = σ21
2δ2

2K1 : ni
1 ⊗ ni

1
δ1

.

Here ni
1 is the unit normal to the channel that is tangential to the fracture i. Sum of

the fluxes forms a part of F1 [m2s−1]:

F1 = δ1f1 +
n∑
i=1

qi21. (2.18)

We remark that the direct communication between 3D and 1D (e.g. model of a well) is
not supported yet. The transition coefficients σ32 [−] and σ21 [−] are independent scaling
parameters which represent the ratio of the crosswind and the tangential conductivity
in the fracture. For example, in the case of impermeable film on the fracture walls one
may choice σ32 < 1.

2.3.2 Boundary conditions

In order to obtain unique solution we have to prescribe boundary conditions. Currently
we consider a disjoint decomposition of the boundary

∂Ωd = ΓDd ∪ ΓTFd ∪ ΓSpd ∪ ΓRid

where we support the following types of boundary conditions:
Dirichlet boundary condition

hd = hDd on ΓDd ,
where hDd [m] is the boundary pressure head . Alternatively one can prescribe the
boundary piezometric head HD

d [m] related to the pressure head through (2.13).
Total flux boundary condition (combination of Neumann and Robin type)

−qd · n = δd
(
qNd + σRd (hRd − hd)

)
on ΓTFd ,

26

where qNd [ms−1] is the surface density of the water inflow, hRd [m] is the boundary
pressure head and σRd [s−1] is the transition coefficient. As before one can also prescribe
the boundary piezo head HR

d to specify hRd .
Seepage face condition is used to model a surface with possible springs:

hd ≤ hSd and − qd · n ≤ δdq
N
d (2.19)

while the equality holds in at least one inequality. The switch pressure head hSd [m] can
alternatively be given by switch piezometric head.
The first inequality in (2.19) with the default value hSd = 0 disallows non-zero water
height on the surface, the later inequality with default value qNd = 0 allows only outflow
from the domain (i.e. spring). In practice one may want to allow given water height hSd
or given infiltration (e.g. precipitation-evaporation) qNd .
River boundary condition models free water surface with bedrock of given conductivity.
We prescribe:

−qd · n = δd
(
σRd (Hd −HD

d) + qNd
)
, for Hd ≥ HS

d , (2.20)

−qd · n = δd
(
σRd (HS

d −HD
d) + qNd

)
, for Hd < HS

d , (2.21)

where Hd is piezometric head. The parameters of the condition are given by similar
fields of other boundary conditions: the transition coefficient of the bedrock σRd [s−1],
the piezometric head of the water surface given as boundary piezometric head HD

d [m],
the head of the bottom of the river given as the switch piezometric head HS

d [m]. The
boundary flux qNd is zero by default, but can be used to express approximation of the
seepage face condition (see discussion below). The piezometric heads HS

d and HR
d may

be alternatively given by pressure heads hSd and hRd , respectively.
The physical interpretation of the condition is as follows. For the water level Hd above
the bottom of the river HS

d the infiltration is given as Robin boundary condition with
respect to the surface of the river HD

d . For the water level below the bottom the
infiltration is given by the water column of the river and transition coefficient of the
bedrock.
The river could be used to approximate the seepage face condition in the similar way
as the Robin boundary condition with large σ can approximate Dirichlet boundary
condition. We rewrite the condition as follows

−qd · n = δd
(
σRd (hd − hDd) + qNd

)
, for − qd · n ≥ δd

(
σRd (hSd − hDd) + qNd

)
, (2.22)

−qd · n = δd
(
σRd (hSd − hDd) + qNd

)
, for hd < hSd . (2.23)

Now if we take hSd = hDd , we obtain

−qd · n = δd
(
σRd (hd − hSd) + qNd

)
, for − qd · n ≥ δdq

N
d , (2.24)

−qd · n = δdq
N
d , for hd < hSd , (2.25)

where the first equation approximates hd = hSd if σRd is sufficiently large.

2.3.3 Steady and unsteady Darcian flow

By default, the storativity is zero which means that the flow is calculated steady. If,
in addition, some input fields are time-dependent, a sequence of steady problems is

27

calculated for times in which the data change. When storativity is nonzero, the problem
becomes unsteady and one has to specify the initial condition and the computational
time interval.

2.3.4 Initial condition

For unsteady problems one has to specify an initial condition in terms of the initial
pressure head h0

d [m] or the initial piezometric head H0
d [m].

2.3.5 Water balance

The equation (2.15) satisfies the volume balance of the liquid in the following form:

V (0) +
∫ t

0
s(τ) dτ +

∫ t

0
f(τ) dτ = V (t)

for any instant t in the computational time interval. Here

V (t) :=
3∑
d=1

∫
Ωd

(δSh)(t,x) dx,

s(t) :=
3∑
d=1

∫
Ωd
F (t,x) dx,

f(t) := −
3∑
d=1

∫
∂Ωd

q(t,x) · n(x) dx

is the volume [m3], the volume source [m3s−1] and the volume flux [m3s−1] of the liquid
at time t, respectively. The volume, flux and source on every geometrical region is
calculated at each output time and the values together with the control sums are written
to the file water_balance.{dat|txt}. If, in addition, cumulative is set to true then the
time-integrated flux and source is written. The format of balance output is described
in Section 4.4.1.

2.3.6 Richards Equation

This section contains a preliminary documentation to the unsaturated water flow model.
We use the Richards equation in the form:

∂tδθt + divq = F ∈ Ωd, for d = 1, 2, 3 (2.26)
where the total water content θt(h) [−] is a function of the principal unknown h and the
water flux q is given by (2.14) in which the conductivity kd is function of the pressure
head h as well. Currently the total water content is given as:

θt(h) = θ(h) + Sh (2.27)

where S is the storativity and θ(h) is the water content. The functions θ(h) and k(h)
are given by the chosen soil model. Two soil models are currently supported.

28

van Genuchten

Classical van Genuchten model use:
θ(h) = (θs − θr)θe + θr, θe = (1 + (αh)n)m

for the negative pressure head h < 0 and θ = θs for h ≥ 0.
The model parameters are: θs [−] the saturated water content, θr [−] the residual water
content, α [m−1] the pressure scaling parameter, n [−] the exponent parameter. The
exponent m is taken as 1/n− 1 and θe [−] is called the effective water content.
The conductivity function k(h) is then derived from the capillary model due to Mualem
with result:

k(h) = θ0.5
e

[
1− F (θ)
1− F (θs)

]2

, F (θ) =
[
1− θ1/m

e

]m
In fact we use slight modification due to Vogel and Ćıslerová where the saturation
happens at some pressure head slightly smaller then zero. Then the water content curve
is given by

θ(h) = (θm − θr)θe + θr,

for h < hs and θ = θs for h ≥ hs. Currently the fraction θm/θs is fixed to 0.001.

Irmay

The model used for bentonite is due to Irmay and use simple power relation for the
conductivity:

k(h) = θ3
e .

2.3.7 Coupling of dimensions for non-conforming meshes

Version 3.0.0 introduce an experimental support for the non-conforming meshes of mixed
dimension. In particular 1D-2D coupling is supported in the 2D ambient space and
2D-3D and 2D-2D coupling is supported for the 3D ambient space. Non-conforming
coupling is supported only by the Darcy flow model and lower dimensional elements
can not represent barriers, i.e. we consider that the pressure and the velocity fields
are continuous across the lower dimensional fractures. Search for the non-conforming
intersections and assembly of the associated terms in the weak formulation is turned on
by the key mortar_method. One of two methods can be selected: P0 method is faster
but can be a bit unstable for coarse meshes, P1 method should be more robust.

2.4 Transport of Substances

The motion of substances dissolved in water is governed by the advection, and the
hydrodynamic dispersion. In Ωd, d ∈ {1, 2, 3}, we consider the following system of mass
balance equations1:

∂t(δϑci) + div(qci)− div(ϑδDi∇ci) = F i
S + F c

C + FR(c1, . . . , cs). (2.28)
1For d ∈ {1, 2} this form can be derived as in Section 2.2 using w := δϑci, u := ci, A := δϑDi,

b := v = q
ϑδ .

29

The principal unknown is the concentration ci [kgm−3] of a substance i ∈ {1, . . . , s},
which means the weight of the substance in the unit volume of water. Other quantities
are:

• The porosity ϑ [−], i.e. the fraction of space occupied by water and the total
volume.

• The hydrodynamic dispersivity tensor Di [m2s−1] has the form

Di = τDi
m + |v|

(
αiT I + (αiL − αiT)v ⊗ v

|v|2

)
, (2.29)

which represents (generally anisotropic) molecular diffusion, and mechanical dis-
persion in longitudinal and transverse direction to the flow. Here Di

m [m2s−1] is
the 2nd-order molecular diffusion coefficient of the i-th substance (usual magni-
tude in clear water is 10−9), τ = ϑ1/3 is the tortuosity (by [9]), αiL [m] and αiT
[m] is the longitudinal dispersivity and the transverse dispersivity, respectively.
The diffusion and dispersion coefficients are related to the liquid phase. Note that
although we allow dispersivity to have different values for different substances, it
is often assumed that they are intrinsic parameters of the porous medium. Finally,
v [ms−1] is the microscopic water velocity, also called seepage velocity, related to
the Darcy flux q by the relation q = ϑδv. The value of Di

m for specific substances
can be found in literature (see e.g. [2]). For instructions on how to determine αiL,
αiT we refer to [3, 4].

• F i
S [kgm−ds−1] represents the density of concentration sources in the porous medium.

Its form is:
F i
S = δf iS + δ(ciS − ci)σiS. (2.30)

Here f iS [kgm−3s−1] is the density of concentration sources, ciS [kgm−3] is an
equilibrium concentration and σiS [s−1] is the concentration flux. One has to pay
attention when prescribing the source, namely to determine whether it is related
to the liquid or the porous medium. We mention several examples:

– extraction of solution: f iS = 0, ciS = 0, σiS > 0 is the intensity of extraction,
i.e. volume of liquid extracted from a unit volume of porous medium per
second;

– injection of solution: f iS = 0, ciS is the concentration of the substance in the
injected liquid, σiS > 0 is the intensity of injection (volume of liquid injected
into a unit volume of porous medium per second);

– production or degradation of substances due to bacteria present in liquid:
f iS = ϑpi, where pi is the production/degradation rate in a unit volume of
liquid;

– age of liquid: if f iS = ϑ then ci is the age of liquid, i.e. the time spent in the
domain.

• F c
C [kgm−ds−1] is the density of concentration sources due to exchange between

regions with different dimensions, see (2.32) below.

• The reaction term FR(. . .) [kgm−ds−1] is thoroughly described in the next section
2.5, see also paragraph ”Two transport models” below.

30

Initial and boundary conditions. At time t = 0 the concentration is determined
by the initial condition

ci(0,x) = ci0(x).
The physical boundary ∂Ωd is decomposed into the parts ΓI∪ΓD∪ΓTF∪ΓDF , which may
change during simulation time. The first part ΓI is further divided into two segments:

Γ+
I (t) = {x ∈ ∂Ωd | q(t,x) · n(x) < 0},

Γ−I (t) = {x ∈ ∂Ωd | q(t,x) · n(x) ≥ 0},

where n stands for the unit outward normal vector to ∂Ωd. We prescribe the following
boundary conditions:

• inflow Default transport boundary condition. On the inflow Γ+
I the reference

concentration ciD [kgm−3] is enforced through total flux:

(qci − ϑδDi∇ci) · n = q · nciD on Γ+
I ,

while on the outflow Γ−I we prescribe zero diffusive flux:

−ϑδDi∇ci · n = 0 on Γ−I .

• Dirichlet On ΓD, the Dirichlet condition is imposed via prescribed concentration
ciD:

ci = ciD on ΓD.

• total_flux On ΓTF we impose total mass flux condition:

(−qci + ϑδDi∇ci) · n = δ(f iN + σiR(ciD − ci)),

with user-defined incoming concentration flux f iN [kgm−2s−1], transition parameter
σiR [ms−1], and reference concentration ciD [kgm−3].

• diffusive_flux Finally on ΓDF we prescribe diffusive mass flux (analogously to
the previous case):

ϑδDi∇ci · n = δ(f iN + σiR(ciD − ci)).

We mention several typical uses of boundary conditions:

• natural inflow: Use Dirichlet or inflow b.c. (the later type is useful when the
location of liquid inflow is not known a priori) and specify ciD.

• natural outflow: The substance leaves the domain only due to advection by the liq-
uid. Use zero diffusive_flux or inflow (the latter in case that the outflow boundary
is not known a priori).

• boundary with known mass flux: Use total_flux and f iN .

• impermeable boundary: Use zero total_flux.

• partially permeable boundary: When the exterior of the domain represents a reser-
voir with known concentration and the Darcy flux is reasonably small, the mass
exchange is proportional to the concentration difference inside and outside the
domain. Use diffusive_flux, ciD and σiR.

31

Communication between dimensions. Transport of substances is considered also
on interfaces of physical domains with adjacent dimensions (i.e. 3D-2D and 2D-1D, but
not 3D-1D). Denoting cd+1, cd the concentration of a given substance in Ωd+1 and Ωd,
respectively, the communication on the interface between Ωd+1 and Ωd is described by
the quantity

qcd+1,d = σcd+1,d
δ2
d+1
δd

2ϑdDd : n⊗ n(cd+1 − cd) + qld+1,d

cd+1 if qld+1,d ≥ 0,
cd if qld+1,d < 0,

(2.31)

where

• qcd+1,d [kgm−ds−1] is the density of concentration flux from Ωd+1 to Ωd,

• σcd+1,d [−] is a transition parameter. Its value determines the mass exchange be-
tween dimensions whenever the concentrations differ. In general, it is recom-
mended to leave the default value σc = 1 or to set σc = 0 (when exchange is due
to water flux only).

• qld+1,d [m3−ds−1] is the water flux from Ωd+1 to Ωd, i.e. qld+1,d = qd+1 · nd+1.

The communication between dimensions is incorporated as the total flux boundary con-
dition for the problem on Ωd+1:

− ϑδD∇c · n + qlc = qc (2.32)

and a source term in Ωd:

F c
C3 = 0, F c

C2 = qc32, F c
C1 = qc21. (2.33)

Transport models. Within the above presented model, Flow123d presents two pos-
sible approaches to solute transport.

• For modeling pure advection (D = 0) one can choose Solute_Advection_FV
method, which represents an explicit in time finite volume solver. Only the in-
flow/outflow boundary condition is available and the source term has the form

F i
S = δf iS + δ(ciS − ci)+σiS.

The solution process for one time step is faster, but the maximal time step is re-
stricted. The resulting concentration is piecewise constant on mesh elements. This
solver supports reaction term (involving simple chemical reactions, dual porosity
and sorptions).

• The full model including dispersion is solved by Solute_AdvectionDiffusion_DG,
an implicit in time discontinuous Galerkin solver. It has no restriction of the
computational time step and the space approximation is piecewise polynomial,
currently up to order 3. Reaction term is implemented only for the case of linear
sorption, i.e.

F i
R = −∂t

(
(1− ϑ)δ%scis

)
, cis = kilc,

where cis [−] is the relative concentration of sorbed substance, kil [kg−1m3] is the
sorption coefficient, %s and %l [kgm−3] is the density of the solid (rock) and of the
liquid (solvent), respectively. The initial concentration in solid is assumed to be
in equilibrium with the concentration in liquid.

32

• Finally, both previous methods can be coupled with the reaction term (see 2.5)
using the Coupling_OperatorSplitting model. The operator splitting is essen-
tially an explicit method requiring the time step set in its time key should be
reasonable, however no automatic restriction on the time step is forced. However
this time step makes an upper bound for the time step of the underlaying transport
equation in use.

Mass balance. The advection-dispersion equation satisfies the balance of mass in the
following form:

mi(0) +
∫ t

0
si(τ) dτ +

∫ t

0
f i(τ) dτ = mi(t)

for any instant t in the computational time interval and any substance i. Here

mi(t) :=
3∑
d=1

∫
Ωd

(δϑci)(t,x) dx,

si(t) :=
3∑
d=1

∫
Ωd
F i
S(t,x) dx,

f i(t) :=
3∑
d=1

∫
∂Ωd

(
−qci + ϑδDi∇ci

)
(t,x) · n dx

is the mass [kg], the volume source [kgs−1] and the mass flux [kgs−1] of i-th substance at
time t, respectively. The mass, flux and source on every geometrical region is calculated
at each output time and the values are written to the file mass_balance.{dat|txt}.
If, in addition, cumulative is set to true then the time-integrated flux and source is
written. In that case the cumulative source contains also contribution due to reactions.
The format of balance output is described in Section 4.4.1.

2.5 Reaction Term in Transport

The TransportOperatorSplitting method supports the reaction term FR(c1, . . . , cs)
on the right hand side of the equation (2.28). It can represent several models of chemical
or physical nature. Figure 2.2 shows all possible reactional models that we support
in combination with the transport process. The Operator Splitting method enables
us to deal with the convection part and reaction term independently. Transport of
the substances is computed independently using either are convected quantities do not
influence each other in the convectional process and are balanced over the elements. On
the other hand the reaction term relates the convected quantities and can be computed
separately on each element.
We move now to the description of the reaction models which can be seen again in
Figure 2.2. The convected quantity is considered to be the concentration of substances.
Up to now we can have dual porosity, sorption (these two are more of a physical nature)
and (chemical) reaction models in the reaction term.
The reaction model acts only on the specified substances and computes exchange of
concentration among them. It does not have its own output because it only changes the
concentration of substances in the specified zone where the reaction takes place.

33

Operator Splitting

Transport process
- independent substances

Dual Porosity

Reaction term
- independent elements (dofs)

Sorption

Dual Porosity

Mobile

Sorption

Immobile Liquid Solid
...

Decay

Sorption Reaction

Reaction

Sorption

Reaction

Reaction

Reaction Reaction

Figure 2.2: The scheme of the reaction term objects. The lines represents connections
between different models. The tables under model name include the possible models
which can be connected to the model above.

34

The sorption model describes the exchange of concentration of the substances between
liquid and solid. It can be followed by another reaction that can run in both phases.
The concentration in solid is an additional output of this model. See Subsection 2.5.2.
The dual porosity model, described in Subsection 2.5.1, introduces the so called immo-
bile (or dead-end) pores in the matrix. The convection process operates only on the
concentration of the substances in the mobile zone (open pores) and the exchange of
concentrations from/to immobile zone is governed by molecular diffusion. This pro-
cess can be followed by sorption model and/or chemical reaction, both in mobile and
immobile zone. The immobile concentration is an additional output.

2.5.1 Dual Porosity

Up to now, we have described the transport equation for the single porosity model. The
dual porosity model splits the mass into two zones – the mobile zone and the immobile
zone. Both occupy the same macroscopic volume, however on the microscopic scale, the
immobile zone is formed by the dead-end pores, where the liquid is trapped and cannot
pass through. The rest of the pore volume is occupied by the mobile zone. Since the
liquid in the immobile pores is immobile, the exchange of the substance is only due to
molecular diffusion. We consider simple non-equilibrium linear model:

ϑm∂tcm = Ddp(ci − cm), (2.34a)
ϑi∂tci = Ddp(cm − ci), (2.34b)

where cm is the concentration in the mobile zone, ci is the concentration in the immobile
zone and Ddp is a diffusion rate between the zones. ϑi denotes porosity of the immobile
zone and ϑm = ϑ the mobile porosity from transport equation (2.28). One can also set
non-zero initial concentration in the immobile zone ci(0).
To solve the system of first order differential equation, we use analytic solution or Euler’s
method, which are switched according to a given error tolerance. See subsection 3.5.1
in numerical methods.

2.5.2 Equilibrial Sorption

The simulation of an equilibrium sorption is based on the solution of two algebraic
equations, namely the mass balance (in unit volume)

ϑ%lcl + (1− ϑ)%scs = cT = const. (2.35)

and an empirical sorption law
cs = f(cl), (2.36)

given in terms of the so-called isotherm function f . In these equations we use following
notation. The concentration in the solid phase, cs = msorbed

ms
[−] is the adsorbed mass

of the substance per the unit mass of the solid adsorbent in a reference volume. The
concentration in the solid can be selected for output. The concentration in the liquid
phase, cl = m

ml
[−] is the mass of dissolved substance per the unit mass of the liquid.

The relation between cl and the concentration c from the transport equation (2.28) is

35

c = cl%l. Finally, θ is the porosity, %s is the solid density i.e. density of a compact rock
with zero porosity, and %l is the liquid density, i.e. density of the solvent.
The form of the isotherm f is determined by the parameter sorption type:

sorption_type f(cl)

“none” 0 The sorption model returns zero concentra-
tion in solid.

“linear” kl%lcl

“freundlich” kF%lc
α
l

“langmuir” kL%l
αcl

1+αcl
Langmuir isotherm has been derived from
thermodynamic laws. The number kL%l de-
notes the maximal amount of sorbing specie
which can be kept in an unit volume of a bulk
matrix. Coefficient α is a fraction of sorption
and desorption rates.

Main parameter of these isotherms is the distribution coefficient ki, i ∈ {l, F, L} [kg−1m3].
Nonlinear isotherms have an additional parameter α [−]. Note that older versions of
Flow123d prior to 2.0.0 used a different coefficient ki denoted isotherm_mult with the
unit [mol kg−1]. The conversion rule between the old and new distribution coefficient is

knewi = Ms

%l
koldi ,

where Ms [kg mol−1] stands for the molar mass of a substance.
Concept of the general distribution coefficient is thoroughly discussed e.g. in [10]. Key
assumptions about ki are:

• Density ρl in isotherm expressions is technically the density of the solvent used
during measurement of ki, which could be different then the density of the solvent
used in calculation. E.g. slight changes in the density of water according to
variations in chemical composition and isotopes. But usually the difference is
negligible.

• Concentrations in both liquid and solid phase are very small. In particular the
number of unoccupied adsorption sites dominates the number of occupied sites.

• All adsorption sites are equivalent.

• Sorption is understood in general manner including all linear processes that are
able to store the substance.

• System is considered in thermodynamic equilibrium.

• Single distribution coefficient ki is specific for combination adsorbent, solvent,
substance.

36

Non-zero initial concentration in the solid phase cs(0) can be set in the input record.
Now, further denoting

µl = %lϑ, µs = %s · (1− ϑ),
and using (2.36), the mass balance (2.35) reduces to the equation

cT = µlcl + µsf(cl), (2.37)

which can be either solved iteratively or using interpolation. See subsection 3.5.2 in
numerical methods for details.
The units of cl, cs and ki can vary in literature. For an example of conversion rules in
the case of Freundlich isotherm we refer to Bowman [1].

2.5.3 Sorption in Dual Porosity Model

There are two parameters µl and µs, scale of aqueous concentration and scale of sorbed
concentration, respectively. There is a difference in computation of these in the dual
porosity model because both work on different concentrations and different zones.
Let cml and cms be concentration in liquid and in solid in the mobile zone, cil and cis be
concentration in liquid and in solid in the immobile zone, ϑm and ϑi be the mobile and
the immobile porosity, and ϕ be the sorbing surface.
The sorbing surface in the mobile zone is given by

ϕ = ϑm
ϑm + ϑi

, (2.38)

while in the immobile zone it becomes

1− ϕ = 1− ϑm
ϑm + ϑi

= ϑi
ϑm + ϑi

.

Remind the mass balance equation (2.37). In the dual porosity model, the scaling
parameters µl, µs are slightly different. In particular, the mass balance in the mobile
zone reads:

cT = µl · cml + µs · cms,
µl = %l · ϑm,
µs = %s · (1− ϑm − ϑi)ϕ,

(2.39)

while in the immobile zone it has the form:

cT = µl · cil + µs · cis,
µl = %l · ϑi,
µs = %s · (1− ϑm − ϑi)(1− ϕ).

(2.40)

2.5.4 Radioactive Decay

The radioactive decay is one of the processes that can be modeled in the reaction term
of the transport model. This process is coupled with the transport using the operator

37

splitting method. It can run throughout all the phases, including the mobile and im-
mobile phase of the liquid and also the sorbed solid phase, as it can be seen in figure
2.2.
The radioactive decay of a parent radionuclide A to a nuclide B

A
k−→ B, A

t1/2−−→ B

is mathematically formulated as a system of first order differential equations

dcA
dτ = −kcA, (2.41)
dcB
dτ = kcA, (2.42)

where k is the radioactive decay rate. Usually, the half life of the parent radionuclide
t1/2 is known rather than the rate. Relation of these can be derived:

dcA
dτ = −kcA
dcA
cA

= −k dτ

c0
A/2∫
c0
A

dcA
cA

= −k
t1/2∫
0

1 dτ

[
ln cA

]c0
A/2

c0
A

= −
[
kτ
]t1/2

0

k = ln 2
t1/2

.

Let us now suppose a more complex situation. Consider substances (radionuclides)
A1, . . . , As which take part in a complex radioactive chain, including branches, e.g.

A1
k1−→ A2

k2−→ A3
k34−−→ A4

k4−→ A8

A3
k35−−→ A5

k5−→ A4

A3
k36−−→ A6

k6−→ A7
k7−→ A8

Now the problem turned into a system of differential equations ∂tc = Dc with the
following matrix, generally full and nonsymmetric:

D =


M1

M2
. . .

Ms



−k1 k21 · · · ks1
k12 −k2 · · · ks2
...
k1s k2s · · · −ks




1
M1 1

M2 . . .
1
Ms

 ,

where Mi is molar mass. We can then write

dij =
kji

Mi

Mj
, i 6= j,

−kij, i = j.
(2.43)

38

We denote the rate constant of the i-th radionuclide

ki =
s∑
j=1

kij =
s∑
j=1

bijki

which is equal to a sum of partial rate constants kij. Branching ratio bij ∈ (0, 1)
determines the distribution into different branches of the decay chain, holding ∑s

j=1 bij =
1.
Notice, that physically it is not possible to create a chain loop, so in fact one can
permutate the vector of concentrations and rearrange the matrix D into a lower triangle
matrix

D =


d11
d21 d22
...
ds1 ds2 · · · dss

 .
However, we do not do this and we do not search the reactions for chain loops.
The system of first order differential equations with constant coefficients is solved using
one of the implemented linear ODE solvers, described in section 3.5.3.

2.5.5 First Order Reaction

First order kinetic reaction is another process that can take part in the reaction term.
Similarly to the radioactive decay, it is connected to transport by operator splitting
method and can run in all the possible phases, see figure 2.2.
Currently, reactions with single reactant and multiple products (decays) are available
in the software. The mathematical description is the same as for the radioactive decay,
it only uses kinetic reaction rate coefficient k in the input instead of half life.

2.6 Heat Transfer

Under the assumption of thermal equilibrium between the solid and liquid phase, the
energy balance equation has the form2

∂t (δs̃T) + div(%lclTq)− div(δΛ∇T) = F T + F T
C .

The principal unknown is the temperature T [K]. Other quantities are:

• %l, %s [kgm−3] is the density of the fluid and solid phase, respectively.

• cl, cs [Jkg−1K−1] is the heat capacity of the fluid and solid phase, respectively.

• s̃ [Jm−3K−1] is the volumetric heat capacity of the porous medium defined as

s̃ = ϑ%lcl + (1− ϑ)%scs.
2For lower dimensions this form can be derived as in Section 2.2 using w := δs̃T , u := T , A := δλI,

b := %lcl

s̃ w.

39

• Λ [Wm−1K−1] is the thermal dispersion tensor:

Λ = Λcond + Λdisp

Λcond =
(
ϑλcondl + (1− ϑ)λconds

)
I,

Λdisp = ϑ%lcl|v|
(
αT I + (αL − αT)v ⊗ v

|v|2

)
,

where λcondl , λconds [Wm−1K−1] is the thermal conductivity of the fluid and solid
phase, respectively, and αL, αT [m] is the longitudinal and transverse dispersivity
in the fluid.

• F T [Jm−ds−1] represents the thermal source:

F T = δϑF T
l + δ(1− ϑ)F T

s ,

F T
l = fTl + %lclσ

T
l (T − Tl),

F T
s = fTs + %scsσ

T
s (T − Ts),

where fTl , fTs [Wm−3] is the density of thermal sources in fluid and solid, respec-
tively, Tl, Ts [K] is a reference temperature and σTl , σTs [s−1] is the heat exchange
rate.

Initial and boundary conditions. At time t = 0 the temperature is determined by
the initial condition T0 [K]:

T (0,x) = T0(x).
Given the decomposition of ∂Ωd into ΓI ∪ ΓD ∪ ΓTF ∪ ΓDF (see also Section 2.4), we
prescribe the following boundary conditions:

• inflow Default boundary condition. On the inflow Γ+
I the reference temperature

TD [K] is enforced through total flux:

(%lclTq − δΛ∇T) · n = %lclTDq · n,

while on the outflow Γ−I we prescribe zero diffusive flux:

−δΛ∇T · n = 0.

• Dirichlet On ΓD, the Dirichlet condition is imposed via prescribed temperature
TD:

T = TD on Γ+
I ∪ ΓD.

• total_flux On ΓTF we impose total energy flux condition:

(−%lclTq + δΛ∇T) · n = δ(fTN + σTR(TD − T)).

with user-defined incoming energy flux fTN [Jm−2s−1], transition parameter σTR
[Jm−2s−1K−1] and reference temperature TD.

40

• diffusive_flux Finally on ΓDF we prescribe diffusive energy flux (similarly as
above):

δΛ∇T · n = δ(fTN + σTR(TD − T)).

We mention several typical uses of boundary conditions:

• natural inflow: Use Dirichlet or inflow b.c. (the later type is useful when the
location of liquid inflow is not known a priori) and specify TD.

• natural outflow: The energy in the domain decreases only due to advection. Use
zero diffusive_flux or inflow (the latter in case that the outflow boundary is not
known a priori).

• boundary with known energy flux: Use total_flux and fTN .

• thermally insulated boundary: Use zero total_flux.

• partially permeable boundary: The energy transfer is proportional to the temper-
ature difference inside and outside the domain. Use diffusive_flux, TD and σTR.

Communication between dimensions. Denoting Td+1, Td the temperature in Ωd+1
and Ωd, respectively, the communication on the interface between Ωd+1 and Ωd is de-
scribed by the quantity

qTd+1,d = σTd+1,d
δ2
d+1
δd

2Λd : n⊗ n(Td+1 − Td) + %lclq
l
d+1,d

Td+1 if qld+1,d ≥ 0,
Td if qld+1,d < 0,

(2.44)

where

• qTd+1,d [Wm−2] is the density of heat flux from Ωd+1 to Ωd,

• σTd+1,d [−] is a transition parameter. Its value determines the exchange of energy
between dimensions due to temperature difference. In general, it is recommended
to leave the default value σT = 1 or to set σT = 0 (when exchange is due to water
flux only).

• qld+1,d = qd+1 · n is the water flux from Ωd+1 to Ωd.

The communication between dimensions is incorporated as the total flux boundary con-
dition for the problem on Ωd+1:

(%lclTq − δΛ∇T) · n = qT (2.45)

and a source term in Ωd:

F T
C3 = 0, F T

C2 = qT32, F T
C1 = qT21. (2.46)

41

Energy balance. The heat equation satisfies the balance of energy in the following
form:

e(0) +
∫ t

0
s(τ) dτ +

∫ t

0
f(τ) dτ = e(t)

for any instant t in the computational time interval. Here

e(t) :=
3∑
d=1

∫
Ωd

(δs̃T)(t,x) dx,

s(t) :=
3∑
d=1

∫
Ωd
F T
S (t,x) dx,

f(t) :=
3∑
d=1

∫
∂Ωd

(−%lclTq + δΛ∇T) (t,x) · n dx

is the energy [J], the volume source [Js−1] and the energy flux [Js−1] at time t, respec-
tively. The energy, flux and source on every geometrical region is calculated at each
output time step and the values together with the control sums are written to the file
energy_balance.{dat|txt}. If, in addition, cumulative is set to true then the time-
integrated flux and source is written. The format of balance output is described in
Section 4.4.1.

2.7 Mechanics

Deformation of the porous media is modelled by the stationary linear elasticity equation:

− div(δσ(u)) = δf + fC + fH . (2.47)

Here u [m] is the displacement vector field with 3 components, the stress tensor is given
by the Hooke law

σ(u) = Cε̃(u) = 2µε̃(u) + λ(I : ε̃(u))I, (2.48)
and the Lamé parameters are determined in terms of the Young modulus E [Pa] and
Poisson’s ratio ν [−]:

µ = E

2(1 + ν) , λ = Eν

(1 + ν)(1− 2ν) . (2.49)

The strain tensor in Ωd is defined as follows:

ε̃(u) = 1
2(∇ud +∇u>d) +

0 if d = 3,
1
δ

∑n
i=1 ui

d+1 ⊗s ni
d+1 else.

(2.50)

Here a⊗s b := 1
2(a⊗ b + b⊗ a).

The symbol f stands for the body load [Nm−3].

42

Hydromechanical coupling. The mechanics equation (2.47) is coupled to flow by
the term

fH = −∇(δαp), p = %lgh, (2.51)
where p [Pa] is the pressure, α [−] is the Biot coefficient, %l [kgm−3] is the fluid density
and g [ms−2] is the gravitational acceleration. Conversely, the deformation affects the
flow via the additional term

FM = −∂t(δαd̃ivu) (2.52)

on the right hand side of (2.15). The expression d̃ivu is defined as follows:

d̃ivud = div ud +
0 if d = 3,
δd+1
δd

∑n
i=1 ui

d+1 · ni
d+1 else.

(2.53)

The numerical solution of coupled hydro-mechanical problems is solved by an iterative
splitting, where, in order to achieve convergence, the flow equation is modified as follows:

∂t(δ(S + Sextra)h) + div q = F + FM + ∂t(δSextrahold). (2.54)

Here hold is the previous value of piezometric head in the iteration process and Sextra
is an extra storativity coefficient whose value affects the rate of convergence. It can be
manually tuned using the iteration parameter.

Boundary conditions. Given the decomposition ∂Ωd = ΓD ∪ ΓDN ∪ ΓT ∪ ΓS, we
impose the following boundary conditions:

• displacement condition prescribes

u = uD on ΓD (2.55)

via given displacement uD [m].

• displacement_n: Displacement is prescribed only in the normal component, in
tangent directions(s) zero traction is assumed:

u · n = uD · n
(σ(u)n)τ = 0

}
on ΓDN . (2.56)

Here aτ := a− (a ·n)n is the projection of a vector a to the tangent plane of the
boundary.

• traction condition (default) is imposed via given traction tN [Pa]:

σ(u)n = tN on ΓT . (2.57)

• stress condition is the same type as traction, but instead of traction the user
supplies the full stress tensor σN [Pa]:

σ(u)n = σNn on ΓS. (2.58)

43

Communication between dimensions. The mechanical interaction on the interface
between Ωd+1 and Ωd is realized via the traction condition on the boundary of Ωd+1:

δd+1(σ(ui
d+1)− αd+1pd+1I)ni

d+1 = tid+1,d, (2.59)

where

tid+1,d = σUd+1,dδd+1

(
2δd+1

δd
Cd

(
(ui

d+1 − ud)⊗ ni
d+1

)
− αdpdI

)
ni
d+1 (2.60)

and σUd+1,d [−] is the transition coefficient. The force term in Ωd due to the interaction
with Ωd+1 is

fCd =
0 if d = 3,∑n

i=1 tid+1,d else.
(2.61)

Fracture contact mechanics. The linear elastic model does not prevent the self-
penetration of the deformed porous material. To avoid this unphysical behaviour, the
user has to switch on the contact parameter. Then the following contact condition is
applied to all fracture elements:

δd −
n∑
i=1

δid+1u
i
d+1 · ni

d+1 ≥ δmin, (2.62)

where δmin [m3−d] is the minimal cross-section of the fracture. In the case d = 2,
the minimal cross-section is just the contact distance. For 1d fractures/channels δmin
corresponds to the minimal contact area. When contact conditions are active, the
mechanical model is solved as a quadratic programming problem with linear constraints.

Output fields. The mechanics equation provides several fields for output:

• displacement: The computed displacement vector field u;

• stress: The mechanical stress tensor σ(u);

• mean_stress: The mean of the principal stresses, i.e. σm := 1
3I : σ(u);

• von_mises_stress: σVM :=
√

3
2σd : σd, where σd := σ(u) − σmI is the deviatoric

stress. Equivalently, von Mises stress can be expressed as

σVM =
√

1
2 ((σ1 − σ2)2 + (σ1 − σ3)2 + (σ2 − σ3)2),

where σ1,2,3 are the principal stresses, i.e. eigenvalues of σ(u);

• cross_section_updated: This field expresses the cross-section of fractures after
deformation and is defined as δd −

∑n
i=1 ui

d+1 · ni
d+1;

• displacement_divergence: d̃ivud.

44

Chapter 3

Numerical Methods

3.1 Diagonalized Mixed-Hybrid Method

Model of flow described in section 2.3 is solved by the mixed-hybrid formulation (MH)
of the finite element method. As in the previous chapter, let τ be the time step and
Td a regular simplicial partition of Ωd, d = 1, 2, 3. Denote by W d(Td) ⊂ H(div, Td)
the space of Raviart-Thomas functions of order zero (RT0) on an element Td ∈ Td. We
introduce the following spaces:

W = W 1 ×W 2 ×W 3, W d =
∏

Td∈Td
W d(Td),

Q = Q1 ×Q2 ×Q3, Qd = L2 (Ωd) . (3.1)
For every Td ∈ Td we define the auxiliary space of values on interior sides of Td:

Q̊(Td) =
{
q̊ ∈ L2(∂Td \ ∂ΩD

d) : q̊ = w · n|∂Td ,w ∈W d

}
. (3.2)

Further we introduce the space of functions defined on interior sides that do not coincide
with elements of the lower dimension:

Q̊d =
{
q̊ ∈

∏
T∈Td

Q̊(T); q̊|∂T = q̊|∂T̃ on the side F = ∂T∩∂T̃ if F∩Ωd−1 = ∅
}
. (3.3)

Finally we set Q̊ = Q̊1 × Q̊2 × Q̊3.
The mixed-hybrid method for the unsteady Darcy flow reads as follows. We are looking
for a trio (u, h, h̊) ∈W ×Q× Q̊ which satisfies the saddle-point problem:

a(u,v) + b(v, p) + b̊(v, p̊) = 〈g,v〉, ∀v ∈W , (3.4)
b(u, q) + b̊(u, q̊)− c(p, p̊, q, q̊) = 〈f, (q, q̊)〉, ∀q ∈ Q, q̊ ∈ Q̊, (3.5)

45

where

a(u,v) =
3∑
d=1

∑
T∈Td

∫
T

1
δd
K−1
d ud · vd dx, (3.6)

b(u, q) = −
3∑
d=1

∑
T∈Td

∫
T
qd div ud dx, (3.7)

b̊(u, q̊) =
3∑
d=1

∑
T∈Td

∫
∂T\∂Ωd

q̊|∂T (ud · n) ds, (3.8)

c(h, h̊, q, q̊) = cf (h, h̊, q, q̊) + ct(h, h̊, q, q̊) + cR(̊h, q̊) (3.9)

cf (h, h̊, q, q̊) =
∑
d=2,3

∑
T∈Td

∫
∂T∩Ωd−1

σd(pd−1 − p̊d)(qd−1 − q̊d) ds (3.10)

ct(h, h̊, q, q̊) =
3∑
d=1

∑
T∈Td

∫
T

δdSd
τ

hdqd dx, (3.11)

cR(̊h, q̊) =
3∑
d=1

∑
T∈Td

∫
∂T∩ΓTF

d

σRd hdq̊d ds, (3.12)

〈g,v〉 = −
3∑
d=1

∑
T∈Td

∫
∂T∩∂ΩN

pDd (v · n) ds, (3.13)

〈f, q〉 = −
3∑
d=1

∫
Ωd
δd fd qd dx, (3.14)

−
3∑
d=1

∑
T∈Td

∫
∂T∩ΓTF

d

qNd q̊d + σRd h
R
d q̊d ds (3.15)

− ct(h̃,˚̃h, q, q̊). (3.16)

All quantities are meant in time t, only h̃ is the pressure head in time t− τ .
The advantage of the mixed-hybrid method is that the set of equations (3.4)− (3.5) can
be reduced by eliminating the unknowns u and q to a sparse positive definite system
for q̊. This equation can then be efficiently solved using a preconditioned conjugate
gradient method. Unfortunately, it appears that the resulting system does not satisfy
the discrete maximum principle which in particular for short time steps τ can lead to
nonphysical oscillations. One possible solution is the diagonalization of the method
(lumped mixed-hybrid method, LMH) proposed in [12]. This method was implemented
in Flow123d as well. It consists in replacing the form ct by

ct(h, h̊, q, q̊) =
3∑
d=1

∑
T∈Td

d+1∑
i=1

αT,i|T |
δdSd
τ

(̊
h|ST,i q̊|ST,i

)
,

and the source term ∑3
d=1

∫
Ωd δd fd qd dx by

3∑
d=1

∑
T∈Td

d+1∑
i=1

αT,i|T |δdfd q̊|ST,i ,

where |T | is the size of an element T , ST,i is the i-th side of T , and h̊|ST,i is the degree of
freedom on the side ST,i. Weights αT,i can be chosen to be 1/(d+ 1). After solving the

46

Figure 3.1: Comparison of MH (left) and LMH scheme (right), τ = 10−4.

set of equations it is necessary to modify the velocity field u by adding the time term.
This modified system already satisfies the discrete maximum principle and does not
produce oscillations. Figure 3.1 shows a comparison of the results using conventional
MH scheme and LMH scheme. At the MH scheme one can observe oscillations in the
wavefront where the minimum value is significantly less than zero.

3.2 Mixed-Hybrid Method on Non-conforming Mixed
Meshes

The non-conforming coupling introduces a new term cF (h, h̊, q, q̊) to the formulation
(3.4) − (3.5) similar to the term cf responsible for the compatible coupling. We dis-
tinguish coupling of codimension d′ = 1, i.e. 2d in 3d and 1d in 2d, and coupling of
codimension d′ = 0, 2d-2d in 3d space and 1d-1d in 2d space. This way we split cF into

cF =
∑
d′=0,1

∑
d=1,2

cF,d′,d

All these terms have a common structure. For codimension 1 we have:

cF,1,d(h, h̊, q, q̊) =
∫
T d
σd
(
R(̊hd)− T (̊hd+1)

)(
R(φ̊d)− T (φ̊d+1)

)
,

where R is the reconstruction operator of the pressure he and T is the trace approxi-
mation. For the sake of consistency with codimension 0, we name Td a master element
and intersecting elements of dimension d+ 1 slave elements.
For codimension 0 we first introduce a numbering Sd of d dimensional manifolds (2d
or 1d fractures), for every intersection line Ii,j of two manifolds i, j ∈ Sd we define the
manifold with smaller number as a master while the other as a slave. The intersection
curve Ii,j of manifolds Si and Sj, i < j is decomposed into segments corresponding to
the elements of the master manifold, i.e.

Ii,j = ∪T∈SiIT,Sj

47

With such a notation at our disposal we can write the coupling term as:

cF,0,d(h, h̊, q, q̊) =
∑

Ii,j ,i<j

∑
T∈Si

∫
IT,Sj

σd
(
R(̊hi)− T (̊hj)

)(
R(φ̊i)− T (φ̊j)

)
,

where R is the trace approximation on the master element while T is the trace approx-
imation of the slave manifold, mapping the local discrete spaces of all intersecting slave
elements to the discrete space of the master element.

3.2.1 P0 method

Denoting hT the average of the pressures on the edges of a master element T , i.e. com-
ponents of h̊ and hTi , i = 1, . . . ,mT the average of the edge pressures on the intersecting
slave elements Ti. We prescribe the operators R and T restricted to T as:

R(̊h) = hT , T (̊h) = 1
δT

∑
i

δT,ihTi , deltaT =
∑
i

δT,i.

3.2.2 P1 method

First, we introduce local projection of the edge pressures to the linear broken space. Let
us denote Pi, i = 0, . . . , d the edge barycenters of an element T of dimension d. We find
a basis φi(x), i = 0, . . . , d of the space of linear functions on T that is orthogonal to the
functionals Φj(φ) = φ(Pi), j = 0, . . . , d. Denoting h̊i, i = 0, . . . , d the edge values (of
the pressure) on element T , we introduce the projection:

XT (̊h) =
∑
i

h̊iφi(x).

Resulting functions of neighboring elements are continuous in the edge barycenters.
Finally, let IK,L be an intersection of the elements K and L. Operators R and T are
defined on every such intersection independently as:

R(̊h) = XK (̊hK)|IK,L , T (̊h) = XL(̊hL)|IK,L ,
i.e. the restriction of the linear functions on individual elements to the intersection set.

3.3 Discontinuous Galerkin Method

Models for solute transport and heat transfer described in sections 2.4 and 2.6 are
collectively formulated as a system of abstract advection-diffusion equations on domains
Ωd, d = 1, 2, 3, connected by communication terms. Consider for d = 1, 2, 3 the equation

∂tud + div(bud)− div(A∇ud) = f 0 + f 1(uS − ud) + q(ud+1, ud) in (0, T)× Ωd (3.17a)
with initial and boundary conditions

ud(0, ·) = u0 in Ωd, (3.17b)
ud = uD on (0, T)× ΓDd , (3.17c)

(bud − A∇ud) · n = fN + σR(ud − uD) on (0, T)× ΓNd , (3.17d)
(bud − A∇ud) · n = q(ud, ud−1) on (0, T)× ΓCd , (3.17e)

48

where
ΓCd := Ωd ∩ Ωd−1.

The communication term q(ud+1, ud) has the form

q(ud+1, ud) =
αud+1 + βud in ΓCd+1, d = 1, 2,

0 on Ωd \ ΓCd+1, d = 1, 2, and for d = 0, 3.
(3.17f)

System (3.17) is spatially discretized by the discontinuous Galerkin method with weighted
averages, which was derived for the case of one domain in [6] (for a posteriori estimate
see [7]). For time discretization we use the implicit Euler method.
Let τ denote the time step. For a regular splitting Td of Ωd, d = 1, 2, 3, into simplices
we define the following sets of element sides:

Ed sides of all elements in Td (i.e. triangles for d = 3, lines for d = 2 and nodes for d = 1),
Ed,I interior sides (shared by 2 or more d-dimensional elements),
Ed,B outer sides (belonging to only one element),
Ed,D(t) sides, where the Dirichlet condition (3.17c) is given,
Ed,N(t) sides, where the Neumann or Robin condition (3.17d) is given,
Ed,C sides coinciding with ΓCd .

For an interior side E we denote by Nd(E) the set of elements that share E (notice that
1D and 0D sides can be shared by more than 2 elements). For an element T ∈ Nd(E) we
denote qT := (b · n)|T the outflow from T , and define N−d (E) := {T ∈ Nd(E) | qT ≤ 0},
N+
d (E) := {T ∈ Nd(E) | qT > 0} the sets of all outflow and inflow elements, respectively.

For every pair (T+, T−) ∈ N+
d (E)×N−d (E) we define the flux from T+ to T− as

qT+→T− := qT+qT−∑
T∈N−

d
(E) qT

.

We select arbitrary element TE ∈ Nd(E) and define nE as the the unit outward normal
vector to ∂TE at E. The jump in values of a function f between two adjacent elements
T1, T2 ∈ Nd(E) is defined by [f]T1,T2 = f|T1|E − f|T2|E , similarly we introduce the average
{f}T1,T2

= 1
2(f|T1|E + f|T2|E) and a weighted average {f}ωT1,T2

= ωf|T1|E + (1 − ω)f|T2|E .
The weight ω is selected in a specific way (see [6]) taking into account the possible
inhomogeneity of the tensor A.
For every time step tk = kτ we look for the discrete solution uk = (uk1, uk2, uk3) ∈ V ,
where

V =
3∏
d=1

Vd and Vd = {v : Ωd → R | v|T ∈ Pp(T) ∀T ∈ Td}

are the spaces of piecewise polynomial functions of degree at most p on elements Td,
generally discontinuous on interfaces of elements. The initial condition for u0

d is defined
as the L2-projection of u0 to Vd. For k = 1, 2, . . ., uk is given as the solution of the
problem

1
τ

(
uk − uk−1, v

)
V

+ ak(uk, v) = bk(v) ∀v ∈ V.

49

Here (f, g)V = ∑d
d=1 (f, g)Ωd , (f, g)Ωd =

∫
Ωd fg, and forms ak, bk are defined as follows:

ak((u1, u2, u3), (v1, v2, v3))

=
3∑
d=1

(
akd(ud, vd)− (q(ud+1, ud), vd)Ωd −

∑
E∈Ed

d,C
(tk)

(q(ud, ud−1), vd)E
)
, (3.18)

bk((v1, v2, v3)) =
3∑
d=1

bkd(vd),

(3.19)

akd(u, v) = (A∇u,∇v)Ωd − (bu,∇v)Ωd +
(
f 1u, v

)
Ωd

−
∑

E∈Ed
d,I

∑
T1,T2∈Nd(E)

T1 6=T2

((
{A∇u}ωT1,T2

· nE, [v]T1,T2

)
E

+ Θ
(
{A∇v}ωT1,T2

· nE, [u]T1,T2

)
E

− γE ([u]T1,T2 , [v]T1,T2)E

)
−

∑
E∈Ed

d,I

∑
T+∈N+

d
(E)

T−∈N−
d

(E)

(
qT+→T− {u}T+,T− , [v]T+,T−

)
E

+
∑

E∈Ed
d,D

(tk)

(
γE (u, v)E + (b · nu, v)E − (A∇u · n, v)E −Θ (A∇v · n, u)E

)

+
∑

E∈Ed
d,N

(tk)

(
σRu, v

)
E
,

bkd(v) =
(
f 0 + f 1uS, v

)
Ωd

+
∑

E∈Ed
d,D

(tk)

(
γE
(
uD, v

)
E
−Θ

(
uD,A∇v · n

)
E

)

+
∑

E∈Ed
d,N

(tk)

(
σRuD − fN , v

)
E
.

The Dirichlet condition is here enforced by a penalty with an arbitrary parameter γE >
0; its value influences the level of solution’s discontinuity. For γE → +∞ we obtain
asymptotically (at least formally) the finite element method. The constant Θ can take
the values −1, 0 or 1, where −1 corresponds to the nonsymmetric, 0 to the incomplete
and 1 to the symmetric variant of the discontinuous Galerkin method.

3.4 Finite Volume Method for Convective Trans-
port

In the case of the purely convective solute transport (D = 0), problem (3.17) is replaced
by:

∂tud + div(bud) = f 0 + f 1(uS − ud) + q(ud+1, ud) in (0, T)× Ωd, (3.20a)
ud(0, ·) = u0 in Ωd, (3.20b)

(b · n)ud = (b · n)uD on ΓId, (3.20c)

where
ΓId := {(t,x) ∈ (0, T)× ∂Ωd | b(t,x) · n(x) < 0}.

50

The communication term q(ud+1, ud) has the same structure as in (3.17f).
The system is discretized by the cell-centered finite volume method combined with the
explicit Euler time discretization. Using the notation of Section 3.3, we consider the
space V of piecewise constants on elements and define the discrete problem:

1
τ

(
uk − uk−1, v

)
V

+ ak−1(uk−1, v) = bk−1(v) ∀v ∈ V,

where the forms ak and bk are defined in (3.18)-(3.19) and akd, bkd now have simplified
form:

akd(u, v) =−
∑
Ti∈Td

((b · n)+u, v
)
∂Ti

+
∑
Tj∈Td

(
qTj→Tiu, v

)
∂Ti∩∂Tj

 ,
bkd(v) =

(
f 0 + f 1(uS − uk−1

d)+, v
)

Ωd
+

∑
Ti∈Td

(
(b · n)−uD, v

)
∂Ti∩∂Ωd

.

The above formulation corresponds to the upwind scheme, ideal mixing in case of mul-
tiple elements sharing one side, and explicit treatment of linear source term.

3.5 Solution Issues for Reaction Term

3.5.1 Dual Porosity

The analytic solution of the system of differential equations (2.34) at the time t with
initial conditions cm(0) and ci(0) is

cm(t) = (cm(0)− ca(0)) exp
(
−Ddp

(1
ϑm

+ 1
ϑi

)
t
)

+ ca(0), (3.21)

ci(t) = (ci(0)− ca(0)) exp
(
−Ddp

(1
ϑm

+ 1
ϑi

)
t
)

+ ca(0), (3.22)

where ca is the weighted average

ca = ϑmcm + ϑici
ϑm + ϑi

.

If the time step is large, we use the analytic solution to compute new values of concen-
trations. Otherwise, we replace the time derivatives in (2.34a) and (2.34b) by first order
forward differences and we get the classical Euler scheme

cm(t+) = Ddp∆t
ϑm

(ci(t)− cm(t)) + cm(t), (3.23a)

ci(t+) = Ddp∆t
ϑi

(cm(t)− ci(t)) + ci(t), (3.23b)

(3.23c)

where ∆t = t+ − t is the time step.

51

The condition on the size of the time step is derived from the Taylor expansion of (3.21)
or (3.22), respectively. We neglect the higher order terms and we want the second order
term to be smaller than the given scheme tolerance tol, relatively to ca,

(cm(0)− ca(0))
D2
dp(∆t)2

(
ϑm+ϑi
ϑmϑi

)2

2
1
ca
≤ tol. (3.24)

We then transform the above inequation into the following condition which is tested in
the program

max(|cm(0)− ca(0)|, |ci(0)− ca(0)|) ≤ 2ca
(

ϑmϑi
Ddp∆t(ϑm + ϑi)

)2

tol. (3.25)

In addition, the explicit Euler method (3.23) requires the satisfaction of a CFL condition
of the form

∆t ≤ 1
Ddp

ϑmϑi
ϑm + ϑi

. (3.26)

If either of the inequalities (3.25) or (3.26) is not satisfied, then the analytic solution is
used.

3.5.2 Equilibrial Sorption

Let us now describe the actual computation of the sorption model. To solve (2.37)
iteratively, it is very important to define the interval where to look for the solution
(unknown cl), see Figure 3.2. The lower bound is 0 (concentration can not reach negative
values). The upper bound is derived using a simple mapping. Let us suppose limited
solubility of the selected transported substance and let us denote the limit c̄l. We keep
the maximal ”total mass” c̄T = µl · c̄l + µs · f(c̄l), but we dissolve all the mass to get
maximal cmaxl > c̄l. That means cs = 0 at this moment. We can slightly enlarge the
interval by setting the upper bound equal to cmaxl + constsmall.

cs

clcl
maxcl

c = g(c)lT

f(c)l

cl
R

Figure 3.2: Sorption in combination with limited solubility.

52

To approximate the equation (2.37) using interpolation, we need to prepare the set
of values which represents [cl, f(cl)], with cl equidistantly distributed in transformed
(rotated and rescaled) coordination system at first. The construction process of the
interpolation table follows.

1. Maximal “total mass” c̄T = µl · c̄l + µs · f(c̄l) is computed.

2. Total mass step is derived mass_step = c̄T/n_steps. n_steps is the number of
substeps.

3. Appropriate cjT = (mass_step · j)/µl, j ∈ {0, . . . , n_steps} are computed.

4. The equations µl · cjT = µl · cjl + µs · f(cjl) j ∈ {0, . . . , n_steps} are solved for cjl
as unknowns. The solution is the set of ordered couples (points) [cjl , f(cjl)], j ∈
{0, . . . , n_steps}.

After the computation of {[cjl , f(cjl)]}, we transform these coordinates to the system
where the total mass is an independent variable. This is done by multiplication of
precomputed points using the transformation matrix A:

~c R = A · ~c[
cR,jl

cR,js

]
=
[

ϑ · ρw Ms(1− ϑ)ρR
−Ms(1− ϑ)ρR ϑ · ρw

]
·
[
cjl
cjs

]
j ∈ {0, . . . , n_steps}

(3.27)

The values cR,jl are equidistantly distributed and there is no reason to save them, but
the values cR,js are stored in one-dimensional interpolation table.
Once we have the interpolation table, we can use it for projecting the transport results
[cl, cs] on the isotherm under consideration. Following steps must be taken.

1. Achieved concentrations are transformed to the coordinate system through multi-
plication with the matrix A, see (3.27).

2. Transformed values are interpolated.

3. The result of interpolation is transformed back. The backward transformation con-
sists of multiplication with AT which is followed by rescaling the result. Rescaling
the result is necessary because A is not orthonormal as it is shown bellow.

AT ·A = ((ϑ− 1)2 ·M2
s · ρ2

R + ϑ2 · ρ2
w) ·

[
1 0
0 1

]

Limited solubility. When µl ·cl+µs ·f(cl) > µl · c̄l+µs ·f(c̄l), neither iterative solver
nor interpolation table is used. The aqueous concentration is set to be c̄l and sorbed
concentration is computed cs = (µl · cl + µs · f(cl)− µl · c̄l)/µs.

53

3.5.3 System of Linear Ordinary Differential Equations

A system of linear ordinary differential equations (ODE) appears in several places in
the model. Let us denote the ODE system

∂tc(t) = A(t)c(t) + b(t).

For the moment the only implemented method to solve the system is usage of Padé
approximant which corresponds to a family of implicit R-K methods.

Padé approximant. For homogeneous systems with constant matrix A, we can use
Padé approximation to find the solution. This method finds a rational function whose
power series agrees with a power series expansion of a given function to the highest
possible order (e.g. in [11]). Let

f(t) =
∞∑
j=0

cjt
j =

∞∑
j=0

1
n!f

(j)(t0)

be the function being approximated and its power series given by Taylor expansion
about t0. Then the rational function

Rmn(t) = Pm(t)
Qn(t) =

m∑
j=0

pjt
j

n∑
j=0

qjtj
, (3.28)

which satisfies
f(t) ≈

m+n∑
j=0

cjt
j = Rmn(t), (3.29)

is called Padé approximant. From (3.29), we obtain m+ n+ 2 equations for coefficients
of the nominator Pm (polynomial of degree m) and the denominator Qn (polynomial of
degree n). We also see that the error of the approximation is O(tm+n+1). By convention,
the denominator is normalized such that q0 = 1. Theoretical results show that for
m = n − 1 and m = n − 2 the Padé approximant corresponds to an implicit Runge-
Kutta method which is A-stable and L-stable (see [5]).
Now, we consider the solution of our ODE system in a form c(t) = eAtc(0). We shall
approximate the matrix exponential function using a matrix form of (3.28). For expo-
nential functions, there are known coefficients of the nominator and denominator:

Pm(At) =
m∑
j=0

(m+ n− j)!m!
(m+ n)!j!(m− j)!(At)

j, (3.30)

Qn(At) =
n∑
j=0

(−1)j (m+ n− j)!n!
(m+ n)!j!(n− j)!(At)

j. (3.31)

Finally, we can write the solution at time t+ ∆t

c(t+ ∆t) = Pm(A∆t)
Qn(A∆t) c(t) = Rmn(A∆t)c(t). (3.32)

If the time step ∆t is constant, we do not need to compute the matrix Rmn repeatedly
and we get the solution cheaply just by matrix multiplication. In the opposite case, we
avoid evaluating the exponential function and still get the solution quite fast (comparing
to computing semi-analytic solution).

54

Chapter 4

File Formats

In this chapter, we shall describe structure of the main input file and data formats of
other input files. In particular, we briefly describe the GMSH file format used for both
the computational mesh as well as for the input of general spatial data. We only discuss
some of the constructs used in the main input file. For details see Chapter 6 with the
reference documentation generated from the source files. Alternatively the interactive
HTML variant of the reference is in the directory doc/htmldoc of the installation or at
the simulator web page.

4.1 Main Input File

In this section, we shall describe structure of the main input file that is given either as
the first positional argument or through the parameter -s on the command line. First,
we provide a quick introduction to the YAML file format. Then, we demonstrate the
most important input structures on the examples.

4.1.1 YAML basics

YAML is a human readable data format. It is designed to be both human readable and
human editable. As it is not a markup languages, there are no tags to determine type
of the data. The indentation and justification is used instead for data organization.
Moreover the used YAML format (version 1.2) is superset of the JSON format, another
minimalist data serialization format where braces and brackets are used instead of in-
dentation. For the more detailed description see Wikipedia for further technical details
and for reference parsers for various programming languages see YAML home page .

Hierarchy of Mappings and Lists

Elementary data are organized to lists and mappings. Let us start with an example of
a list:

Example of list
- 3.14 # a number

55

https://flow.nti.tul.cz/packages/3.9.0_release/htmldoc/
https://en.wikipedia.org/wiki/YAML
http://yaml.org/

- 2014-01-14 # a date
- Simple string. # a string
- "3 is three" # quoting necessary
- ’3 is three’ # other quoting
- true # boolean

Comments are started by a hash (#) which can appear anywhere on a line and marks the
comment up to the end of line. The the list follows with single item per line preceded
by a dash (-). Any value starting by a digit is interpreted as a number or date. Values
starting with letter is interpreted as a string. Otherwise one may use double ("") or
single (’’) quotas to mark a string value explicitly. Finally some strings are interpreted
as Boolean values, it is recommended to use true and false (other possible pairs are
e.g. yes/no, y/n, on/off).
Alternatively a list may be written in compact ”JSON” way enclosing the list into
brackets:

Compact list
[3.14, 2014-01-14, Simple string.,
"3 is three", ’3 is three’]

Other data structure is called mapping, which is also known as directory or associative
array:

Example of a mapping
pi: 3.14
date: 2014-01-14
name: Mr. Simple String

Again one may use also JSON syntax with mapping enclosed in braces:

Compact mapping
{ pi: 3.14, date: 2014-01-14,
name: Mr. Simple String }

Mappings and lists may by mutually nested:

list:
- one
- two
-

- three one
- three two

map:
a: one
b: two

A string may be split to more lines using greater then (>) and multi-line strings may be
entered after vertical line (|):

56

single long string
one_line: >

Single line string
broken into two lines.

multi line string
multi_line: |

First line.
Second line.

In the first case the line breaks are replaced by space, in the second case the line breaks
are preserved. In both cases the leading indentation is removed.

Tags

YAML format defines a syntax for explicit specification of types of values including the
types specific to an application. The application specific tags are used by Flow123d
to specify particular implementation of various algorithms or data types. The general
syntax of tags is quite complicated, so we present only the syntax used in the Flow123d
input.

field_a: !FieldFormula
value: !!str "5 * x"

field_b: !FieldFormula "5 * x"

The field_a have specified evaluation algorithm FieldFormula, the key value have ex-
plicitly specified the default tag str. Note that default types are detected automatically
and need not to be specified. On the third line we use even more compact way to express
the same thing. Further details about usage of tags in Flow123d follows in Section 4.1.2.

References

Anchors and references allows to reduce redundancy in the input data:

aux_name: &anchor_name John Smith
aux_man: &common_man

sex: man
city: Prague

people:
- << *_common_man

name: John Paul
- << *_common_man

name: *anchor_name

On the first line, we define the anchor &anchor_name for the value John Smith. On the
second line, we define the anchor &common_man for the dictionary. Later, we use << to
inject the dictionary referenced by *common_man. Finally the anchor &anchor_name is
referenced by *anchor_name to reuse the name John Smith.
Ignoring the auxiliary keys aux_name and aux_man this is equivalent to:

57

people:
- sex: man

city: Prague
name: John Paul

- sex: man
city: Prague
name: John Smith

Gotchas

• Unquoted string values can not contain characters: colon :, hash #, brackets [],
braces {}, less then <, vertical bar |.

• For indentation one can use only spaces; tabs are not allowed. However, your
editor may automatically convert tabs to spaces.

• Boolean special strings must be quoted if you want to express a string. This is
not problem for the Flow123d input.

• Numbers starting with digit zero are interpreted as octal numbers.

4.1.2 Flow123d input types

Flow123d have a subsystem for definition of the structure of the input file including pre-
liminary checks for the correctness of the values. This subsystem works with elementary
data types:

• Bool corresponds to the YAML Boolean values

• Double, Integer initialized from YAML numeric values.

• String, FileName, Selections initialized from YAML strings.

Numerical values have defined valid ranges. FileName values are used for reference to
external files either for input or for output. Selection type defines a finite number of
valid string values which may appear on the input. These elementary types are further
organized into Records and Arrays in order to specify strongly typed definition of the
input data file. Array and Records forms so called input structure tree (IST).
In order to make ”simple things simple and complex things possible” (Alan Kay) the
input system provides so called automatic conversions. If the YAML type on input does
not match the expected data type automatic conversion tries to convert the input to
the expected type. Automatic conversion rules for individual composed types follows.

Record (YAML Mapping, JSON object)

A Record is initialized from the YAML mapping. However, in contrast to YAML map-
pings the Records have fixed keys with fixed types. This is natural as Records are used
for initialization of C++ objects which are also strongly typed. Every Record type

58

have unique name and have defined list of its keys. Keys are lowercase strings without
spaces, possibly using digits and underscore. Every key has a type and default value
specification. Default value specification can be:

obligatory — means no default value, which has to be specified at input.

optional — means no default value, but value is needs not to be specified. Unspecified
value usually means that you turn off some functionality.

default at declaration — the default value is explicitly given in declaration and is
automatically provided by the input subsystem if needed

default at read time — the default value is provided at read time, usually from some
other variable. In the documentation, there is only textual description where the
default value comes from.

Records that have all keys with default value or optional safe the single key K may
support autoconversion from an input of the type that match the type of the key K.
For example:

mesh: "mesh_file.msh"

is converted to:

mesh:
mesh_file: "mesh_file.msh"
regions: null
partitioning: any_neighboring
print_regions: false
intersection_search: BIHsearch

with the key regions being optional and the last three keys having its default values.

Array (YAML List, JSON array)

An Array is initialized from a YAML list. But, in opposition to the YAML mapping,
the values in a single Array have all the same type. So the particular Array type is given
by the type of its elements and a specification of its size range.
Automatic conversion performs kind of transposition of the data. It simplifies input of
the list of records (or arrays) with redundant structure, e.g. consider input

list:
a: [1,2)
b: 4
c: [5,6]

Assuming that key list have the type Array of Records and keys a, b, c are all numerical
scalars this input is equivalent to

59

list:
- a: 1

b: 4
c: 5

- a: 2
b: 4
c: 6

The rule works as follows, if a key K should have type Array, but some other type is
on the input, we search through the input under the key K for all Arrays S standing
instead of scalars. All these arrays must have the same length n. Then the i-th element
of the key A array is copy of the input keeping only i-th elements of the Arrays S. As
a special case if there are no Arrays S a list with single element equal to the input is
created. Only this simplest conversion to an Array is applied if inappropriate type is
found while the transposition is processed.

Abstract

An Abstract type allows a certain kind of polymorphism corresponding to a pure abstract
class in C++ or to an interface in Java. Every Abstract type have unique name and
set of Records that implements the Abstract. The particular type must be provided on
input through the YAML tag. See description of Fields below for examples.
An Abstract type may have specified the default implementation. If this default Record
supports automatic conversion from one of its keys we can see it as an automatic con-
version from that key to the Abstract. For example

conductivity: 2.0

where conductivity is of Abstract type Field with scalar values, is in fact converted to

conductivity: !FieldConstant
value: 2.0

as the FieldConstant is default implementation of the field and it is auto=convertible
from the key value.

Flow123d specific tags

Currently just two specific tags are implemented, both allowing inclusion of data in
other files.
Include other YAML file The tag !include can be used to read a key value from
other YAML file. Path to the file is specified as the value of the key. A relative path
is rooted in the folder of the main input file. A particular type of an Abstract key is
specified as a composed tag !include,<TYPE>.
Example, the main input file:

60

flow123d_version: 2.0.0
problem: !Coupling_Sequential

description: Test8 - Steady flow with sources
mesh:

mesh_file: ../00_mesh/square_1x1_shift.msh
flow_equation: !include,Flow_Darcy_MH

input_darcy.yaml

Content of input_darcy.yaml, included Record:

nonlinear_solver:
linear_solver: !Petsc

input_fields:
darcy_input_fields.yaml

balance: {}
output_stream:

file: ./flow.pvd

Content of darcy_input_fields.yaml, included Array:

- region: plane
anisotropy: 1
water_source_density: !FieldFormula
value: 2*(1-xˆ2)+2*(1-yˆ2)

- region: .plane_boundary
bc_type: dirichlet
bc_pressure: 0

Include general CSV data The custom tag include_csv can be used to include
a table (e.g. coma separated values, CSV file) as an Array of Records. Every line of
the input table is converted to a single element of the Array. The tag is followed by
a Record with several keys to specify format of the data:

file
A valid path to a text data file. Relative to the main input file.

separator
A string of characters used as separators of the values on the single line (default
is coma ”,”). Tab and space are always added. Double quotas can be used to
express string values containing separators, backslash can be used to escaping any
character with special meaning. Consecutive row of separators is interpreted as
a single separator.

n_head_lines
Skip given number of lines at the beginning.

format
An input structure of a single element in the resulting array. Type of Abstracts
must be same through the whole resulting Array. String scalar values with a place-
holder ’$<column>’ will be replaced by the value at corresponding column in the
input file.

61

Current implementation have substantial limitation as it can not be combined with
auto conversions. This makes these includes little bit verbose. For example consider
this section from a main input file:

...
substances: [A, B]
...
input_fields:
- region: A

porosity: !FieldTimeFunction
time_function: !include_csv

values:
file: data.txt
separator: " "
n_head_lines: 1
format:

time: #0
value: #1

- region: .boundary_A
bc_conc:

- !FieldTimeFunction # Substance A
time_function: !include_csv

values:
file: data.txt
separator: " "
n_head_lines: 1
format:

time: #0
value: #2

- !FieldTimeFunction # Substance B
time_function: !include_csv

values:
file: data.txt
separator: " "
n_head_lines: 1
format:

time: #0
value: #3

Content of data.txt:

time porosity bc_conc_X bc_conc_Y
0.0 0.01 1.0 0.6
0.1 0.015 0.9 0.5
0.2 0.03 0.8 0.4

This together will be equivalent to:

62

input_fields:
- region: A

porosity: !FieldTimeFunction
time_function:

- time: 0.0
value: 0.01

- time: 0.1
value: 0.015

- time: 0.2
value: 0.03

- region: .boundary_A
bc_conc: !FieldTimeFunction

time_function:
- time: 0.0

value: [1.0, 0.6]
- time: 0.1

value: [0.9, 0.5]
- time: 0.2

value: [0.8, 0.4]

So in this particular case it would be simpler to write data directly into the main file.
The include from the text table is efficient for the long time series.

4.1.3 Input subsystem

This section provides some implementation details about the Flow123d input subsystem.
This may be helpful to better understand behavior of the program for some special input
constructions.

JSON fileYAML file HDF5 file

JSON
parser

YAML
parser

HDF5
parser

conversion & check Input
Structure
Treeinternal data storage

uniform data access

IST file
(JSON)

LATEX

HTML

GeoMopFlow123d

Figure 4.1: Structure of the input subsystem. HDF5 format not yet supported.

The input subsystem of Flow123d is designed with the aim to provide uniform initializa-
tion of C++ classes and data structures. The scheme of the input is depicted on Figure

63

4.1. The structure of the input file is described by the Input Structure Tree (IST) con-
sisting of the input objects describing the types discussed in the previous Section 4.1.2.
The structure of the tree mostly follows follows the structure of the computational
classes.
When reading the input file, the file is first parsed by the specific format parser. Using
a common interface to the parsed data, the structure of the data is checked against the
IST and the data are pushed into the storage tree. If the input data and IST do not
match the automatic conversions described above are applied, where appropriate. An
accessor object to the root data record is the result of the file reading. The data can
be retrieved through the accessors which combine raw data of the storage with their
meaning described in IST. The IST can be written out in the JSON format providing
the description of the input file structure. This IST file is used both for generation of
the input reference in HTML and LATEXformats and for the Model editor — specialized
editor for the input file that is part of the GeoMop tools currently in development.
While the recommended format of the input file is YAML the JSON format can be used
as well. This may be useful in particular if the input file should be machine generated.
Although the JSON format is technically subset of the YAML format. We use separate
parser and use special keys in order to mimic tags and references supported by the
YAML. The type of an abstract is specified by the key TYPE. A reference is given by
a record with the only key REF which contains a string specifying the address of the
value that should be substituted.

4.2 Important Record Types of Flow123d Input

Complete description of the input structure tree can be generated into HTML or LaTeX
format. While the former one provides better interactivity through the hyperlinks the
later one is part of this user manual. The generated documentation provides whole
details for all keys, but it may be difficult to understand the concept of the input
structures. This section is aimed to provide this higher level picture.

4.2.1 Mesh Record

The mesh record provides initialization of the computational mesh consisting of points,
lines, triangles and tetrahedrons in the 3D ambient space. Currently, we support only
GMSH mesh file format MSH ASCII. The input file is provided by the key mesh_file.
The file format allows to group elements into regions identified by a unique label (or
by ID number). The regions with labels starting with the dot character are treated as
boundary regions. Their elements are removed from the computational domain, however
they can be used to specify boundary conditions. Other regions are called bulk regions.
Every element lies directly in just one simple region while the simple regions may be
grouped into composed regions called also region sets. A simple region may be part
of any number of composed regions. Initial assignment of the simple regions to the
elements is given by the physical groups of the input GMSH file. Further modification
of this assignment as well as creation of new simple or composed regions can be done
through the list of operations under the key regions. The operations are performed in
the order given by the input. Operation From_Id sets the name of a simple region having

64

http://geuz.org/gmsh/doc/texinfo/gmsh.html#MSH-ASCII-file-format

only ID in the input GMSH file. Operation From_Label can rename a simple region.
Operation From_Elements assign new simple region to the given list of elements over-
writing their region given by the input mesh file. Finally operations Union, Difference
and Intersection implements standard set operations with both simple and complex
regions resulting in new composed regions.

4.2.2 Input Fields

Input of every equation contains the key input_fields used consistently for the input of
the equation parameters in form of general time–space dependent fields. The input fields
are organized into a list of field descriptors, see e.g. Data record, the field descriptor of
the Darcy flow equation. The field descriptor is a Record with keys time, region, rid
and further keys corresponding to the names of input fields supported by the equation.
The field descriptor is used to prescribe a change of one or more fields in particular
time (key time) and on particular region given by the name (key region, preferred
way) or by the region id (key rid). The array is processed sequentially and latter
values overwrite the previous ones. Change times of a single field must form a non-
decreasing sequence. Changes in fields given by the fields descriptor are interpreted as
discontinuous changes of the changed fields and equations try to adopt its time stepping
to match these time points. This is in contrast with changes of the field values given
by the evaluation algorithms, these are always assumed to be continuous and the time
steps are not adapted.
Example:

input_fields:
- # time=0.0 - default value

region: BULK
conductivity: 1 # setting the conductivity field on all regions

- region: 2d_part
conductivity: 2 # overwriting the previous value

- time: 1.0
region: 2d_part
conductivity: !FieldFormula

from time=1.0 we switch to the linear function in time
value: 2+t

- time: 2.0
region: 2d_part
conductivity: !FieldElementwise

from time=2.0 we switch to elementwise field, but only
on the region "2d_part"
gmsh_file: ./input/data.msh
field_name: conductivity

Field Algorithms

A general time and space dependent, scalar, vector, or tensor valued function can be
specified through the family of abstract records Field:R3 -> X, where X is a type of

65

value returned by the field, which can be:

• T — scalar valued field, with scalars of type T

• T [d] — vector valued field, with vector of fixed size d and elements of type T

• T [d, d] — tensor valued field, with square tensor of fixed size and elements of type
T

the scalar type T can be one of

• Real — scalar real valued field

• Int — scalar integer valued field

• Enum — scalar non negative integer valued field. Values on the input are of the
type Selection.

Each of these abstract records have the same set of descendants which implement various
evaluation algorithms of the fields. These are

FieldConstant — field that is constant both in space and time

FieldTimeFunction — field that is constant in space and continuous in time. Values
are interpolated (currently only linear interpolation) from the sequence of time-
value pairs provided on input.

FieldFormula — field that is given by a runtime parsed formula. Since version 3.9.0 we
use our own library BParser however we preserve the formular syntax according to
the FParser. Formulas are converted from the FParser syntax to that of BParser
for the sake of backward compatibility, however, we can not rule out minor incom-
patibilities. The BParser will be used exclusively from the version 4.0.0 with its
Python and Numpy syntax, support for vector and tensor valued expressions and
use SIMD operations to achieve nearly peak CPU performance.
The formula can contain following literals: constants E and Pi, names of other
fields of the same equation, and coordinates: t, x, y, z, d. First is the simulation
time, the coordinate d is a special field that evaluates to the depth from the surface.
This is defined as a distance to the intersection of the vertical (Z axis) line with
the outer boundary that has smallest Z coordinate greater then the evaluation
point. Any other field of the same equation can be used in the formula as long as
the cyclic dependencies are avoided.

FieldPython — out of order in version 3.9.0, will be improved for the version 4.0.0.

FieldFE — discretized fully heterogeneous field field_name read from a file in GMSH
or VTK format with path given by the key mesh_data_file. Two regimes selected
by the key input_discretization are currently supported: the default value
element_data for the elementwise constant (P0) discretization and native_data
for the internal discretization.
The element data are provided by the file in GMSH or VTK format. The key
interpolation indicates interpretetion of the input data. The value identic_mesh

66

https://github.com/flow123d/bparser
http://warp.povusers.org/FunctionParser/fparser.html

can be used only with the GMSH format if the values are given for the same el-
ement IDs as used in the file of the common computational mesh. It is sufficient
to have data file with only the $ElementData sections, see Section 4.3 for the
complete format overview. The default value equivalent_mesh assumes the data
mesh same as the computational mesh, but possibly with different numbering of
the elements. The mapping between meshes is determined by the node coordinates,
so the complete mesh information must be provided with the data. Finaly there
are two options for the case of different data mesh. For the case P0_gauss, the
value on an element of the computational mesh is given as an integral average ap-
proximated by the Gauss quadrature of the order 4. The values at the quadrature
points are determined by the values on the data mesh. The case P0_intersection
works only for the boundary fields. The boundary of the computational mesh is
intersected with the data mesh, a single boundary element is decomposed into
its intersection Si with the elements of the data mesh, and the field value f is
determined as a weighted average of the data elements values vi:

v =
∑
i |Si|vi∑
i |Si|

The case of native data, is only available for the VTK file produced by the
Flow123d. It can be used to pass data between calls of the Flow123d on the
same mesh using the original discretization. This is particularly usefull for the
mixed-hybrid finite elements used by the Darcy flow model.
The key default_value provides to the computational elements not found in the
data file. The input data formats can contain field values for a sequence of discrete
times, the key read_time_shift together with the time_unit can be used to add
given period to the data times in order to match time frame of the simulation.

Field automatic conversions

Several automatic conversions are implemented to simplify field specifications. Scalar
values can be used to set constant vectors or tensors. Vector value of size d can be used
to set diagonal tensor d×d. Vector value of size d(d−1)/2, e.g. 6 for d = 3, can be used
to set symmetric tensor. These rules apply only for FieldConstant. Still supported,
but deprecated for FieldFormula. Moreover, all Field abstract types have default value
TYPE=FieldConstant. Thus you can just use the constant value instead of the whole
record.
Examples:

input fields:
- conductivity: 1.0

is equivalent to
- conductivity: !FieldConstant

value=1.0

- anisotropy: [1 ,2, 3] # diagonal tensor
is equivalent to

- anisotropy: !FieldConstant

67

value=[[1,0,0],[0,2,0],[0,0,3]]

concentration for 2 components
- conc: !FieldFormula ["x+y", "x+z"]

is equivalent to
- conc:

- !FieldFormula
value: "x+y"

- !FieldFormula
value: "x+z"

Field Units

Every field (e.g. conductivity or storativity) have specified unit in terms of powers of
the base SI units. The user, however, may set input in different units specified by the
key unit supported by every field algorithm. The key have type Unit record, auto
convertible from its only key unit of the string type. Effectively the Unit is a string
with particular syntax. The unit formula is evaluated into a coefficient and an SI unit.
The resulting SI unit must match expected SI unit of the field, while the input value
of the field (including values from external files or returned by Python functions) is
multiplied by the coefficient before further processing.
The syntax of unit formula is: <UnitExpr>;<Variable>=<Number>*<UnitExpr>;...,
where <Variable> is a variable name and <UnitExpr> is a units expression which con-
sists of products and divisions of terms, where a term has form <Base>ˆ<N>, where <N>
is an integer exponent and <Base> is either a base SI unit, a derived unit, or a variable
defined in the same unit formula. Example, unit for the pressure head:

pressure_head: !FieldConstant # [m] expected
value: 100 # [MPa]
unit: MPa/rho/g_; rho = 990*kg*mˆ-3; g_ = 9.8*m*sˆ-2

Standard single letter prefixes: a,f,p,n,u,m,d,c,h,k,M,G,T,P,E
are supported for the basic SI units: m,g,s,A,K,cd,mol
and for the derived SI units: N, J, W, Pa, C, D, l.
Moreover several specific units are supported: t = 1000 kg min = 60 s h = 60 min d =
24 h y = 365.2425 d

4.2.3 Output Records

Output from the models is controlled by an interplay of following records: OutputStream,
Balance, and EquationOutput. The first two are part of the records of so called bal-
ance equations which provides complete description of some balanced quantity. Every
such equation have its own balance output controlled by the Balance record and its
own output stream for the spatial data controlled by the OutputStream record. Further
every equation with its own output fields (every input field is also output field) have the
EquationOutput record to setup output of its fields.

68

Balance

The balance output is performed in times given by the key times with type TimeGrid
described below. Setting the key add_output_times to true the set of balance output
times is enriched by the output times of the output stream of the same equation.

OutputStream

Set the file format of the output stream, possibly setting the output name, however the
default value for the file name is preferred and the corresponding key file is obsolete.
The time set provided by the optional key times is used as a default time set for
a similar key in associated EquationOutput records. Finally, the key observe_points
is used to specify observation points in which the associated equation output evaluates
the observed fields.

EquationOuput

The output of the fields can be done in two ways: full spatial information saved only at
selected time points in form of VTU or GMSH file, or full temporal information saved
for every computational time, but only in selected output points. The list of fields for
spatial output is given by key fields while the fields evaluated in the observation points
are selected by the key observe_fields. The outputs times for the spatial output can
be selected individually for every field in the fields however the default list of output
times is given by the key times which can by optionally extended by the list of input
times using the key add_input_times.

TimeGrid Array

An array of the TimeGrid records may be used to setup a sequence of times. Such
sequence is used in particular to trigger various types of output. A single TimeGrid
represents a regular grid of times with given start time, end time and step.

4.3 Mesh and Data File Format MSH ASCII

Currently, the only supported format for the computational mesh is MSH ASCII format
in version 2 used by the GMSH software described as a legacy format. Same format can
be used for the FieldFE data. Support for the new version 4 format is planed for the
version 4.0.0 of Flow123d.
The scheme of the file is as follows:

$MeshFormat
<format version>
$EndMeshFormat

$PhysicalNames
<number of items>

69

http://gmsh.info//doc/texinfo/gmsh.html#MSH-file-format-version-2-_0028Legacy_0029

<dimension> <region ID> <region label>
...
$EndPhysicalNames

$Nodes
<number of nodes>
<node ID> <X coord> <Y coord> <Z coord>
...
$EndNodes

$Elements
<number of elements>
<element ID> <element shape> <n of tags> <tags> <nodes>
...
$EndElements

$ElementData
<n of string tags>

<field name>
<interpolation scheme>

<n of double tags>
<time>

<n of integer tags>
<time step index>
<n of components>
<n of items>
<partition index>

<element ID> <component 1> <component 2> ...
...
$EndElementData

Detailed description of individual sections:

PhysicalNames : Assign labels to region IDs. Elements of one region should have
common dimension. Flow123d interprets regions with labels starting with period
as the boundary elements that are not used for calculations.

Nodes : <number of nodes> is also number of data lines that follows. Node IDs are
unique but need not to form an arithmetic sequence. Coordinates are float num-
bers.

Elements : Element IDs are unique but need not to form an arithmetic sequence.
Integer code <element shape> represents the shape of element, we support only
points (15), lines (1), triangles (2), and tetrahedrons (4). Default number of tags
is 3. The first is the region ID, the second is ID of the geometrical entity (that
was used in original geometry file from which the mesh was generated), and the
third tag is the partition number. nodes is list of node IDs with size according to
the element shape.

70

ElementData : The header has 2 string tags, 1 double tag, and 4 integer tags with de-
fault meaning. For the purpose of the FieldElementwise the tags <field name>,
<n of components>, and <n of items> are obligatory. This header is followed
by field data on individual elements. Flow123d assumes that elements are sorted
by element ID, but doesn’t need to form a continuous sequence.

4.4 Output Files

Flow123d supports output of scalar, vector and tensor data fields into two formats. The
first is the native format of the GMSH software (usually with extension msh) which
contains computational mesh followed by data fields for sequence of time levels. The
second is the XML version of VTK files. These files can be viewed and post-processed
by several visualization software packages. However, our primal goal is to support data
transfer into the Paraview visualization software. See key format.
Input records of most equations (flow, transport, heat, some reaction models) contain
the keys output_stream and output. In output_stream, the name and type of the
output file is specified. Further, in output, one determines the list of fields intended for
output. The available output fields include input data as well as the simulation results.
We mention the most important output fields of all equations and link to the complete
lists in Table 4.1.

4.4.1 Auxiliary Output Files

Profiling Information

On every run we collect some basic profiling information. After all computations these
data are written into the file profiler%y%m%d_%H.%M.%S.out where %y, %m, %d, %H, %M,
%S are two digit numbers representing year, month, day, hour, minute, and second of
the program start time.

Balance of Conservative Quantities

Primary and secondary equations can produce additional information on fluxes, sources
and state of conservative quantities (for flow it is the volume of water, for transport
the mass of a substance, for heat transfer the energy). The computation of bal-
ance is governed by the key balance. The balance file (default water_balance.txt,
mass_balance.txt, energy_balance.txt) contains the following information:

• time

• region

• quantity [unit]: name and unit of the conservative quantity

• flux, flux_in, flux_out: flux through boundary regions (positive value stands
for flux into the domain)

71

Table 4.1: Most important output fields.

Flow_Darcy_MH and Richards_LMH
pressure_p0 Pressure head [m], piecewise constant on every element.

This field is directly produced by the MH method and
thus contains no postprocessing error.

pressure_p1 Same pressure head field, but interpolated into P1 con-
tinuous scalar field. Namely you lost discontinuities on
fractures.

velocity_p0 Vector field of water flux [m3s−1]. For every element we
evaluate discrete flux field at barycenter.

piezo_head_p0 Piezometric head [m], piecewise constant on every ele-
ment. This is just pressure on element plus z-coordinate
of the barycenter. This field is produced only on demand
(see key piezo_head_p0).

complete list See Darcy flow output fields.
Solute_Advection_FV
conc Concentration [kgm−3], piecewise constant on every el-

ement.
complete list See Convection transport output fields.
Solute_AdvectionDiffusion_DG
conc Concentration [kgm−3], piecewise linear on every ele-

ment. Even if higher order polynomial approximation is
used in simulation, the results are saved only in element
corners.

complete list See Transport with dispersion output fields.
DualPorosity
conc_immobile Concentration [kgm−3] in immobile zone, piecewise lin-

ear on every element.
complete list See Dual porosity output fields.
Sorption, SorptionMobile, SorptionImmobile
conc_solid Concentration [mol kg−1] of sorbed substance, piecewise

linear on every element.
complete list See Sorption output fields, Mobile sorption output fields,

Immobile sorption output fields.
Heat_AdvectionDiffusion_DG
temperature Temperature [K], piecewise linear on every element.

Even if higher order polynomial approximation is used
in simulation, the results are saved only in element cor-
ners.

complete list See Heat transfer output fields.

• mass: current mass in bulk regions

• source, source_in, source_out: volume source in bulk regions, its positive and
negative part

In addition, the following values for cumulative balance are shown when region is ALL:

72

• flux_increment, source_increment: flux and source increment since the last
balance time

• flux_cumulative, source_cumulative: cumulative flux and source from the ini-
tial time

• error: current mass − (initial mass + cumulative sources + cumulative fluxes)

Raw Water Flow Data File

You can force Flow123d to write raw data about results of MH method. The file format
is:

$FlowField
T=<time>
<number of elements>
<eid> <pressure> <flux x> <flux y> <flux z> <number of sides> <pressures on sides> <fluxes on sides>
...
$EndFlowField

where

<time> — is simulation time of the raw output.

<number of elements> — is number of elements in mesh, which is same as number
of subsequent lines.

<eid> — element id same as in the input mesh.

<flux x,y,z> — components of water flux interpolated to barycenter of the element

<number of sides> — number of sides of the element, influence number of remaining
values

<pressures on sides> — for every side average of the pressure over the side

<fluxes on sides> — for ever side total flux through the side

The side values are reported according to the side order, with sides numbering given by
Table 4.2.

73

Table 4.2: Side numbering relative to vertices.

element dimension side vertices

1 0 0
1 1

2
0 0 1
1 0 2
2 1 2

3

0 0 1 2
1 0 1 3
2 0 2 3
3 1 2 3

74

Chapter 5

Tutorials

In this chapter we describe several tutorial files that demonstrate various features of
Flow123d. The tutorial files are placed in tests/05_tutorial.

5.1 1D column

File: 01_column.yaml

5.1.1 Description

The first example is inspired by a real locality of a water treatment plant tunnel
Bedřichov in the granite rock massif. There is a particular seepage site 23 m under
the surface which has a very fast reaction on rainfall events. Real data of discharge and
concentration of stable isotopes are used.
The user will learn how to:

• Set up the mesh and flow model input parameters;
• Set up the solver and output parameters.

A pseudo one-dimensional model is considered in the range 10 × 23 m with the atmo-
spheric pressure on the surface and on the bottom, and no flow boundary condition on
the edges (Figure 5.1).

5.1.2 Input

The model settings are given in the control file, which is in YAML format. Every line
contains one parameter and its value(s). The indentation of lines is important, since it
indicates the section to which the parameter belongs.

Setting the computational mesh

The mesh file can be generated using the software GMSH. It has to contain:

75

http://www.gmsh.info

pressure/flux

pressure/flux

23
m

10 m

K=1e-8

no
fl

ow

no
fl

ow

-22.8 -0.184

piezo_head_p0

Figure 5.1: a) the mesh; b) the boundary conditions; c) computed piezometric head and
flux.

• Nodes. Point coordinates.
• Simplicial elements (lines, triangles, tetrahedra). Also elements of lower dimen-

sions represent fractures or channels.
• Physical domains (groups of elements, labeled either by a numerical id or a string

caption). Names of regions defining boundary have to start by a dot.

The mesh file is specified by the following lines:

mesh:
mesh_file: 01_mesh.msh

Setting the model and physical parameters

In this example we use the Darcy flow model, which is set by:

flow_equation: !Flow_Darcy_MH

Note: The equation name consists of three parts: physical process (Flow), mathematical
model (Darcy) and numerical method (MH = mixed hybrid finite element method).
The bulk parameters and boundary conditions are defined in the section input_fields.
For the rock massif (region: rock) we prescribe the hydraulic conductivity K = 10−8

m/s (typical value for the granite rock massif):

input_fields:
- region: rock

conductivity: 1e-8

We prescribe the atmospheric presure both at the surface and the tunnel:

76

- region: .tunnel
bc_type: dirichlet
bc_pressure: 0

- region: .surface
bc_type: dirichlet
bc_pressure: 0

If no boundary condition is given then the default “no flow” is applied.

Setting solver parameters

For the solution of the linear algebra problem we have to specify solver type and tol-
erances for controlling the residual. In flow_equation we can use either Petsc solver
which performs well for small and moderate size problems, or Bddc (a scalable domain
decomposition solver). Two stopping criteria can be given: absolute and relative toler-
ance of residual.

nonlinear_solver:
linear_solver: !Petsc

a_tol: 1e-15
r_tol: 1e-15

The key nonlinear_solver has further parameters which play role in other (nonlinear)
flow models.

Setting output

In the section output_stream we define the file name and type (supported types are
gmsh and vtk, which can be viewed by GMSH, ParaView, respectively) to which the
solution is saved:

output_stream:
file: flow.msh
format: !gmsh

The list of fields (solution components, input fields etc.) to be saved is specified by:

output:
fields:

- piezo_head_p0
- pressure_p0
- velocity_p0

The above code can be alternatively written in a more compact form, namely

output:
fields: [piezo_head_p0, pressure_p0, velocity_p0]

77

In addition to the output of solution, Flow123d provides computation of balance of fluid
volume, flux through boundaries and volume sources. This is turned on by

balance: {}

5.1.3 Results

The results of computation are generated to the files flow.msh and water_balance.txt.
From the balance file, one can see that the input flux on the surface is 1× 10−7 and the
output flux on the tunnel is −1× 10−7 (Table 5.1).

Table 5.1: Results in water_balanced.txt (edited table, extract from the file).

“time” “region” “quantity [m(3)]” “flux” “flux_in” “flux_out”

0 “rock” “water_volume” 0 0 0
0 “.surface” “water_volume” 1e-07 1e-07 0
0 “.tunnel” “water_volume” -1e-07 0 -1e-07
0 “IMPLICIT BOUNDARY” “water_volume” 2.58e-26 6.46e-26 -3.87e-26

5.1.4 Variant

Control file 02_column_transport.yaml contains modified boundary conditions and
solute transport model for the same physical problem.

5.2 1D column transport

File: 02_column_transport.yaml

5.2.1 Description and input

This is a variant of 01_column.yaml. The user will learn how to:

• Use flux boundary conditions.
• Set up the advective transport model.

For the fluid flow model we change the atmospheric pressure on the surface to the more
realistic infiltration 200 mm/yr (= 6.34× 10−9 m/s):

- region: .surface
bc_type: total_flux
bc_flux: 6.34E-09

In the resulting file water_balance.txt we can see that the value of the input and out-
put flux changes to 6.34×10−8. The visual results are similar to the case 01_column.yaml.
Next we demonstrate a simulation of the transport of a tracer. The equation of advective
transport (no diffusion/dispersion) is specified by:

78

solute_equation: !Coupling_OperatorSplitting
transport: !Solute_Advection_FV

The boundary condition of concentration is prescribed on the surface region:

input_fields:
- region: .surface

bc_conc: 100

The default type of boundary condition is inflow, i.e. prescribed concentration is applied
where water flows into the domain.
We provide the name of the transported substance (in general there can be multiple
transported substances):

substances: O-18

The end time of the simulation is set in the section time to value 1010 seconds (381
years):

time:
end_time: 1e10

The output files can be generated for specific time values. We set the time step for
output to 108 seconds (=3 years and 2 months):

output_stream:
times:

- step: 1e8

Finally, we turn on computation of mass balance with cumulative sums over the simu-
lation time interval.

balance:
cumulative: true

5.2.2 Results

The results of the mass balance computation are in the output folder in the file mass_balance.txt.
The evolution of concentration is depicted in Figure 5.2. A selected part of numerical
results of mass balance is in the Table 5.2. On the region “.surface”, the mass flux
of the tracer is still identical (6 × 10−6 kg/s). On “.tunnel”, the mass flux is zero at
the beginning and then it changes within around 100 years to the opposite value of
inflow -6 × 10−6 kg/s. Figure 5.3 depicts results from the file mass_balance.txt for
mass transported through the boundaries “.surface” and “.tunnel” and in the volume of
“rock”.

79

0 100

O-18_conc (5/100)
0 100

O-18_conc (10/100)
0 100

O-18_conc (15/100)
0 100

O-18_conc (20/100)

Figure 5.2: Tracer concentration after 5, 10, 15 and 20 time steps.

 0

 5000

 10000

 15000

 20000

 25000

 0 50 100 150 200 250 300 350
-8x10-6

-6x10-6

-4x10-6

-2x10-6

 0

 2x10-6

 4x10-6

 6x10-6

 8x10-6

m
a
ss

 i
n
 t

h
e
 r

o
ck

 [
kg

]

m
a
ss

 fl
u
x
 t

h
ro

u
g
h
 .
su

rf
a
ce

/.
tu

n
n
e
l
[k

g
/s

]

time [years]

rock .surface .tunnel

Figure 5.3: Results of evolution of mass in the volume and flux through boundaries.

80

Table 5.2: Illustration of the results in mass_balance.txt – selected columns in two
time steps.

time region quantity [kg] flux flux_in flux_out mass error

3.9e+09 rock O-18 0 0 0 22654.4 0
3.9e+09 .surface O-18 6.34e-06 6.34e-06 0 0 0
3.9e+09 .tunnel O-18 -4.99e-06 0 -4.99e-06 0 0
3.9e+09 IMPLICIT BOUNDARY O-18 -1.02e-19 0 -1.02e-19 0 0
3.9e+09 ALL O-18 1.34e-06 6.34e-06 -4.99e-06 22654.4 -5.78e-10

4e+09 rock O-18 0 0 0 22774.9 0
4e+09 .surface O-18 6.34e-06 6.34e-06 0 0 0
4e+09 .tunnel O-18 -5.39e-06 0 -5.39e-06 0 0
4e+09 IMPLICIT BOUNDARY O-18 -1.02e-19 0 -1.02e-19 0 0
4e+09 ALL O-18 9.40e-07 6.34e-06 -5.39e-06 22774.9 -6.03e-10

5.3 2D tunnel

File: 03_tunnel.yaml

5.3.1 Description

The tutorial models the seepage site 23 m under the surface of the water treatment
plant tunnel Bedřichov in the granite rock massif. This seepage site has fast reaction to
the precipitation and measurements of various chemical values are available.
The user will learn how to:

• Prescribe time-dependent input data.

The geometry consists of a rectangle 500 × 300 m with a circular hole of diameter 3.6
m placed 23 meters under the surface, which represents a plane perpendicular to the
tunnel.

5.3.2 Hydraulic model

The hydraulic model was fitted on the shape of the flux field, where it was assumed that
the tunnel drains only a part of the model surface. In particular, the model was fitted
on the estimated discharge of the seepage site.
We impose the following input data (see Figure 5.4):

• The hydraulic conductivity of the rock medium is set to 2.59e-2 m/day (= 3e-7
m/s);

• On the surface we prescribe the annual precipitation 2.33e-3 m/day (= 852 mm/yr);
• On the bottom part “.base” we prescribe the pressure 270 m because of assumption

of local groundwater flow;
• In the tunnel, the measured flux -9.16e-2 m/day (= -1.06e-6 m/s) is prescribed.

For convenience we use day as the unit of time. The corresponding YAML code is:

81

500 m

30
0

m

n
o

fl
ow

n
o

fl
ow

pressure 270 m

k=3e-7 m/s

ϑ=0.07

d
ep

th
23

m

drainage 1.06 µm/s

infiltration 850 mm/yr

flux field

Figure 5.4: Geometry and boundary condition of model.

input_fields:
- region: rock

conductivity: 2.59E-02
- region: .tunnel

bc_type: total_flux
bc_flux: -9.16E-02

- region: .base
bc_type: dirichlet
bc_pressure: 270

- region: .surface
bc_type: total_flux
bc_flux: 2.33E-03

The results are shown in Figure 5.5, where the flux field and the pressure is shown. In
the unsaturated layer the piezometric head is depicted.

5.3.3 Transport of real isotopes

The stable isotope O-18 was sampled in monthly steps in precipitation at nearby exper-
imental catchment Uhlirska and at the seepage site 23m depth. The measured values
are used for the boundary condition on the surface in the transport model as well as
reference values in the tunnel.

Input

We use the value 0.067 for porosity. The initial concentration of O-18 is set to -10.5
kg/m3:

82

0 132 264

pressure_p1
-53.3 -35.7 -18.2

piezo_head_p0

1.33e-05 0.00112 0.0936

velocity_p0

Figure 5.5: Pressure, boundary of water level and piezometric head in unsaturated zone
and flux field.

83

-11

-10.5

-10

-9.5

-9

2006 2007 2008 2009 2010 2011 2012 2013 2014
-18

-16

-14

-12

-10

-8

-6

-4

δ
1

8
O

 i
n
 t

u
n
n
e
l
[p

e
rm

il
V

-S
M

O
W

]

δ
1

8
O

 i
n
 p

re
ci

p
it

a
ti

o
n
 [

p
e
rm

il
V

-S
M

O
W

]

time [years]

measured precipitation computed

Figure 5.6: Concentration of O-18 on the seepage site 23m under the surface.

transport: !Solute_Advection_FV
input_fields:

- region: rock
porosity: 0.067
init_conc: -10.5

The monthly measured values of δ18O [per mil V-SMOW] on the surface from the period
1/2006 till 6/2013 are supplied as the boundary condition:

- region: .surface
bc_conc: -12.85443
time: 11

- region: .surface
bc_conc: -14.00255
time: 42

- region: .surface
bc_conc: -12.80081
time: 72

- region: .surface
bc_conc: -12.34748
time: 103

...

Results

In Figure 5.6, the computed mass flux through tunnel is compared to the measured
data. The evolution of the transported substance is depicted in Figure 5.7.

84

-10.7 -10.5 -10.3

O-18_conc (93/93)

Figure 5.7: Transport of isotopes in two-dimensional model.

5.4 Fractures and diffusion

File: 04_frac_diffusion.yaml

5.4.1 Description

In Flow123D domain interaction with fractures can be implemented. This example
comes from a study of evaluation of influence of an individual processes (diffusion, linear
sorption, dual-porosity) between domain interaction in transport. The background of
this study is movement of contaminant mass from deep repository along fractures. The
output mass from fracture and rock is evaluated for every individual process.
The user will learn how to:

• prepare mesh of fractured zone
• define union of mesh regions
• use advection-diffusion transport model
• define variable time step

85

p
ie

zo
m

et
ri

c
h

ei
gh

t
0.

1
m

p
ie

zo
m

et
ri

c
h

ei
gh

t
0

m

no flow

no flow

co
n

ce
n

tr
at

io
n

f(
t)

kg

100 m
10

0
m

0 25 50 75 100
0

25

50

75

100

Figure 5.8: Geometry and mesh of simulation area.

5.4.2 Input

Geometry and mesh generation

The simulation area 100× 100 m is cut by two flow fractures from which two dead-end
fractures separate (see Figure 5.8). The cross-section of the fractures is 0.01 m.
Instead of defining a geometry with thin 2D fractures (which would yield too large mesh),
in Flow123d one can treat fractures as lines with intrinsic cross-section area (or surfaces
with intrinsic width). In order to produce a compatible mesh, where fracture elements
are faces of triangles, we use additional GMSH command in the file 04_mesh.geo:

Line { 9:16 } In Surface { 20 };

This ensures that the 2D mesh will adapt so that elements do not cross the fracture
lines (see Figure 5.8).
In the YAML file one can define regions in addition to those from MSH file. We use the
type !Union type in the array regions to define sets of regions sharing some properties
(e.g. boundary conditions):

mesh:
mesh_file: 04_mesh.msh
regions:

- !Union
name: flow_fractures
regions:

- flow_fracture1
- flow_fracture2

- !Union
name: deadend_fractures

86

regions:
- deadend_fracture1
- deadend_fracture2

- !Union
name: BC_right
regions:

- .right
- .right_points

- !Union
name: BC_left
regions:

- .left
- .left_points

Hydraulic model

We are interested in simulation for 50000 years, hence we use year as the time units in the
definition of model parameters. Hydraulic conductivity k = 10−11 m/s (0.000315 m/yr)
was considered for rock massif. For the flow fractures and for the dead-end fractures we
considered k = 10−6 (31.5 m/yr) and k = 10−7 (3.15 m/yr), respectively. These values
are in accordance with typical values of conductivity of a massif considered for deep
repository. The thickness of model was set to 0.01 m for fractures:

input_fields:
- region: rock

conductivity: 0.000315
- region: flow_fractures

conductivity: 31.5
cross_section: 0.01

- region: deadend_fractures
conductivity: 3.15
variant without dead-end fractures conductivity: 0.000315
cross_section: 0.01

To eliminate the dead-end fractures from the model, one can set their conductivity
identical to the rock. Other possibility is to use the same conductivity as in the flow-
fractures.
Two dirichlet boundary conditions were defined for the flux: piezometric head 0.1 m on
the left side and 0 m on the right side:

- region: BC_left
bc_type: dirichlet
bc_piezo_head: 0.1

- region: BC_right
bc_type: dirichlet
bc_piezo_head: 0

The above values were chosen in order to obtain filtration flux in the flux-fractures
approximately 1× 10−9 m/s (≈ 0.1 m/yr). Other sides are nonpermeable.

87

Transport model

We use the advection-diffusion equation:

solute_equation: !Coupling_OperatorSplitting
transport: !Solute_AdvectionDiffusion_DG

The porosity was set to 0.005 for rock and 0.1 for fractures. The parameters of me-
chanical dispersion are set to 5 m for longitudinal dispersivity and 0.5 m for transversal
dispersivity. For the molecular diffusivity we use the same value at rock and fractures:
Dm = 3.69×10−2 m2/yr. Since in Flow123d the molecular diffusion tensor has the form
Dmϑ

1/3I, the effective molecular diffusivity will be 2.7 times higher on the fractures than
in the rock (Table 5.3):

input_fields:
- region: rock

init_conc: 0
porosity: 0.005
diff_m: 0.0369
disp_l: 5
disp_t: 0.5

- region: flow_fractures
init_conc: 0
porosity: 0.1
diff_m: 0.0369
disp_l: 5
disp_t: 0.5

- region: deadend_fractures
init_conc: 0
porosity: 0.1
diff_m: 0.0369
disp_l: 5
disp_t: 0.5

Table 5.3: Coefficient of molecular diffusion prescribed in Flow123d.

Quantity Rock Fracture

Porosity ϑ [−] 0.005 0.1
Coefficient of molecular diffusion Dm [m2/s] 1e-9 1e-9
Effective molecular diffusion Dmϑ1/3 [m2/s] 1.71e-10 4.64e-10

The boundary condition for the concentration at the fracture was prescribed in the form
of Gaussian curve

f(t) = 1
20

1
σ
√

2π
e−

1
2(t−t0σ)2

,

with the meanvalue t0 = 2000 years and standard deviation σ = 700 years:

88

-1.6x10-11

-1.4x10-11

-1.2x10-11

-1x10-11

-8x10-12

-6x10-12

-4x10-12

-2x10-12

 0

 0 10000 20000 30000 40000 50000
-5x10-10

-4.5x10-10

-4x10-10

-3.5x10-10

-3x10-10

-2.5x10-10

-2x10-10

-1.5x10-10

-1x10-10

-5x10-11

 0

fl
u
x
 i
n
 r

o
ck

 [
kg

/y
e
a
r]

fl
u
x
 i
n
 f

ra
ct

u
re

s
[k

g
/y

e
a
r]

time [years]

rock (no blind fractures)
rock

fractures (no blind)
fractures

Figure 5.9: Outgoing mass flux through the right part of the boundary. Comparison of
results with and without dead-end fractures.

- region: .left_0
bc_type: dirichlet
bc_conc: !FieldFormula

value: 2.84959e-5*exp(-0.5*((t-2000)/700)ˆ2)

It means that during the simulation time T = 50000 years, almost 0.05 kg/m3 (=∫ T
0 f(t) dt) of water is released. Maximum concentration of realised water is 0.028 g/m3

(= f(t0)). The mean value corresponds with real values of release of isotopes of deep
repository.
For better resolution of the time-dependent boundary condition, we refine the initial
output time step and after 5000 years we increase it:

output_stream:
times:

- step: 500
end: 5000

- begin: 5000
step: 5000

Here times is an array of time grids, each having optional parameters begin, end and
step. The computational time step will adapt to this grid automatically.

5.4.3 Results

The result of model with and without dead-end fractures (file 04_frac_diffusion_nodeadend.yaml)
is depicted in Figure 5.9. We can see that with dead-end fractures, the water is more
contaminated at the outflow from the rock. The influence on flow fractures is negligible.

89

5.5 Fractures and sorption

File: 05_frac_sorption.yaml

5.5.1 Description

This is a variant of 04_frac_diffusion.yaml. Instead of diffusion we consider advective
transport with equilibrial sorption.

5.5.2 Input

Flow123d provides several types of sorption (linear, Langmuir and Freundlich isotherm).
Each substance can be assigned its own sorption type. In this test, the transport of
three substances is computed: Iodium without sorption, Radium with liner sorption
and Selenium with Langmuir isotherm. The solvent density and solubility was set to 1.
Initial condition of solid was set to zero; rock density to 1 and parameter of linear and
Langmuir isotherm was set to 1.0.

reaction_term: !Sorption
substances:

- I
- Ra-lin
- Se-lang

solvent_density: 1.0
solubility: [1.0, 1.0, 1.0]
input_fields:

- region: ALL
init_conc_solid: 0
rock_density: 1.0
sorption_type:

- none
- linear
- langmuir

distribution_coefficient: 1.0
isotherm_other: 0.4

In fact, the fields init_conc_solid, isotherm_mult, isotherm_other can have differ-
ent values for each substance. In that case we define them as YAML arrays.

5.5.3 Results

Figure 5.10 depicts the influence of linear and Langmuir isotherm on the transport of
substances. The substance I without sorption flows out of the fracture fastest and the
substance Ra flows out slowest.

90

-1.8x10-8

-1.6x10-8

-1.4x10-8

-1.2x10-8

-1x10-8

-8x10-9

-6x10-9

-4x10-9

-2x10-9

 0

 0 2000 4000 6000 8000 10000

fl
u
x
 i
n
 f

ra
ct

u
re

 [
kg

/y
e
a
r]

time [years]

I
Ra
Se

Figure 5.10: Results of sorption.

5.6 Fractures and dual porosity

File: 06_frac_dualpor.yaml

5.6.1 Description

This is a variant of 04_frac_diffusion.yaml. Instead of diffusion we consider advective
transport with dual porosity.

5.6.2 Input

Dual porosity substitutes dead-end fractures in this task. The dual-porosity parameter
diffusion_rate_immobile was calibrated to the value 5.64742e-06 for identical results
with the model with the dead-end fractures. Other settings of transport are identical
to the diffusion model.
The dual porosity model is set by the following lines:

reaction_term: !DualPorosity
input_fields:

- region: rock
init_conc_immobile: 0

- region: flow_fractures
diffusion_rate_immobile: 5.64742e-06
porosity_immobile: 0.01
init_conc_immobile: 0

- region: deadend_fractures
init_conc_immobile: 0

91

-7x10-9

-6x10-9

-5x10-9

-4x10-9

-3x10-9

-2x10-9

-1x10-9

 0

 0 200 400 600 800 1000

fl
u
x
 i
n
 f

ra
ct

u
re

 [
kg

/y
e
a
r]

time [years]

dual porosity
flow in blind fractures

Figure 5.11: Results of calibration.

5.6.3 Results and comparison

Results of calibration of the model with dual porosity and model with flow in dead-end
fractures (file 06_frac_nodualpor.yaml) is depicted in Figure 5.11.

5.7 Heat transport

File: 07_heat.yaml

5.7.1 Description

The task is inspired by the hot-dry-rock method of geothermal heat exchanger. The
exchanger should be in progress for 30 years and give the power of 25 MW.
The user will learn how to:

• Set up heat transfer model;
• Use transition parameters at interfaces;
• Specify linear algebra solver.

5.7.2 Input

Geometry

We consider a two-dimensional model 5000 × 5000 m with two vertical wells at the
distance of 3000 m. The wells are 4300 m deep with the diameter approx. 11 cm (Figure
5.12). In order to better capture the 3D nature of the problem, we set cross_section
(width) of the rock region to 100 m (the value was gained from calibration), and the
cross section of the wells to 0.04 m2.

Table 5.4: Geometrical parameters.

Parameter Value

Model width 5000 m
Model depth 5000 m
Depth of heat exchanger 4100 – 4300 m
Distance of wells 3000 m
Depth of wells 4200 m
Model cross section 100 m
Well cross section 0.04 m2

Hydraulic model

The hydraulic conductivity was set to 1 × 10−10 m/s for the rock and to 1 × 10−4 m/s
for the exchanger zone.

- region: rock

92

no flow temperature=283 K

no flow temperature=433 K

n
o

fl
ow

th
er

m
al

gr
ad

ie
n

t
=

30
K

/1
km

k=1e-10 m/s

k=1e-10 m/s

k=1e-4 m/s

50
00

m

5000 m

4100 m

4200 m

4500 m

water flux 60 l/s

temperature=288 K pressure=0 m

Figure 5.12: Geometry, boundary conditions and computational mesh.

cross_section: 100
conductivity: 1.0e-10

- region: exchanger
conductivity: 1e-4

The flow in the wells is modelled using the Darcy equation with a high hydraulic con-
ductivity (10 m/s). The transition coefficient sigma [–], determines the rate of exchange
between 2D rock and 1D wells. Its default value 1 is kept at the lower well ends,
elsewhere the wells are isolated and hence we set sigma to zero.

- region: wells
conductivity: 10.0
cross_section: 0.04
sigma: 0

- region: wells_deep
sigma: 1

On the injection well (“.well1_surface”), we prescribe the flux 60 l/s, i.e. the flux velocity
is 1.5 m/s. On the production well (“.well2_surface”) we prescribe zero pressure.

- region: .well1_surface
bc_type: total_flux
bc_flux: 1.5

- region: .well2_surface
bc_type: dirichlet
bc_pressure: 0

We assume that the system does not have contact with its surrounding because of high
depth and intact granite massive. Hence no flow boundary conditions are given on the
sides, on the bottom and on the surface.

93

For the solution of the flow problem we choose the LU decomposition as the linear
algebra solver:

nonlinear_solver:
linear_solver: !Petsc

options: -ksp_type preonly -pc_type lu

Heat transport model

The heat transport model (Heat_AdvectionDiffusion_DG) assumes that the fluid and
solid phase are at thermal equilibrium. For the whole model (- region: ALL) we pre-
scribe the parameters for water and granite (density, thermal conductivity and capacity):

heat_equation: !Heat_AdvectionDiffusion_DG
balance:

cumulative: true
input_fields:

- region: ALL
fluid_density: 1000.0
fluid_heat_capacity: 4000
fluid_heat_conductivity: 0.5
solid_density: 2700.0
solid_heat_capacity: 790
solid_heat_conductivity: 2.5

The temperature on the surface is set to 283 K (= 10◦C):

- region: .surface
bc_type: dirichlet
bc_temperature: !FieldFormula

value: 10+273.15

The injected water has temperature 15◦C:

- region: .well1_surface
bc_type: dirichlet
bc_temperature: !FieldFormula

value: 15+273.15

The temperature on the bottom and sides as well as the initial temperature in the rock
and the wells is then prescribed in agreement with typical geological gradient, approx.
1◦C / 33 m:

init_temperature: !FieldFormula
value: 10-z/5000*150+273.15

94

 23

 24

 25

 26

 27

 28

 29

 30

 5 10 15 20 25 30

time [years]

power [MW]

Figure 5.13: The power of heat exchanger system in 30 years.

The porosity was set to 1 × 10−5 for rock and 1 × 10−4 for exchanger. The transition
coefficient of wells (“fracture_sigma”) was set to 0 in rock surrounding and to 1 in deep
surrounding:

- region: wells
init_temperature: !FieldFormula

value: 15-z/5000*150+273.15
porosity: 1.0e-05
fracture_sigma: 0

- region: wells_deep
fracture_sigma: 1

5.7.3 Results

The evolution of power of the heat exchanger (difference of absolute energy flux on the
surface of the two wells) is depicted in Figure 5.13. The result of water flow is depicted
in Figure 5.14 and the temperature field of the whole massif after 30 years is depicted
in Figure 5.15.

95

7.46 641 1.27e+03

piezo_head_p0
2.32e-19 5.9e-10 1.5

velocity_p0

Figure 5.14: The flux field with piezometric head.

96

283 358 433

temperature (30/30)

Figure 5.15: The temperature of exchanger after 30 years.

97

Chapter 6

Main Input File Reference

This chapter contains generated reference to the main input file. Described types are
ordered according to the deep first search of the input structure tree which somehow
keep description of related types close to each other. Interactive links allows passing
through the tree structure in top-bottom manner.
Ranges of arrays, integers and doubles use following notation: INT for maximum of
a signed 32-bit integer (≈ 2.147 × 109), UINT for maximum of unsigned 32-bit integer
(≈ 4.295 × 109), and inf for maximum of the double precision floating point number
(≈ 1.798× 10308).

98

record: Root

Root record of JSON input for Flow123d.

flow123d_version = 〈String 〉

default: Obligatory

Version of Flow123d for which the input file was created. Flow123d only warn
about version incompatibility. However, external tools may use this information
to provide conversion of the input file to the structure required by another version
of Flow123d.

problem = 〈abstract: Coupling_Base 〉

default: Obligatory

Simulation problem to be solved.
pause_after_run = 〈Bool 〉

default: false

If true, the program will wait for key press before it terminates.

abstract: Coupling_Base

The root record of description of particular the problem to solve.
implementations:

Coupling_Sequential

record: Coupling_Sequential

Record with data for a general sequential coupling.

implements abstracts: Coupling_Base

time = 〈record: TimeGovernor 〉

default: {}

Time governor setting.

99

description = 〈String 〉

default: Optional

Short description of the solved problem.
Is displayed in the main log, and possibly in other text output files.

mesh = 〈record: Mesh 〉

default: Obligatory

Computational mesh common to all equations.
flow_equation = 〈abstract: DarcyFlow 〉

default: Obligatory

Flow equation, provides the velocity field as a result.
solute_equation = 〈abstract: AdvectionProcess 〉

default: Optional

Transport of soluted substances, depends on the velocity field from a Flow equa-
tion.

heat_equation = 〈abstract: AdvectionProcess 〉

default: Optional

Heat transfer, depends on the velocity field from a Flow equation.

record: TimeGovernor

Time axis settings of the simulation.
The settings is specific to a particular equation.
TimeGovernor allows to:
- define start time and end time of simulation
- define lower and upper limits of time steps
- direct fixed time marks of whole simulation
- set global time unit of equation (see ’common_time_unit’ key)
Limits of time steps are defined by keys ’min_dt’, ’max_dt’, ’init_dt’ and ’dt_limits’.
Key ’init_dt’ has the highest priority and allows set fix size of time steps. Pair of keys
’min_dt’ and ’max_dt’ define interval of time steps. Both previous cases (’init_dt’ or pair
’min_dt’ and ’max_dt’) set global limits of whole simulation. In contrasts, ’dt_limits’
allow set time-dependent function of min_dt/max_dt. Used time steps of simulation
can be printed to YAML output file (see ’write_used_timesteps’.
Fixed time marks define exact values of time steps. They are defined in:
- start time and end time of simulation
- output times printed to output mesh file
- times defined in ’dt_limits’ table (optional, see ’add_dt_limits_time_marks’ key)

conversion from key: max_dt

100

start_time = 〈tuple: TimeValue 〉

default: 0.0

Start time of the simulation.
end_time = 〈tuple: TimeValue 〉

default: 5e+17

End time of the simulation.
The default value is higher than the age of the Universe (given in seconds).

init_dt = 〈tuple: TimeValue 〉

default: 0.0

Initial guess for the time step.
It applies to equations that use an adaptive time stepping. If set to 0.0, the time
step is determined in fully autonomous way, assuming the equation supports it.

min_dt = 〈tuple: TimeValue 〉

default: implicit value: ”Machine precision.”

Soft lower limit for the time step.
Equation using an adaptive time stepping cannot suggest smaller time step. The
actual time step can only decrease below the limit in order to match the prescribed
input or output times.

max_dt = 〈tuple: TimeValue 〉

default: implicit value: ”Whole time of the simulation if specified, infinity else.”

Hard upper limit for the time step.
The actual time step can only increase above the limit in order to match the
prescribed input or output times.

dt_limits = 〈array [0, UINT] of tuple: DtLimits 〉

default: Optional

Allow to set a time dependent changes in min_dt and max_dt limits. This list
is processed at individual times overwriting previous values of min_dt/max_dt.
Limits equal to 0 are ignored and replaced with min_dt/max_dt values.

add_dt_limits_time_marks = 〈Bool 〉

default: false

Add all times defined in dt_limits table to the list of fixed TimeMarks.
write_used_timesteps = 〈Filename 〉

default: Optional

Write used time steps to the given file in YAML format corresponding with the
format of dt_limits.

101

common_time_unit = 〈record: Unit 〉

default: "s"

Common time unit of the equation.
This unit will be used for all time inputs and outputs within the equation. Indi-
vidually, the common time unit can be overwritten for every declared time.
Time units are used in the following cases:
1) Time units of time value keys in: TimeGovernor, FieldDescriptors.
The common time unit can be overwritten for every declared time.
2) Time units in:
a) input fields: FieldFE and FieldTimeFunction
b) time steps definition of OutputTimeSet
Common time unit can be overwritten by one unit value for every whole mesh
data file or time function.
3) Time units in output files: observation times, balance times, frame times of
VTK and GMSH
Common time unit cannot be overwritten in these cases.

tuple: TimeValue

A time with optional unit specification.

conversion from key: time

time = 〈Double (-inf, +inf) 〉

default: Obligatory

The time value.
unit = 〈record: Unit 〉

default: implicit value: ”Common time unit of the equation’s Time Governor. See
the key ’common_time_unit’.”

Predefined units include: s seconds, min minutes, h hours, d days, y years.
The default time unit is set from the equation’s time governor, see the key common_time_unitin
the equation’s time record. User can benefit from the Unit Convertor funcionality
and create different time units.
Year length example considering leap years (Gregorian calendar): year; year =
365.2425*d.
Miliseconds example : milisec; milisec = 0.001*s.

record: Unit

Specify the unit of an input value. Evaluation of the unit formula results into a coeficient
and a unit in terms of powers of base SI units. The unit must match theexpected SI

102

unit of the value, while the value provided on the input is multiplied by the coefficient
before further processing. The unit formula have a form:
<UnitExpr>;<Variable>=<Number>*<UnitExpr>;...,
where <Variable> is a variable name and <UnitExpr> is a units expression which
consists of products and divisions of terms. A term has a form: <Base>ˆ<N>, where
<N> is an integer exponent and <Base> is either a base SI unit, a derived unit, or
a variable defined in the same unit formula. Example, unit for the pressure head:
MPa/rho/g_; rho = 990*kg*mˆ-3; g_ = 9.8*m*sˆ-2

conversion from key: unit_formula

unit_formula = 〈String 〉

default: Obligatory

Definition of unit.

tuple: TimeValue

A time with optional unit specification.

conversion from key: time

time = 〈Double [0, +inf) 〉

default: Obligatory

The time value.
unit = 〈record: Unit 〉

default: implicit value: ”Common time unit of the equation’s Time Governor. See
the key ’common_time_unit’.”

Predefined units include: s seconds, min minutes, h hours, d days, y years.
The default time unit is set from the equation’s time governor, see the key common_time_unitin
the equation’s time record. User can benefit from the Unit Convertor funcionality
and create different time units.
Year length example considering leap years (Gregorian calendar): year; year =
365.2425*d.
Miliseconds example : milisec; milisec = 0.001*s.

tuple: DtLimits

Time dependent changes in min_dt and max_dt limits.

conversion from key: time

103

time = 〈tuple: TimeValue 〉

default: Obligatory

The start time of dt step set.
min_dt = 〈tuple: TimeValue 〉

default: implicit value: ”’min_dt’ value of TimeGovernor.”

Soft lower limit for the time step.
max_dt = 〈tuple: TimeValue 〉

default: implicit value: ”’max_dt’ value of TimeGovernor.”

Whole time of the simulation if specified, infinity else.

record: Mesh

Record with mesh related data.

conversion from key: mesh_file

mesh_file = 〈Filename 〉

default: Obligatory

Input file with mesh description.
regions = 〈array [0, UINT] of abstract: Region 〉

default: Optional

List of additional region and region set definitions not contained in the mesh.
There are three region sets implicitly defined:

– ALL (all regions of the mesh)
– .BOUNDARY (all boundary regions)
– BULK (all bulk regions)

partitioning = 〈record: Partition 〉

default: "any_neighboring"

Parameters of mesh partitioning algorithms.
print_regions = 〈Bool 〉

default: true

If true, print table of all used regions.

104

intersection_search = 〈selection: Types of search algorithm for finding intersection
candidates. 〉

default: "BIHsearch"

Search algorithm for element intersections.
global_snap_radius = 〈Double [0, +inf) 〉

default: 0.001

Maximal snapping distance from the mesh in various search operations. In par-
ticular, it is used to find the closest mesh element of an observe point; and in
FieldFormula to find closest surface element in plan view (Z projection).

raw_ngh_output = 〈Filename 〉

default: Optional

Output file with neighboring data from mesh.
optimize_mesh = 〈Bool 〉

default: true

If true, permute nodes and elements in order to increase cache locality. This will
speed up the calculations. GMSH output preserves original ordering but is slower.
All variants of VTK output use the permuted.

abstract: Region

Abstract record for Region.
implementations:

From_Id, From_Label, From_Elements, Union, Difference, Intersection

record: From_Id

Elementary region declared by its id.
It allows to create a new region with given id and name, or to rename an existing region
of given id.

implements abstracts: Region

name = 〈String 〉

default: Obligatory

Name (label) of the region. It has to be unique per single mesh.

105

id = 〈Integer [0, INT] 〉

default: Obligatory

Id of the region to which you assign the name.
dim = 〈Integer [0, INT] 〉

default: Optional

Dimension of the region to which you assign the name.
The value is taken into account only if a new region is created.

record: From_Label

Elementary region declared by its name (label).
It gives a new name to an elementary region with the original name (in the mesh file)
given by the mesh_label.

implements abstracts: Region

name = 〈String 〉

default: Obligatory

New name (label) of the region. It has to be unique per single mesh.
mesh_label = 〈String 〉

default: Obligatory

The original region name in the input file, e.g. a physical volume name in the
GMSH format.

allow_empty = 〈Bool 〉

default: false

If true it allows to the region set to be empty (no elements).

record: From_Elements

Elementary region declared by a list of elements.
The new region is assigned to the list of elements specified by the key element_list.

implements abstracts: Region

106

name = 〈String 〉

default: Obligatory

Name (label) of the region. It has to be unique per single mesh.
id = 〈Integer [0, INT] 〉

default: Optional

Id of the region. If unset, a unique id will be generated automatically.
element_list = 〈array [1, UINT] of Integer [0, INT] 〉

default: Obligatory

List of ids of elements.

record: Union

Defines a new region (set) as a union of two or more regions. The regions can be given
by their names or ids or both.

implements abstracts: Region

name = 〈String 〉

default: Obligatory

Name (label) of the new region. It has to be unique per single mesh.
region_ids = 〈array [0, UINT] of Integer [0, INT] 〉

default: Optional

List of region ids to be added to the new region set.
regions = 〈array [0, UINT] of String 〉

default: Optional

List of region names (labels) to be added to the new region set.

record: Difference

Defines a new region (set) as a difference of two regions (sets), given by their names.

implements abstracts: Region

107

name = 〈String 〉

default: Obligatory

Name (label) of the new region. It has to be unique per single mesh.
regions = 〈array [2, 2] of String 〉

default: Obligatory

List of exactly two region (set) names.
Supposing region sets r1, r2, the result includes all regions of r1 that are not in r2.

record: Intersection

Defines a new region (set) as an intersection of two or more regions (sets), given by their
names.

implements abstracts: Region

name = 〈String 〉

default: Obligatory

Name (label) of the new region. It has to be unique per single mesh.
regions = 〈array [2, UINT] of String 〉

default: Obligatory

List of two or more region (set) names.

record: Partition

Setting for various types of mesh partitioning.

conversion from key: graph_type

tool = 〈selection: PartTool 〉

default: "METIS"

Software package used for partitioning. See corresponding selection.
graph_type = 〈selection: GraphType 〉

default: "any_neighboring"

Algorithm for generating graph and its weights from a multidimensional mesh.

108

selection: PartTool

Select the partitioning tool to use.
values:

PETSc : Use PETSc interface to various partitioning tools.

METIS : Use direct interface to Metis.

selection: GraphType

Different algorithms to make the sparse graph with weighted edges
from the multidimensional mesh. Main difference is dealing with
neighboring of elements of different dimension.
values:

any_neighboring : Add an edge for any pair of neighboring elements.

any_weight_lower_dim_cuts : Same as before and assign higher weight to cuts of
lower dimension in order to make them stick to one face.

same_dimension_neighboring : Add an edge for any pair of neighboring elements of
the same dimension (bad for matrix multiply).

selection: Types of search algorithm for finding intersection candidates.

values:

BIHsearch : Use BIH for finding initial candidates, then continue by prolongation.

BIHonly : Use BIH for finding all candidates.

BBsearch : Use bounding boxes for finding initial candidates, then continue by pro-
longation.

abstract: DarcyFlow

Darcy flow model. Abstraction of various porous media flow models.
implementations:

109

Flow_Darcy_LMH, Coupling_Iterative, Flow_Darcy_MH, Flow_Richards_LMH

record: Flow_Darcy_LMH

Lumped Mixed-Hybrid solver for saturated Darcy flow.

implements abstracts: DarcyFlow

time = 〈record: TimeGovernor 〉

default: {}

Time governor setting.
gravity = 〈array [3, 3] of Double (-inf, +inf) 〉

default: [0, 0, -1]

Vector of the gravity force. Dimensionless.
input_fields = 〈array [0, UINT] of record: Flow_Darcy_LMH_Data 〉

default: Obligatory

Input data for Darcy flow model.
nonlinear_solver = 〈record: NonlinearSolver 〉

default: {}

Non-linear solver for MH problem.
output_stream = 〈record: OutputStream 〉

default: {}

Output stream settings.
Specify file format, precision etc.

output = 〈gen. record: EquationOutput 〉

gen. parameters: output_field_selection = Flow_Darcy_LMH:OutputFields

default: {"fields": ["pressure_p0", "velocity_p0"]}

Specification of output fields and output times.
output_specific = 〈gen. record: Output_DarcyMHSpecific 〉

gen. parameters: output_field_selection = Flow_Darcy_MH_specific:OutputFields

default: Optional

Output settings specific to Darcy flow model.
Includes raw output and some experimental functionality.

110

balance = 〈record: Balance 〉

default: {}

Settings for computing mass balance.
mortar_method = 〈selection: MH_MortarMethod 〉

default: "None"

Method for coupling Darcy flow between dimensions on incompatible meshes. [Ex-
perimental]

record: Flow_Darcy_LMH_Data

Record to set fields of the equation.
The fields are set only on the domain specified by one of the keys: ’region’, ’rid’
and after the time given by the key ’time’. The field setting can be overridden by
any Flow_Darcy_LMH_Data record that comes later in the boundary data array.

region = 〈array [1, UINT] of String 〉

default: Optional

Labels of the regions where to set fields.
rid = 〈Integer [0, INT] 〉

default: Optional

ID of the region where to set fields.
time = 〈tuple: TimeValue 〉

default: 0.0

Apply field setting in this record after this time.
These times have to form an increasing sequence.

anisotropy = 〈gen. abstract: Field_R3_to_R[3,3] 〉

gen. parameters: element_input_type = Double

default: Optional

Anisotropy of the conductivity tensor. [−]
cross_section = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Complement dimension parameter (cross section for 1D, thickness for 2D). [m3−d]

111

conductivity = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Isotropic conductivity scalar. [ms−1]
sigma = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Transition coefficient between dimensions. [−]
water_source_density = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Water source density. [s−1]
bc_type = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Flow_Darcy_BC_Type

default: Optional

Boundary condition type. [−]
bc_pressure = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Prescribed pressure value on the boundary. Used for all values of bc_type ex-
cept none and seepage. See documentation of bc_type for exact meaning of
bc_pressure in individual boundary condition types. [m]

bc_flux = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Incoming water boundary flux. Used for bc_types : total_flux, seepage, river.
[ms−1]

bc_robin_sigma = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Conductivity coefficient in the total_flux or the river boundary condition type.
[s−1]

112

bc_switch_pressure = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Critical switch pressure for seepage and river boundary conditions. [m]
init_pressure = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Initial condition for pressure in time dependent problems. [m]
storativity = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Storativity (in time dependent problems). [m−1]
gravity = 〈gen. abstract: Field_R3_to_R[3] 〉

gen. parameters: element_input_type = Double

default: Optional

Gravity vector. [−]
bc_gravity = 〈gen. abstract: Field_R3_to_R[3] 〉

gen. parameters: element_input_type = Double

default: Optional

Boundary gravity vector. [−]
init_piezo_head = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Initial condition for the pressure given as the piezometric head.
bc_piezo_head = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Boundary piezometric head for BC types: dirichlet, robin, and river.
bc_switch_piezo_head = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

113

default: Optional

Boundary switch piezometric head for BC types: seepage, river.

abstract: Field_R3_to_R[3,3]

Abstract for all time-space functions.
default: FieldConstant
implementations:

FieldPython, FieldConstant, FieldFormula, FieldTimeFunction, FieldFE

record: FieldPython

R3_to_R[3,3] Field given by a Python script.

implements abstracts: Field_R3_to_R[3,3]

unit = 〈record: Unit 〉

default: Optional

Unit of the field values provided in the main input file, in the external file, or by
a function (FieldPython).

script_string = 〈String 〉

default: implicit value: ”Obligatory if ’script_file’ is not given. ”

Python script given as in place string
script_file = 〈Filename 〉

default: implicit value: ”Obligatory if ’script_striong’ is not given. ”

Python script given as external file
function = 〈String 〉

default: Obligatory

Function in the given script that returns tuple containing components of the return
type.
For NxM tensor values: tensor(row,col) = tuple(M*row + col).

record: FieldConstant

114

R3_to_R[3,3] Field constant in space.

implements abstracts: Field_R3_to_R[3,3]

conversion from key: value

unit = 〈record: Unit 〉

default: Optional

Unit of the field values provided in the main input file, in the external file, or by
a function (FieldPython).

value = 〈array [1, UINT] of array [1, UINT] of parameter: element_input_type 〉

default: Obligatory

Value of the constant field. For vector values, you can use scalar value to enter
constant vector. For square N ×N -matrix values, you can use: - vector of size N
to enter diagonal matrix

– vector of size 1
2N(N + 1) to enter symmetric matrix (upper triangle, row by

row)
– scalar to enter multiple of the unit matrix.

record: FieldFormula

R3_to_R[3,3] Field given by runtime interpreted formula.

implements abstracts: Field_R3_to_R[3,3]

conversion from key: value

unit = 〈record: Unit 〉

default: Optional

Unit of the field values provided in the main input file, in the external file, or by
a function (FieldPython).

value = 〈array [1, UINT] of array [1, UINT] of String 〉

default: Obligatory

String, array of strings, or matrix of strings with formulas for individual entries of
scalar, vector, or tensor value respectively.
For vector values, you can use just one string to enter homogeneous vector.
For square N ×N -matrix values, you can use:

– array of strings of size N to enter diagonal matrix

115

– array of strings of size 1
2N(N + 1) to enter symmetric matrix (upper triangle,

row by row)
– just one string to enter (spatially variable) multiple of the unit matrix.

Formula can contain variables x,y,z,t,d and usual operators and functions.

surface_direction = 〈String 〉

default: "0 0 1"

The vector used to project evaluation point onto the surface.
surface_region = 〈String 〉

default: Optional

The name of region set considered as the surface. You have to set surface region
if you want to use formula variable d.

record: FieldTimeFunction

R3_to_R[3,3] Field time-dependent function in space.

implements abstracts: Field_R3_to_R[3,3]

conversion from key: time_function

unit = 〈record: Unit 〉

default: Optional

Unit of the field values provided in the main input file, in the external file, or by
a function (FieldPython).

time_function = 〈record: TableFunction 〉

default: Obligatory

Values of time series initialization of Field.

record: TableFunction

Allow set variable series initialization of Fields.

conversion from key: values

values = 〈array [2, UINT] of tuple: IndependentValue 〉

default: Obligatory

Initizaliation values of Field.

116

tuple: IndependentValue

Value of Field for time variable.

t = 〈tuple: TimeValue 〉

default: Obligatory

Time stamp.
value = 〈array [1, UINT] of array [1, UINT] of parameter: element_input_type 〉

default: Obligatory

Value of the field in given stamp.

record: FieldFE

R3_to_R[3,3] Field given by finite element approximation.

implements abstracts: Field_R3_to_R[3,3]

unit = 〈record: Unit 〉

default: Optional

Unit of the field values provided in the main input file, in the external file, or by
a function (FieldPython).

mesh_data_file = 〈Filename 〉

default: Obligatory

GMSH mesh with data. Can be different from actual computational mesh.
input_discretization = 〈selection: FE_discretization 〉

default: Optional

Section where to find the field.
Some sections are specific to file format: point_data/node_data, cell_data/element_data,
-/element_node_data, native/-.
If not given by a user, we try to find the field in all sections, but we report an
error if it is found in more than one section.

field_name = 〈String 〉

default: Obligatory

The values of the Field are read from the $ElementData section with field name
given by this key.

117

default_value = 〈Double (-inf, +inf) 〉

default: Optional

Default value is set on elements which values have not been listed in the mesh
data file.

time_unit = 〈record: Unit 〉

default: implicit value: ”Common time unit of the equation’s Time Governor. See
the key ’common_time_unit’.”

Definition of the unit of all times defined in the mesh data file.
read_time_shift = 〈tuple: TimeValue 〉

default: 0.0

This key allows reading field data from the mesh data file shifted in time. Con-
sidering the time ’t’, field descriptor with time ’T’, time shift ’S’, then if ’t > T’,
we read the time frame ’t + S’.

interpolation = 〈selection: interpolation 〉

default: "equivalent_mesh"

Type of interpolation applied to the input spatial data.
The default value ’equivalent_mesh’ assumes the data being constant on elements
living on the same mesh as the computational mesh, but possibly with different
numbering. In the case of the same numbering, the user can set ’identical_mesh’
to omit algorithm for guessing node and element renumbering. Alternatively, in
case of different input mesh, several interpolation algorithms are available.

selection: FE_discretization

Specify the section in mesh input file where field data is listed.
Some sections are specific to file format.
values:

element_data : cell_data (VTK) / element_data (GMSH)

native_data : native_data (only for VTK)

selection: interpolation

Specify interpolation of the input data from its input mesh to the computational mesh.
values:

118

identic_mesh : Topology and indices of nodes and elements ofthe input mesh and the
computational mesh are identical. This interpolation is typically used for GMSH
input files containing only the field values without explicit mesh specification.

equivalent_mesh : Topologies of the input mesh and the computational mesh are the
same, the node and element numbering may differ. This interpolation can be used
also for VTK input data.

P0_gauss : Topologies of the input mesh and the computational mesh may differ.
Constant values on the elements of the computational mesh are evaluated using
the Gaussian quadrature of the fixed order 4, where the quadrature points and
their values are found in the input mesh and input data using the BIH tree search.

P0_intersection : Topologies of the input mesh and the computational mesh may
differ. Can be applied only for boundary fields. For every (boundary) element
of the computational mesh the intersection with the input mesh is computed.
Constant values on the elements of the computational mesh are evaluated as the
weighted average of the (constant) values on the intersecting elements of the input
mesh.

abstract: Field_R3_to_R

Abstract for all time-space functions.
default: FieldConstant
implementations:

FieldPython, FieldConstant, FieldFormula, FieldTimeFunction, FieldFE

record: FieldPython

R3_to_R Field given by a Python script.

implements abstracts: Field_R3_to_R

unit = 〈record: Unit 〉

default: Optional

Unit of the field values provided in the main input file, in the external file, or by
a function (FieldPython).

script_string = 〈String 〉

default: implicit value: ”Obligatory if ’script_file’ is not given. ”

Python script given as in place string

119

script_file = 〈Filename 〉

default: implicit value: ”Obligatory if ’script_striong’ is not given. ”

Python script given as external file
function = 〈String 〉

default: Obligatory

Function in the given script that returns tuple containing components of the return
type.
For NxM tensor values: tensor(row,col) = tuple(M*row + col).

record: FieldConstant

R3_to_R Field constant in space.

implements abstracts: Field_R3_to_R

conversion from key: value

unit = 〈record: Unit 〉

default: Optional

Unit of the field values provided in the main input file, in the external file, or by
a function (FieldPython).

value = 〈parameter: element_input_type 〉

default: Obligatory

Value of the constant field. For vector values, you can use scalar value to enter
constant vector. For square N ×N -matrix values, you can use: - vector of size N
to enter diagonal matrix

– vector of size 1
2N(N + 1) to enter symmetric matrix (upper triangle, row by

row)
– scalar to enter multiple of the unit matrix.

record: FieldFormula

R3_to_R Field given by runtime interpreted formula.

implements abstracts: Field_R3_to_R

conversion from key: value

120

unit = 〈record: Unit 〉

default: Optional

Unit of the field values provided in the main input file, in the external file, or by
a function (FieldPython).

value = 〈String 〉

default: Obligatory

String, array of strings, or matrix of strings with formulas for individual entries of
scalar, vector, or tensor value respectively.
For vector values, you can use just one string to enter homogeneous vector.
For square N ×N -matrix values, you can use:

– array of strings of size N to enter diagonal matrix
– array of strings of size 1

2N(N + 1) to enter symmetric matrix (upper triangle,
row by row)

– just one string to enter (spatially variable) multiple of the unit matrix.
Formula can contain variables x,y,z,t,d and usual operators and functions.

surface_direction = 〈String 〉

default: "0 0 1"

The vector used to project evaluation point onto the surface.
surface_region = 〈String 〉

default: Optional

The name of region set considered as the surface. You have to set surface region
if you want to use formula variable d.

record: FieldTimeFunction

R3_to_R Field time-dependent function in space.

implements abstracts: Field_R3_to_R

conversion from key: time_function

unit = 〈record: Unit 〉

default: Optional

Unit of the field values provided in the main input file, in the external file, or by
a function (FieldPython).

121

time_function = 〈record: TableFunction 〉

default: Obligatory

Values of time series initialization of Field.

record: TableFunction

Allow set variable series initialization of Fields.

conversion from key: values

values = 〈array [2, UINT] of tuple: IndependentValue 〉

default: Obligatory

Initizaliation values of Field.

tuple: IndependentValue

Value of Field for time variable.

t = 〈tuple: TimeValue 〉

default: Obligatory

Time stamp.
value = 〈parameter: element_input_type 〉

default: Obligatory

Value of the field in given stamp.

record: FieldFE

R3_to_R Field given by finite element approximation.

implements abstracts: Field_R3_to_R

unit = 〈record: Unit 〉

default: Optional

Unit of the field values provided in the main input file, in the external file, or by
a function (FieldPython).

122

mesh_data_file = 〈Filename 〉

default: Obligatory

GMSH mesh with data. Can be different from actual computational mesh.
input_discretization = 〈selection: FE_discretization 〉

default: Optional

Section where to find the field.
Some sections are specific to file format: point_data/node_data, cell_data/element_data,
-/element_node_data, native/-.
If not given by a user, we try to find the field in all sections, but we report an
error if it is found in more than one section.

field_name = 〈String 〉

default: Obligatory

The values of the Field are read from the $ElementData section with field name
given by this key.

default_value = 〈Double (-inf, +inf) 〉

default: Optional

Default value is set on elements which values have not been listed in the mesh
data file.

time_unit = 〈record: Unit 〉

default: implicit value: ”Common time unit of the equation’s Time Governor. See
the key ’common_time_unit’.”

Definition of the unit of all times defined in the mesh data file.
read_time_shift = 〈tuple: TimeValue 〉

default: 0.0

This key allows reading field data from the mesh data file shifted in time. Con-
sidering the time ’t’, field descriptor with time ’T’, time shift ’S’, then if ’t > T’,
we read the time frame ’t + S’.

interpolation = 〈selection: interpolation 〉

default: "equivalent_mesh"

Type of interpolation applied to the input spatial data.
The default value ’equivalent_mesh’ assumes the data being constant on elements
living on the same mesh as the computational mesh, but possibly with different
numbering. In the case of the same numbering, the user can set ’identical_mesh’
to omit algorithm for guessing node and element renumbering. Alternatively, in
case of different input mesh, several interpolation algorithms are available.

123

selection: Flow_Darcy_BC_Type

values:

none : Homogeneous Neumann boundary condition
(zero normal flux over the boundary).

dirichlet : Dirichlet boundary condition. Specify the pressure head through the
bc_pressure field or the piezometric head through the bc_piezo_head field.

total_flux : Flux boundary condition (combines Neumann and Robin type). Water
inflow equal to δd(qNd +σd(hRd −hd)). Specify the water inflow by the bc_flux field,
the transition coefficient by bc_robin_sigma and the reference pressure head or
piezometric head through bc_pressure or bc_piezo_head respectively.

seepage : Seepage face boundary condition. Pressure and inflow bounded from above.
Boundary with potential seepage flow is described by the pair of inequalities: hd ≤
hDd and −qd ·n ≤ δqNd , where the equality holds in at least one of them. Caution:
setting qNd strictly negative may lead to an ill posed problem since a positive outflow
is enforced. Parameters hDd and qNd are given by the fields bc_switch_pressure
(or bc_switch_piezo_head) and bc_flux respectively.

river : River boundary condition. For the water level above the bedrock, Hd >
HS
d , the Robin boundary condition is used with the inflow given by: δd(qNd +

σd(HD
d − Hd)). For the water level under the bedrock, constant infiltration is

used: δd(qNd + σd(HD
d −HS

d)). Parameters: bc_pressure, bc_switch_pressure,
bc_sigma, bc_flux.

abstract: Field_R3_to_R[3]

Abstract for all time-space functions.
default: FieldConstant
implementations:

FieldPython, FieldConstant, FieldFormula, FieldTimeFunction, FieldFE

record: FieldPython

R3_to_R[3] Field given by a Python script.

implements abstracts: Field_R3_to_R[3]

124

unit = 〈record: Unit 〉

default: Optional

Unit of the field values provided in the main input file, in the external file, or by
a function (FieldPython).

script_string = 〈String 〉

default: implicit value: ”Obligatory if ’script_file’ is not given. ”

Python script given as in place string
script_file = 〈Filename 〉

default: implicit value: ”Obligatory if ’script_striong’ is not given. ”

Python script given as external file
function = 〈String 〉

default: Obligatory

Function in the given script that returns tuple containing components of the return
type.
For NxM tensor values: tensor(row,col) = tuple(M*row + col).

record: FieldConstant

R3_to_R[3] Field constant in space.

implements abstracts: Field_R3_to_R[3]

conversion from key: value

unit = 〈record: Unit 〉

default: Optional

Unit of the field values provided in the main input file, in the external file, or by
a function (FieldPython).

value = 〈array [1, 3] of parameter: element_input_type 〉

default: Obligatory

Value of the constant field. For vector values, you can use scalar value to enter
constant vector. For square N ×N -matrix values, you can use: - vector of size N
to enter diagonal matrix

– vector of size 1
2N(N + 1) to enter symmetric matrix (upper triangle, row by

row)
– scalar to enter multiple of the unit matrix.

125

record: FieldFormula

R3_to_R[3] Field given by runtime interpreted formula.

implements abstracts: Field_R3_to_R[3]

conversion from key: value

unit = 〈record: Unit 〉

default: Optional

Unit of the field values provided in the main input file, in the external file, or by
a function (FieldPython).

value = 〈array [1, UINT] of String 〉

default: Obligatory

String, array of strings, or matrix of strings with formulas for individual entries of
scalar, vector, or tensor value respectively.
For vector values, you can use just one string to enter homogeneous vector.
For square N ×N -matrix values, you can use:

– array of strings of size N to enter diagonal matrix
– array of strings of size 1

2N(N + 1) to enter symmetric matrix (upper triangle,
row by row)

– just one string to enter (spatially variable) multiple of the unit matrix.
Formula can contain variables x,y,z,t,d and usual operators and functions.

surface_direction = 〈String 〉

default: "0 0 1"

The vector used to project evaluation point onto the surface.
surface_region = 〈String 〉

default: Optional

The name of region set considered as the surface. You have to set surface region
if you want to use formula variable d.

record: FieldTimeFunction

R3_to_R[3] Field time-dependent function in space.

implements abstracts: Field_R3_to_R[3]

conversion from key: time_function

126

unit = 〈record: Unit 〉

default: Optional

Unit of the field values provided in the main input file, in the external file, or by
a function (FieldPython).

time_function = 〈record: TableFunction 〉

default: Obligatory

Values of time series initialization of Field.

record: TableFunction

Allow set variable series initialization of Fields.

conversion from key: values

values = 〈array [2, UINT] of tuple: IndependentValue 〉

default: Obligatory

Initizaliation values of Field.

tuple: IndependentValue

Value of Field for time variable.

t = 〈tuple: TimeValue 〉

default: Obligatory

Time stamp.
value = 〈array [1, 3] of parameter: element_input_type 〉

default: Obligatory

Value of the field in given stamp.

record: FieldFE

R3_to_R[3] Field given by finite element approximation.

implements abstracts: Field_R3_to_R[3]

127

unit = 〈record: Unit 〉

default: Optional

Unit of the field values provided in the main input file, in the external file, or by
a function (FieldPython).

mesh_data_file = 〈Filename 〉

default: Obligatory

GMSH mesh with data. Can be different from actual computational mesh.
input_discretization = 〈selection: FE_discretization 〉

default: Optional

Section where to find the field.
Some sections are specific to file format: point_data/node_data, cell_data/element_data,
-/element_node_data, native/-.
If not given by a user, we try to find the field in all sections, but we report an
error if it is found in more than one section.

field_name = 〈String 〉

default: Obligatory

The values of the Field are read from the $ElementData section with field name
given by this key.

default_value = 〈Double (-inf, +inf) 〉

default: Optional

Default value is set on elements which values have not been listed in the mesh
data file.

time_unit = 〈record: Unit 〉

default: implicit value: ”Common time unit of the equation’s Time Governor. See
the key ’common_time_unit’.”

Definition of the unit of all times defined in the mesh data file.
read_time_shift = 〈tuple: TimeValue 〉

default: 0.0

This key allows reading field data from the mesh data file shifted in time. Con-
sidering the time ’t’, field descriptor with time ’T’, time shift ’S’, then if ’t > T’,
we read the time frame ’t + S’.

interpolation = 〈selection: interpolation 〉

default: "equivalent_mesh"

128

Type of interpolation applied to the input spatial data.
The default value ’equivalent_mesh’ assumes the data being constant on elements
living on the same mesh as the computational mesh, but possibly with different
numbering. In the case of the same numbering, the user can set ’identical_mesh’
to omit algorithm for guessing node and element renumbering. Alternatively, in
case of different input mesh, several interpolation algorithms are available.

record: NonlinearSolver

Non-linear solver settings.

linear_solver = 〈abstract: LinSys 〉

default: {}

Linear solver for MH problem.
tolerance = 〈Double [0, +inf) 〉

default: 1e-06

Residual tolerance.
min_it = 〈Integer [0, INT] 〉

default: 1

Minimum number of iterations (linear solutions) to use.
This is usefull if the convergence criteria does not characterize your goal well
enough so it converges prematurely, possibly even without a single linear solution.
If greater then ’max_it’ the value is set to ’max_it’.

max_it = 〈Integer [0, INT] 〉

default: 100

Maximum number of iterations (linear solutions) of the non-linear solver.
converge_on_stagnation = 〈Bool 〉

default: false

If a stagnation of the nonlinear solver is detected the solver stops. A divergence
is reported by default, forcing the end of the simulation. By setting this flag
to ’true’, the solver ends with convergence success on stagnation, but it reports
warning about it.

abstract: LinSys

Linear solver settings.

129

default: Petsc
implementations:

Petsc, Bddc

record: Petsc

PETSc solver settings.
It provides interface to various PETSc solvers. The convergence criteria is:
norm(res_i) < max(norm(res_0) * r_tol, a_tol)
where res_i is the residuum vector after i-th iteration of the solver and res_0 is the
estimate of the norm of the initial residual. If the initial guess of the solution is provided
(usually only for transient equations) the residual of this estimate is used, otherwise the
norm of preconditioned RHS is used. The default norm is L2 norm of preconditioned
residual: P−1(Ax − b), usage of other norm may be prescribed using the ’option’ key.
See also PETSc documentation for KSPSetNormType.

implements abstracts: LinSys

r_tol = 〈Double [0, 1] 〉

default: implicit value: ”Default value is set by the nonlinear solver or the equa-
tion. If not, we use the value 1.0e-7.”

Residual tolerance relative to the initial error.
a_tol = 〈Double [0, +inf) 〉

default: implicit value: ”Default value is set by the nonlinear solver or the equa-
tion. If not, we use the value 1.0e-11.”

Absolute residual tolerance.
max_it = 〈Integer [0, INT] 〉

default: implicit value: ”Default value is set by the nonlinear solver or the equa-
tion. If not, we use the value 1000.”

Maximum number of outer iterations of the linear solver.
options = 〈String 〉

default: ""

This options is passed to PETSC to create a particular KSP (Krylov space method).
If the string is left empty (by default), the internal default options is used.

record: Bddc

130

BDDCML (Balancing Domain Decomposition by Constraints - Multi-Level) solver set-
tings.

implements abstracts: LinSys

r_tol = 〈Double [0, 1] 〉

default: implicit value: ”Default value is set by the nonlinear solver or the equa-
tion. If not, we use the value 1.0e-7.”

Residual tolerance relative to the initial error.
max_it = 〈Integer [0, INT] 〉

default: implicit value: ”Default value is set by the nonlinear solver or the equa-
tion. If not, we use the value 1000.”

Maximum number of outer iterations of the linear solver.
max_nondecr_it = 〈Integer [0, INT] 〉

default: 30

Maximum number of iterations of the linear solver with non-decreasing residual.
number_of_levels = 〈Integer [0, INT] 〉

default: 2

Number of levels in the multilevel method (=2 for the standard BDDC).
use_adaptive_bddc = 〈Bool 〉

default: false

Use adaptive selection of constraints in BDDCML.
bddcml_verbosity_level = 〈Integer [0, 2] 〉

default: 0

Level of verbosity of the BDDCML library:

– 0 - no output,
– 1 - mild output,
– 2 - detailed output.

record: OutputStream

Configuration of the spatial output of a single balance equation.

131

file = 〈Filename 〉

default: implicit value: ”Name of the equation associated with the output stream.”

File path to the connected output file.
format = 〈abstract: OutputTime 〉

default: {}

File format of the output stream and possible parameters.
times = 〈array [0, UINT] of record: TimeGrid 〉

default: Optional

Output times used for fields that do not have their own output times defined.
output_mesh = 〈record: OutputMesh 〉

default: Optional

Output mesh record enables output on a refined mesh [EXPERIMENTAL, VTK
only].Sofar refinement is performed only in discontinous sense. Therefore only
corner and element data can be written on refined output mesh. Node data are
to be transformed to corner data, native data cannot be written. Do not include
any node or native data in output fields.

precision = 〈Integer [0, INT] 〉

default: 17

The number of decimal digits used in output of floating point values.
Default is 17 decimal digits which are necessary to reproduce double values exactly
after write-read cycle.

observe_points = 〈array [0, UINT] of record: ObservePoint 〉

default: []

Array of observe points.

abstract: OutputTime

Format of output stream and possible parameters.
default: vtk
implementations:

vtk, gmsh

record: vtk

132

Parameters of vtk output format.

implements abstracts: OutputTime

variant = 〈selection: VTK variant (ascii or binary) 〉

default: "ascii"

Variant of output stream file format.
parallel = 〈Bool 〉

default: false

Parallel or serial version of file format.

selection: VTK variant (ascii or binary)

values:

ascii : ASCII variant of VTK file format

binary : Uncompressed appended binary XML VTK format without usage of base64
encoding of appended data.

binary_zlib : Appended binary XML VTK format without usage of base64 encoding
of appended data. Compressed with ZLib.

record: gmsh

Parameters of gmsh output format.

implements abstracts: OutputTime

record: TimeGrid

Equally spaced grid of time points.

conversion from key: begin

begin = 〈tuple: TimeValue 〉

default: implicit value: ”The initial time of the associated equation.”

The start time of the grid.

133

step = 〈tuple: TimeValue 〉

default: Optional

The step of the grid. If not specified, the grid consists of the single time given by
the begin key.

end = 〈tuple: TimeValue 〉

default: implicit value: ”The end time of the simulation.”

The time greater or equal to the last time in the grid.

record: OutputMesh

Parameters of the refined output mesh. [Not impemented]

max_level = 〈Integer [1, 20] 〉

default: 3

Maximal level of refinement of the output mesh.
refine_by_error = 〈Bool 〉

default: false

Set true for using error_control_field. Set false for global uniform refinement
to max_level.

error_control_field = 〈String 〉

default: Optional

Name of an output field, according to which the output mesh will be refined. The
field must be a SCALAR one.

refinement_error_tolerance = 〈Double [0, +inf) 〉

default: 0.01

Tolerance for element refinement by error. If tolerance is reached, refinement is
stopped. Relative difference between error control field and its linear approxima-
tion on element is computedand compared with tolerance.

record: ObservePoint

Specification of the observation point.
The actual observation element and the observation point on it is determined as follows:

134

1. Find an initial element containing the initial point. If no such element exists, we
report an error.

2. Use BFS (Breadth-first search) starting from the inital element to find the ’observe
element’. The observe element is the closest element.

3. Find the closest projection of the inital point on the observe element and snap this
projection according to the snap_dim.

conversion from key: point

name = 〈String 〉

default: implicit value: ”Default name have the form ’obs_<id>’, where ’id’ is the
rank of the point on the input.”

Optional point name, which has to be unique.
Any string that is a valid YAML key in record without any quoting can be used,
however, using just alpha-numerical characters, and underscore instead of the
space, is recommended.

point = 〈array [3, 3] of Double (-inf, +inf) 〉

default: Obligatory

Initial point for the observe point search.
snap_dim = 〈Integer [0, 4] 〉

default: 4

The dimension of the sub-element to which center we snap. For value 4 no snapping
is done. For values 0 up to 3 the element containing the initial point is found and
then the observepoint is snapped to the nearest center of the sub-element of the
given dimension. E.g. for dimension 2 we snap to the nearest center of the face of
the initial element.

snap_region = 〈String 〉

default: "ALL"

The region of the initial element for snapping. Without snapping we make a
projection to the initial element.

search_radius = 〈Double [0, +inf) 〉

default: implicit value: ”Maximal distance of the observe point from the mesh
relative to the mesh diameter. ”

Global value is defined in mesh record by the key global_snap_radius.

record: EquationOutput

135

Output of the equation’s fields. The output is done through the output stream of the
associated balance law equation. The stream defines output format for the full space
information in selected times and observe points for the full time information. The
key ’fields’ select the fields for the full spatial output. The set of output times may
be specified per field otherwise common time set ’times’ is used. If even this is not
providedthe time set of the output_stream is used. The initial time of the equation is
automatically added to the time set of every selected field. The end time of the equation
is automatically added to the common output time set.

times = 〈array [0, UINT] of record: TimeGrid 〉

default: Optional

Output times used for the output fields without is own time series specification.
add_input_times = 〈Bool 〉

default: false

Add all input time points of the equation, mentioned in the ’input_fields’ list, also
as the output points.

fields = 〈array [0, UINT] of record: FieldOutputSetting 〉

default: []

Array of output fields and their individual output settings.
observe_fields = 〈array [0, UINT] of parameter: output_field_selection 〉

default: []

Array of the fields evaluated in the observe points of the associated output stream.

record: FieldOutputSetting

Setting of the field output. The field name, output times, output interpolation (future).

conversion from key: field

field = 〈parameter: output_field_selection 〉

default: Obligatory

The field name (from selection).
times = 〈array [0, UINT] of record: TimeGrid 〉

default: Optional

Output times specific to particular field.

136

interpolation = 〈array [0, UINT] of selection: Discrete_output 〉

default: implicit value: ”Interpolation type of output data.”

Optional value. Implicit value is given by field and can be changed.

selection: Discrete_output

Discrete type of output. Determines type of output data (element, node, native etc).
values:

P1_average : Node data / point data.

D1_value : Corner data.

P0_value : Element data / cell data.

Native : Native data (Flow123D data).

selection: Flow_Darcy_LMH:OutputFields

Selection of output fields for the Flow_Darcy_LMH model.
values:

subdomain : [−] Input field: Subdomain ids of the domain decomposition.

region_id : [−] Input field: Region ids.

pressure_p0 : [m] Pressure solution - P0 interpolation.

piezo_head_p0 : [m] Piezo head solution - P0 interpolation.

velocity_p0 : [ms−1] Velocity solution - P0 interpolation.

flux : [ms−1] Darcy flow flux.

anisotropy : [−] Input field: Anisotropy of the conductivity tensor.

cross_section : [m3−d] Input field: Complement dimension parameter (cross section
for 1D, thickness for 2D).

conductivity : [ms−1] Input field: Isotropic conductivity scalar.

sigma : [−] Input field: Transition coefficient between dimensions.

water_source_density : [s−1] Input field: Water source density.

137

init_pressure : [m] Input field: Initial condition for pressure in time dependent
problems.

storativity : [m−1] Input field: Storativity (in time dependent problems).

gravity : [−] Input field: Gravity vector.

init_piezo_head : [m] Input field: Init piezo head.

record: Output_DarcyMHSpecific

Specific Darcy flow MH output.

times = 〈array [0, UINT] of record: TimeGrid 〉

default: Optional

Output times used for the output fields without is own time series specification.
add_input_times = 〈Bool 〉

default: false

Add all input time points of the equation, mentioned in the ’input_fields’ list, also
as the output points.

fields = 〈array [0, UINT] of record: FieldOutputSetting 〉

default: []

Array of output fields and their individual output settings.
observe_fields = 〈array [0, UINT] of parameter: output_field_selection 〉

default: []

Array of the fields evaluated in the observe points of the associated output stream.
compute_errors = 〈Bool 〉

default: false

SPECIAL PURPOSE. Computes error norms of the solution, particulary suited
for non-compatible coupling models.

raw_flow_output = 〈Filename 〉

default: Optional

Output file with raw data from MH module.

138

selection: Flow_Darcy_MH_specific:OutputFields

Selection of output fields for the Flow_Darcy_MH_specific model.
values:

pressure_diff : [m] Error norm of the pressure solution. [Experimental]

velocity_diff : [ms−1] Error norm of the velocity solution. [Experimental]

div_diff : [s−1] Error norm of the divergence of the velocity solution. [Experimental]

record: Balance

Balance of a conservative quantity, boundary fluxes and sources.

times = 〈array [0, UINT] of record: TimeGrid 〉

default: []

add_output_times = 〈Bool 〉

default: true

Add all output times of the balanced equation to the balance output times set.
Note that this is not the time set of the output stream.

format = 〈selection: Balance_output_format 〉

default: "txt"

Format of output file.
cumulative = 〈Bool 〉

default: false

Compute cumulative balance over time. If true, then balance is calculated at each
computational time step, which can slow down the program.

file = 〈Filename 〉

default: implicit value: ”File name generated from the balanced quantity: <quan-
tity_name>_balance.*”

File name for output of balance.

selection: Balance_output_format

139

Format of output file for balance.
values:

legacy : Legacy format used by previous program versions.

txt : Excel format with tab delimiter.

gnuplot : Format compatible with GnuPlot datafile with fixed column width.

selection: MH_MortarMethod

values:

None : No Mortar method is applied.

P0 : Mortar space: P0 on elements of lower dimension.

P1 : Mortar space: P1 on intersections, using non-conforming pressures.

record: Coupling_Iterative

Record with data for iterative coupling of flow and mechanics.

implements abstracts: DarcyFlow

max_it = 〈Integer [0, INT] 〉

default: 100

Maximal count of HM iterations.
min_it = 〈Integer [0, INT] 〉

default: 1

Minimal count of HM iterations.
a_tol = 〈Double [0, +inf) 〉

default: 0

Absolute tolerance for difference in HM iteration.
r_tol = 〈Double [0, +inf) 〉

default: 1e-07

Relative tolerance for difference in HM iteration.

140

time = 〈record: TimeGovernor 〉

default: {}

Time governor setting.
flow_equation = 〈record: Flow_Darcy_LMH 〉

default: Obligatory

Flow equation, provides the velocity field as a result.
mechanics_equation = 〈record: Mechanics_LinearElasticity_FE 〉

default: Obligatory

Mechanics, provides the displacement field.
input_fields = 〈array [0, UINT] of record: Coupling_Iterative:Data 〉

default: Obligatory

Input fields of the HM coupling.
iteration_parameter = 〈Double (-inf, +inf) 〉

default: 1

Tuning parameter for iterative splitting. Its default value corresponds to a theo-
retically optimal value with fastest convergence.

record: Mechanics_LinearElasticity_FE

FEM for linear elasticity.

time = 〈record: TimeGovernor 〉

default: {}

Time governor setting.
balance = 〈record: Balance 〉

default: {}

Settings for computing balance.
output_stream = 〈record: OutputStream 〉

default: Obligatory

Parameters of output stream.

141

solver = 〈record: Petsc 〉

default: Obligatory

Linear solver for elasticity.
input_fields = 〈array [0, UINT] of record: Mechanics_LinearElasticity_FE:Data

〉

default: Obligatory

Input fields of the equation.
output = 〈gen. record: EquationOutput 〉

gen. parameters: output_field_selection = Mechanics_LinearElasticity_FE:OutputFields

default: {"fields": ["displacement"]}

Setting of the field output.
contact = 〈Bool 〉

default: false

Indicates the use of contact conditions on fractures.

record: Mechanics_LinearElasticity_FE:Data

Record to set fields of the equation.
The fields are set only on the domain specified by one of the keys: ’region’, ’rid’
and after the time given by the key ’time’. The field setting can be overridden by
any Mechanics_LinearElasticity_FE:Data record that comes later in the boundary data
array.

region = 〈array [1, UINT] of String 〉

default: Optional

Labels of the regions where to set fields.
rid = 〈Integer [0, INT] 〉

default: Optional

ID of the region where to set fields.
time = 〈tuple: TimeValue 〉

default: 0.0

Apply field setting in this record after this time.
These times have to form an increasing sequence.

142

bc_type = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Elasticity_BC_Type

default: Optional

Type of boundary condition. [−]
bc_displacement = 〈gen. abstract: Field_R3_to_R[3] 〉

gen. parameters: element_input_type = Double

default: Optional

Prescribed displacement on boundary. [m]
bc_traction = 〈gen. abstract: Field_R3_to_R[3] 〉

gen. parameters: element_input_type = Double

default: Optional

Prescribed traction on boundary. [m−1kgs−2]
bc_stress = 〈gen. abstract: Field_R3_to_R[3,3] 〉

gen. parameters: element_input_type = Double

default: Optional

Prescribed stress on boundary. [m−1kgs−2]
load = 〈gen. abstract: Field_R3_to_R[3] 〉

gen. parameters: element_input_type = Double

default: Optional

Prescribed bulk load. [m−3kgs−2]
young_modulus = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Young’s modulus. [m−1kgs−2]
poisson_ratio = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Poisson’s ratio. [−]
fracture_sigma = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

143

default: Optional

Coefficient of transfer of forces through fractures. [−]
initial_stress = 〈gen. abstract: Field_R3_to_R[3,3] 〉

gen. parameters: element_input_type = Double

default: Optional

Initial stress tensor. [m−1kgs−2]
cross_section_min = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Minimal cross-section of fractures. [m3−d]
lame_mu = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Field lame_mu. [m−1kgs−2]
lame_lambda = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Field lame_lambda. [m−1kgs−2]
dirichlet_penalty = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Field dirichlet_penalty. [m−1kgs−2]

selection: Elasticity_BC_Type

Types of boundary conditions for mechanics.
values:

displacement : Prescribed displacement.

displacement_n : Prescribed displacement in the normal direction to the boundary.

traction : Prescribed traction.

144

stress : Prescribed stress tensor.

selection: Mechanics_LinearElasticity_FE:OutputFields

Selection of output fields for the Mechanics_LinearElasticity_FE model.
values:

load : [m−3kgs−2] Input field: Prescribed bulk load.

young_modulus : [m−1kgs−2] Input field: Young’s modulus.

poisson_ratio : [−] Input field: Poisson’s ratio.

fracture_sigma : [−] Input field: Coefficient of transfer of forces through fractures.

initial_stress : [m−1kgs−2] Input field: Initial stress tensor.

region_id : [−] Input field:

subdomain : [−] Input field:

cross_section_min : [m3−d] Input field: Minimal cross-section of fractures.

displacement : [m] Displacement vector field output.

stress : [m−1kgs−2] Stress tensor output.

von_mises_stress : [m−1kgs−2] von Mises stress output.

mean_stress : [m−1kgs−2] mean stress output.

cross_section_updated : [m] Cross-section after deformation - output.

displacement_divergence : [−] Displacement divergence output.

lame_mu : [m−1kgs−2] Input field: Field lame_mu.

lame_lambda : [m−1kgs−2] Input field: Field lame_lambda.

dirichlet_penalty : [m−1kgs−2] Input field: Field dirichlet_penalty.

record: Coupling_Iterative:Data

Record to set fields of the equation.
The fields are set only on the domain specified by one of the keys: ’region’, ’rid’
and after the time given by the key ’time’. The field setting can be overridden by
any Coupling_Iterative:Data record that comes later in the boundary data array.

145

region = 〈array [1, UINT] of String 〉

default: Optional

Labels of the regions where to set fields.
rid = 〈Integer [0, INT] 〉

default: Optional

ID of the region where to set fields.
time = 〈tuple: TimeValue 〉

default: 0.0

Apply field setting in this record after this time.
These times have to form an increasing sequence.

biot_alpha = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Biot poroelastic coefficient. [−]
fluid_density = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Volumetric mass density of the fluid. [m−3kg]
gravity = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Gravitational acceleration constant. [ms−2]

record: Flow_Darcy_MH

Mixed-Hybrid solver for saturated Darcy flow.

implements abstracts: DarcyFlow

time = 〈record: TimeGovernor 〉

default: {}

Time governor setting.

146

gravity = 〈array [3, 3] of Double (-inf, +inf) 〉

default: [0, 0, -1]

Vector of the gravity force. Dimensionless.
input_fields = 〈array [0, UINT] of record: Flow_Darcy_MH_Data 〉

default: Obligatory

Input data for Darcy flow model.
nonlinear_solver = 〈record: NonlinearSolver 〉

default: {}

Non-linear solver for MH problem.
output_stream = 〈record: OutputStream 〉

default: {}

Output stream settings.
Specify file format, precision etc.

output = 〈gen. record: EquationOutput 〉

gen. parameters: output_field_selection = Flow_Darcy_MH:OutputFields

default: {"fields": ["pressure_p0", "velocity_p0"]}

Specification of output fields and output times.
output_specific = 〈gen. record: Output_DarcyMHSpecific 〉

gen. parameters: output_field_selection = Flow_Darcy_MH_specific:OutputFields

default: Optional

Output settings specific to Darcy flow model.
Includes raw output and some experimental functionality.

balance = 〈record: Balance 〉

default: {}

Settings for computing mass balance.
n_schurs = 〈Integer [0, 2] 〉

default: 2

Number of Schur complements to perform when solving MH system.
mortar_method = 〈selection: MH_MortarMethod 〉

default: "None"

Method for coupling Darcy flow between dimensions on incompatible meshes. [Ex-
perimental]

147

record: Flow_Darcy_MH_Data

Record to set fields of the equation.
The fields are set only on the domain specified by one of the keys: ’region’, ’rid’
and after the time given by the key ’time’. The field setting can be overridden by
any Flow_Darcy_MH_Data record that comes later in the boundary data array.

region = 〈array [1, UINT] of String 〉

default: Optional

Labels of the regions where to set fields.
rid = 〈Integer [0, INT] 〉

default: Optional

ID of the region where to set fields.
time = 〈tuple: TimeValue 〉

default: 0.0

Apply field setting in this record after this time.
These times have to form an increasing sequence.

anisotropy = 〈gen. abstract: Field_R3_to_R[3,3] 〉

gen. parameters: element_input_type = Double

default: Optional

Anisotropy of the conductivity tensor. [−]
cross_section = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Complement dimension parameter (cross section for 1D, thickness for 2D). [m3−d]
conductivity = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Isotropic conductivity scalar. [ms−1]
sigma = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Transition coefficient between dimensions. [−]

148

water_source_density = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Water source density. [s−1]
bc_type = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Flow_Darcy_BC_Type

default: Optional

Boundary condition type. [−]
bc_pressure = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Prescribed pressure value on the boundary. Used for all values of bc_type ex-
cept none and seepage. See documentation of bc_type for exact meaning of
bc_pressure in individual boundary condition types. [m]

bc_flux = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Incoming water boundary flux. Used for bc_types : total_flux, seepage, river.
[ms−1]

bc_robin_sigma = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Conductivity coefficient in the total_flux or the river boundary condition type.
[s−1]

bc_switch_pressure = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Critical switch pressure for seepage and river boundary conditions. [m]
init_pressure = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Initial condition for pressure in time dependent problems. [m]

149

storativity = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Storativity (in time dependent problems). [m−1]
gravity = 〈gen. abstract: Field_R3_to_R[3] 〉

gen. parameters: element_input_type = Double

default: Optional

Gravity vector. [−]
bc_gravity = 〈gen. abstract: Field_R3_to_R[3] 〉

gen. parameters: element_input_type = Double

default: Optional

Boundary gravity vector. [−]
init_piezo_head = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Initial condition for the pressure given as the piezometric head.
bc_piezo_head = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Boundary piezometric head for BC types: dirichlet, robin, and river.
bc_switch_piezo_head = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Boundary switch piezometric head for BC types: seepage, river.

selection: Flow_Darcy_MH:OutputFields

Selection of output fields for the Flow_Darcy_MH model.
values:

subdomain : [−] Input field: Subdomain ids of the domain decomposition.

150

region_id : [−] Input field: Region ids.

pressure_p0 : [m] Pressure solution - P0 interpolation.

piezo_head_p0 : [m] Piezo head solution - P0 interpolation.

velocity_p0 : [ms−1] Velocity solution - P0 interpolation.

flux : [ms−1] Darcy flow flux.

anisotropy : [−] Input field: Anisotropy of the conductivity tensor.

cross_section : [m3−d] Input field: Complement dimension parameter (cross section
for 1D, thickness for 2D).

conductivity : [ms−1] Input field: Isotropic conductivity scalar.

sigma : [−] Input field: Transition coefficient between dimensions.

water_source_density : [s−1] Input field: Water source density.

init_pressure : [m] Input field: Initial condition for pressure in time dependent
problems.

storativity : [m−1] Input field: Storativity (in time dependent problems).

gravity : [−] Input field: Gravity vector.

init_piezo_head : [m] Input field: Init piezo head.

record: Flow_Richards_LMH

Lumped Mixed-Hybrid solver for unsteady unsaturated Darcy flow.

implements abstracts: DarcyFlow

time = 〈record: TimeGovernor 〉

default: {}

Time governor setting.
gravity = 〈array [3, 3] of Double (-inf, +inf) 〉

default: [0, 0, -1]

Vector of the gravity force. Dimensionless.
input_fields = 〈array [0, UINT] of record: RichardsLMH_Data 〉

default: Obligatory

Input data for Darcy flow model.

151

nonlinear_solver = 〈record: NonlinearSolver 〉

default: {}

Non-linear solver for MH problem.
output_stream = 〈record: OutputStream 〉

default: {}

Output stream settings.
Specify file format, precision etc.

output = 〈gen. record: EquationOutput 〉

gen. parameters: output_field_selection = Flow_Richards_LMH:OutputFields

default: {"fields": ["pressure_p0", "velocity_p0"]}

Specification of output fields and output times.
output_specific = 〈gen. record: Output_DarcyMHSpecific 〉

gen. parameters: output_field_selection = Flow_Darcy_MH_specific:OutputFields

default: Optional

Output settings specific to Darcy flow model.
Includes raw output and some experimental functionality.

balance = 〈record: Balance 〉

default: {}

Settings for computing mass balance.
mortar_method = 〈selection: MH_MortarMethod 〉

default: "None"

Method for coupling Darcy flow between dimensions on incompatible meshes. [Ex-
perimental]

soil_model = 〈record: SoilModel 〉

default: "van_genuchten"

Soil model settings.

record: RichardsLMH_Data

Record to set fields of the equation.
The fields are set only on the domain specified by one of the keys: ’region’, ’rid’
and after the time given by the key ’time’. The field setting can be overridden by
any RichardsLMH_Data record that comes later in the boundary data array.

152

region = 〈array [1, UINT] of String 〉

default: Optional

Labels of the regions where to set fields.
rid = 〈Integer [0, INT] 〉

default: Optional

ID of the region where to set fields.
time = 〈tuple: TimeValue 〉

default: 0.0

Apply field setting in this record after this time.
These times have to form an increasing sequence.

anisotropy = 〈gen. abstract: Field_R3_to_R[3,3] 〉

gen. parameters: element_input_type = Double

default: Optional

Anisotropy of the conductivity tensor. [−]
cross_section = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Complement dimension parameter (cross section for 1D, thickness for 2D). [m3−d]
conductivity = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Isotropic conductivity scalar. [ms−1]
sigma = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Transition coefficient between dimensions. [−]
water_source_density = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Water source density. [s−1]

153

bc_type = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Flow_Darcy_BC_Type

default: Optional

Boundary condition type. [−]
bc_pressure = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Prescribed pressure value on the boundary. Used for all values of bc_type ex-
cept none and seepage. See documentation of bc_type for exact meaning of
bc_pressure in individual boundary condition types. [m]

bc_flux = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Incoming water boundary flux. Used for bc_types : total_flux, seepage, river.
[ms−1]

bc_robin_sigma = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Conductivity coefficient in the total_flux or the river boundary condition type.
[s−1]

bc_switch_pressure = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Critical switch pressure for seepage and river boundary conditions. [m]
init_pressure = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Initial condition for pressure in time dependent problems. [m]
storativity = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Storativity (in time dependent problems). [m−1]

154

gravity = 〈gen. abstract: Field_R3_to_R[3] 〉

gen. parameters: element_input_type = Double

default: Optional

Gravity vector. [−]
bc_gravity = 〈gen. abstract: Field_R3_to_R[3] 〉

gen. parameters: element_input_type = Double

default: Optional

Boundary gravity vector. [−]
init_piezo_head = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Initial condition for the pressure given as the piezometric head.
bc_piezo_head = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Boundary piezometric head for BC types: dirichlet, robin, and river.
bc_switch_piezo_head = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Boundary switch piezometric head for BC types: seepage, river.
water_content_saturated = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Saturated water content θs.
Relative volume of water in a reference volume of a saturated porous media. [−]

water_content_residual = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Residual water content θr.
Relative volume of water in a reference volume of an ideally dry porous media.
[−]

155

genuchten_p_head_scale = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

The van Genuchten pressure head scaling parameter α.
It is related to the inverse of the air entry pressure, i.e. the pressure
where the relative water content starts to decrease below 1. [m−1]

genuchten_n_exponent = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

The van Genuchten exponent parameter n. [−]

selection: Flow_Richards_LMH:OutputFields

Selection of output fields for the Flow_Richards_LMH model.
values:

subdomain : [−] Input field: Subdomain ids of the domain decomposition.

region_id : [−] Input field: Region ids.

pressure_p0 : [m] Pressure solution - P0 interpolation.

piezo_head_p0 : [m] Piezo head solution - P0 interpolation.

velocity_p0 : [ms−1] Velocity solution - P0 interpolation.

flux : [ms−1] Darcy flow flux.

anisotropy : [−] Input field: Anisotropy of the conductivity tensor.

cross_section : [m3−d] Input field: Complement dimension parameter (cross section
for 1D, thickness for 2D).

conductivity : [ms−1] Input field: Isotropic conductivity scalar.

sigma : [−] Input field: Transition coefficient between dimensions.

water_source_density : [s−1] Input field: Water source density.

init_pressure : [m] Input field: Initial condition for pressure in time dependent
problems.

storativity : [m−1] Input field: Storativity (in time dependent problems).

156

gravity : [−] Input field: Gravity vector.

init_piezo_head : [m] Input field: Init piezo head.

water_content : [−] Water content.
It is a fraction of water volume to the whole volume.

conductivity_richards : [ms−1] Computed isotropic scalar conductivity by the soil
model.

water_content_saturated : [−] Input field: Saturated water content θs.
Relative volume of water in a reference volume of a saturated porous media.

water_content_residual : [−] Input field: Residual water content θr.
Relative volume of water in a reference volume of an ideally dry porous media.

genuchten_p_head_scale : [m−1] Input field: The van Genuchten pressure head
scaling parameter α.
It is related to the inverse of the air entry pressure, i.e. the pressure
where the relative water content starts to decrease below 1.

genuchten_n_exponent : [−] Input field: The van Genuchten exponent parameter n.

record: SoilModel

Soil model settings.

conversion from key: model_type

model_type = 〈selection: Soil_Model_Type 〉

default: "van_genuchten"

Selection of the globally applied soil model. In future we replace this key by a
field for selection of the model. That will allow usage of different soil model in a
single simulation.

cut_fraction = 〈Double [0, 1] 〉

default: 0.999

Fraction of the water content where we cut and rescale the curve.

selection: Soil_Model_Type

values:

157

van_genuchten : Van Genuchten soil model with cutting near zero.

irmay : Irmay model for conductivity, Van Genuchten model for the water content.
Suitable for bentonite.

abstract: AdvectionProcess

Abstract advection process. In particular: transport of substances or heat transfer.
implementations:

Coupling_OperatorSplitting, Heat_AdvectionDiffusion_DG

record: Coupling_OperatorSplitting

Transport by convection and/or diffusion
coupled with reaction and adsorption model (ODE per element)
via operator splitting.

implements abstracts: AdvectionProcess

time = 〈record: TimeGovernor 〉

default: {}

Time governor setting.
balance = 〈record: Balance 〉

default: {}

Settings for computing mass balance.
output_stream = 〈record: OutputStream 〉

default: {}

Output stream settings.
Specify file format, precision etc.

substances = 〈array [1, UINT] of record: Substance 〉

default: Obligatory

Specification of transported substances.
transport = 〈abstract: Solute 〉

default: Obligatory

Type of the numerical method for the transport equation.

158

reaction_term = 〈abstract: ReactionTerm 〉

default: Optional

Reaction model involved in transport.

record: Substance

Chemical substance.

conversion from key: name

name = 〈String 〉

default: Obligatory

Name of the substance.
molar_mass = 〈Double [0, +inf) 〉

default: 1

Molar mass of the substance [kg/mol].

abstract: Solute

Transport of soluted substances.
implementations:

Solute_Advection_FV, Solute_AdvectionDiffusion_DG

record: Solute_Advection_FV

Finite volume method, explicit in time, for advection only solute transport.

implements abstracts: Solute

input_fields = 〈array [0, UINT] of record: Solute_Advection_FV:Data 〉

default: Obligatory

output = 〈gen. record: EquationOutput 〉

gen. parameters: output_field_selection = Solute_Advection_FV:OutputFields

default: {"fields": ["conc"]}

Specification of output fields and output times.

159

record: Solute_Advection_FV:Data

Record to set fields of the equation.
The fields are set only on the domain specified by one of the keys: ’region’, ’rid’
and after the time given by the key ’time’. The field setting can be overridden by
any Solute_Advection_FV:Data record that comes later in the boundary data array.

region = 〈array [1, UINT] of String 〉

default: Optional

Labels of the regions where to set fields.
rid = 〈Integer [0, INT] 〉

default: Optional

ID of the region where to set fields.
time = 〈tuple: TimeValue 〉

default: 0.0

Apply field setting in this record after this time.
These times have to form an increasing sequence.

porosity = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Porosity of the mobile phase. [−]
sources_density = 〈array [1, UINT] of gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Density of concentration sources. [m−3kgs−1]
sources_sigma = 〈array [1, UINT] of gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Concentration flux. [s−1]
sources_conc = 〈array [1, UINT] of gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Concentration sources threshold. [m−3kg]

160

bc_conc = 〈array [1, UINT] of gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Boundary condition for concentration of substances. [m−3kg]
init_conc = 〈array [1, UINT] of gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Initial values for concentration of substances. [m−3kg]

selection: Solute_Advection_FV:OutputFields

Selection of output fields for the Solute_Advection_FV model.
values:

porosity : [−] Input field: Porosity of the mobile phase.

water_content : [−] Input field: INTERNAL. Water content passed from unsaturated
Darcy flow model.

sources_density : [m−3kgs−1] Input field: Density of concentration sources.

sources_sigma : [s−1] Input field: Concentration flux.

sources_conc : [m−3kg] Input field: Concentration sources threshold.

init_conc : [m−3kg] Input field: Initial values for concentration of substances.

conc : [m−3kg] Concentration solution.

region_id : [−] Input field: Region ids.

subdomain : [−] Input field: Subdomain ids of the domain decomposition.

record: Solute_AdvectionDiffusion_DG

Discontinuous Galerkin (DG) solver for solute transport.

implements abstracts: Solute

161

solvent_density = 〈Double [0, +inf) 〉

default: 1.0

Density of the solvent [kg.m−3].
solver = 〈record: Petsc 〉

default: {}

Solver for the linear system.
user_fields = 〈array [0, UINT] of record: Solute_AdvectionDiffusion_DG:UserData

〉

default: Optional

Input fields of the equation defined by user.
input_fields = 〈array [0, UINT] of record: Solute_AdvectionDiffusion_DG:Data 〉

default: Obligatory

Input fields of the equation.
dg_variant = 〈selection: DG_variant 〉

default: "non-symmetric"

Variant of the interior penalty discontinuous Galerkin method.
dg_order = 〈Integer [0, 3] 〉

default: 1

Polynomial order for the finite element in DG method (order 0 is suitable if there
is no diffusion/dispersion).

init_projection = 〈Bool 〉

default: true

If true, use DG projection of the initial condition field. Otherwise, evaluate initial
condition field directly (well suited for reading native data).

output = 〈gen. record: EquationOutput 〉

gen. parameters: output_field_selection = Solute_AdvectionDiffusion_DG:OutputFields

default: {"fields": ["conc"]}

Specification of output fields and output times.

record: Solute_AdvectionDiffusion_DG:UserData

Record to set fields of the equation: Solute_AdvectionDiffusion_DG.

162

name = 〈String 〉

default: Obligatory

Name of user defined field.
is_boundary = 〈Bool 〉

default: false

Type of field: boundary or bulk.
scalar_field = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Obligatory

Instance of FieldAlgoBase ScalarField descendant.
One of keys ’scalar_field’, ’vector_field’, ’tensor_field’ must be set.
If you set more than one of these keys, only first key is accepted.

vector_field = 〈gen. abstract: Field_R3_to_R[3] 〉

gen. parameters: element_input_type = Double

default: Optional

Instance of FieldAlgoBase VectorField descendant. See above for details.
tensor_field = 〈gen. abstract: Field_R3_to_R[3,3] 〉

gen. parameters: element_input_type = Double

default: Optional

Instance of FieldAlgoBase TensorField descendant. See above for details.

record: Solute_AdvectionDiffusion_DG:Data

Record to set fields of the equation.
The fields are set only on the domain specified by one of the keys: ’region’, ’rid’
and after the time given by the key ’time’. The field setting can be overridden by
any Solute_AdvectionDiffusion_DG:Data record that comes later in the boundary data
array.

region = 〈array [1, UINT] of String 〉

default: Optional

Labels of the regions where to set fields.

163

rid = 〈Integer [0, INT] 〉

default: Optional

ID of the region where to set fields.
time = 〈tuple: TimeValue 〉

default: 0.0

Apply field setting in this record after this time.
These times have to form an increasing sequence.

porosity = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Porosity of the mobile phase. [−]
sources_density = 〈array [1, UINT] of gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Density of concentration sources. [m−3kgs−1]
sources_sigma = 〈array [1, UINT] of gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Concentration flux. [s−1]
sources_conc = 〈array [1, UINT] of gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Concentration sources threshold. [m−3kg]
bc_type = 〈array [1, UINT] of gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Solute_AdvectionDiffusion_BC_Type

default: Optional

Type of boundary condition. [−]
bc_conc = 〈array [1, UINT] of gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Dirichlet boundary condition (for each substance). [m−3kg]

164

bc_flux = 〈array [1, UINT] of gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Flux in Neumann boundary condition. [m1−dkgs−1]
bc_robin_sigma = 〈array [1, UINT] of gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Conductivity coefficient in Robin boundary condition. [m4−ds−1]
init_conc = 〈array [1, UINT] of gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Initial values for concentration of substances. [m−3kg]
disp_l = 〈array [1, UINT] of gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Longitudinal dispersivity in the liquid (for each substance). [m]
disp_t = 〈array [1, UINT] of gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Transverse dispersivity in the liquid (for each substance). [m]
diff_m = 〈array [1, UINT] of gen. abstract: Field_R3_to_R[3,3] 〉

gen. parameters: element_input_type = Double

default: Optional

Molecular diffusivity in the liquid (for each substance). [m2s−1]
rock_density = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Rock matrix density. [m−3kg]
sorption_coefficient = 〈array [1, UINT] of gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

165

default: Optional

Coefficient of linear sorption. [m3kg−1]
v_norm = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Velocity norm field. [ms−1]
mass_matrix_coef = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Matrix coefficients computed by model in mass assemblation. [m3−d]
retardation_coef = 〈array [1, UINT] of gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Retardation coefficients computed by model in mass assemblation. [m3−d]
sources_density_out = 〈array [1, UINT] of gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Concentration sources output - density of substance source, only positive part is
used.. [m−dkgs−1]

sources_sigma_out = 〈array [1, UINT] of gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Concentration sources - Robin type, in_flux = sources_sigma * (sources_conc -
mobile_conc). [m3−ds−1]

sources_conc_out = 〈array [1, UINT] of gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Concentration sources output. [m−3kg]
advection_coef = 〈array [1, UINT] of gen. abstract: Field_R3_to_R[3] 〉

gen. parameters: element_input_type = Double

default: Optional

Advection coefficients model. [ms−1]

166

diffusion_coef = 〈array [1, UINT] of gen. abstract: Field_R3_to_R[3,3] 〉

gen. parameters: element_input_type = Double

default: Optional

Diffusion coefficients model. [m2s−1]
fracture_sigma = 〈array [1, UINT] of gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Coefficient of diffusive transfer through fractures (for each substance). [−]
dg_penalty = 〈array [1, UINT] of gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Penalty parameter influencing the discontinuity of the solution (for each sub-
stance). Its default value 1 is sufficient in most cases. Higher value diminishes the
inter-element jumps. [−]

selection: Solute_AdvectionDiffusion_BC_Type

Types of boundary conditions for advection-diffusion solute transport model.
values:

inflow : Default transport boundary condition.
On water inflow (qw ≤ 0), total flux is given by the reference concentration
’bc_conc’. On water outflow we prescribe zero diffusive flux, i.e. the mass flows
out only due to advection.

dirichlet : Dirichlet boundary condition c = cD.
The prescribed concentration cD is specified by the field ’bc_conc’.

total_flux : Total mass flux boundary condition.
The prescribed total incoming flux can have the general form δ(fN + σR(cR − c)),
where the absolute flux fN is specified by the field ’bc_flux’, the transition param-
eter σR by ’bc_robin_sigma’, and the reference concentration cR by ’bc_conc’.

diffusive_flux : Diffusive flux boundary condition.
The prescribed incoming mass flux due to diffusion can have the general form
δ(fN + σR(cR − c)), where the absolute flux fN is specified by the field ’bc_flux’,
the transition parameter σR by ’bc_robin_sigma’, and the reference concentration
cR by ’bc_conc’.

167

selection: DG_variant

Type of penalty term.
values:

non-symmetric : non-symmetric weighted interior penalty DG method

incomplete : incomplete weighted interior penalty DG method

symmetric : symmetric weighted interior penalty DG method

selection: Solute_AdvectionDiffusion_DG:OutputFields

Selection of output fields for the Solute_AdvectionDiffusion_DG model.
values:

porosity : [−] Input field: Porosity of the mobile phase.

water_content : [−] Input field: INTERNAL. Water content passed from unsaturated
Darcy flow model.

sources_density : [m−3kgs−1] Input field: Density of concentration sources.

sources_sigma : [s−1] Input field: Concentration flux.

sources_conc : [m−3kg] Input field: Concentration sources threshold.

init_conc : [m−3kg] Input field: Initial values for concentration of substances.

disp_l : [m] Input field: Longitudinal dispersivity in the liquid (for each substance).

disp_t : [m] Input field: Transverse dispersivity in the liquid (for each substance).

diff_m : [m2s−1] Input field: Molecular diffusivity in the liquid (for each substance).

rock_density : [m−3kg] Input field: Rock matrix density.

sorption_coefficient : [m3kg−1] Input field: Coefficient of linear sorption.

conc : [m−3kg] Concentration solution.

v_norm : [ms−1] Input field: Velocity norm field.

mass_matrix_coef : [m3−d] Input field: Matrix coefficients computed by model in
mass assemblation.

168

retardation_coef : [m3−d] Input field: Retardation coefficients computed by model
in mass assemblation.

sources_density_out : [m−dkgs−1] Input field: Concentration sources output - den-
sity of substance source, only positive part is used..

sources_sigma_out : [m3−ds−1] Input field: Concentration sources - Robin type,
in_flux = sources_sigma * (sources_conc - mobile_conc).

sources_conc_out : [m−3kg] Input field: Concentration sources output.

advection_coef : [ms−1] Input field: Advection coefficients model.

diffusion_coef : [m2s−1] Input field: Diffusion coefficients model.

fracture_sigma : [−] Input field: Coefficient of diffusive transfer through fractures
(for each substance).

dg_penalty : [−] Input field: Penalty parameter influencing the discontinuity of the
solution (for each substance). Its default value 1 is sufficient in most cases. Higher
value diminishes the inter-element jumps.

region_id : [−] Input field: Region ids.

subdomain : [−] Input field: Subdomain ids of the domain decomposition.

abstract: ReactionTerm

Abstract equation for a reaction term (dual porosity, sorption, reactions). Can be part
of coupling with a transport equation via. operator splitting.
implementations:

FirstOrderReaction, RadioactiveDecay, Sorption, DualPorosity

record: FirstOrderReaction

A model of first order chemical reactions (decompositions of a reactant into products).

implements abstracts: ReactionTermImmobile, ReactionTermMobile, GenericReaction,
ReactionTerm

reactions = 〈array [0, UINT] of record: Reaction 〉

default: Obligatory

An array of first order chemical reactions.

169

record: Reaction

Describes a single first order chemical reaction.

reactants = 〈array [1, UINT] of record: FirstOrderReactionReactant 〉

default: Obligatory

An array of reactants. Do not use array, reactions with only one reactant (decays)
are implemented at the moment!

reaction_rate = 〈Double [0, +inf) 〉

default: Obligatory

The reaction rate coefficient of the first order reaction.
products = 〈array [1, UINT] of record: FirstOrderReactionProduct 〉

default: Obligatory

An array of products.

record: FirstOrderReactionReactant

A record describing a reactant of a reaction.

conversion from key: name

name = 〈String 〉

default: Obligatory

The name of the reactant.

record: FirstOrderReactionProduct

A record describing a product of a reaction.

conversion from key: name

name = 〈String 〉

default: Obligatory

The name of the product.

170

branching_ratio = 〈Double [0, +inf) 〉

default: 1.0

The branching ratio of the product when there are more products.
The value must be positive. Further, the branching ratios of all products are
normalized in order to sum to one.
The default value 1.0, should only be used in the case of single product.

record: RadioactiveDecay

A model of a radioactive decay and possibly of a decay chain.

implements abstracts: ReactionTermImmobile, ReactionTermMobile, GenericReaction,
ReactionTerm

decays = 〈array [1, UINT] of record: Decay 〉

default: Obligatory

An array of radioactive decays.

record: Decay

A model of a radioactive decay.

radionuclide = 〈String 〉

default: Obligatory

The name of the parent radionuclide.
half_life = 〈Double [0, +inf) 〉

default: Obligatory

The half life of the parent radionuclide in seconds.
products = 〈array [1, UINT] of record: RadioactiveDecayProduct 〉

default: Obligatory

An array of the decay products (daughters).

record: RadioactiveDecayProduct

171

A record describing a product of a radioactive decay.

conversion from key: name

name = 〈String 〉

default: Obligatory

The name of the product.
energy = 〈Double [0, +inf) 〉

default: 0.0

Not used at the moment! The released energy in MeV from the decay of the
radionuclide into the product.

branching_ratio = 〈Double [0, +inf) 〉

default: 1.0

The branching ratio of the product when there is more than one. Considering only
one product, the default ratio 1.0 is used. Its value must be positive. Further,
the branching ratios of all products are normalizedby their sum, so the sum then
gives 1.0 (this also resolves possible rounding errors).

record: Sorption

Sorption model in the reaction term of transport.

implements abstracts: ReactionTerm

substances = 〈array [1, UINT] of String 〉

default: Obligatory

Names of the substances that take part in the sorption model.
solvent_density = 〈Double [0, +inf) 〉

default: 1.0

Density of the solvent.
substeps = 〈Integer [1, INT] 〉

default: 1000

Number of equidistant substeps, molar mass and isotherm intersections
solubility = 〈array [0, UINT] of Double [0, +inf) 〉

default: Optional

Specifies solubility limits of all the sorbing species.

172

table_limits = 〈array [0, UINT] of Double [-1, +inf) 〉

default: Optional

Specifies the highest aqueous concentration in the isotherm function interpolation
table. Use any negative value for an automatic choice according to current maximal
concentration (default and recommended). Use ’0’ to always evaluate isotherm
function directly (can be very slow). Use a positive value to set the interpolation
table limit manually (if aqueous concentration is higher, then the isotherm function
is evaluated directly).

input_fields = 〈array [0, UINT] of record: Sorption:Data 〉

default: Obligatory

Containes region specific data necessary to construct isotherms.
reaction_liquid = 〈abstract: GenericReaction 〉

default: Optional

Reaction model following the sorption in the liquid.
reaction_solid = 〈abstract: GenericReaction 〉

default: Optional

Reaction model following the sorption in the solid.
output = 〈gen. record: EquationOutput 〉

gen. parameters: output_field_selection = Sorption:OutputFields

default: {"fields": ["conc_solid"]}

Setting of the fields output.

record: Sorption:Data

Record to set fields of the equation.
The fields are set only on the domain specified by one of the keys: ’region’, ’rid’
and after the time given by the key ’time’. The field setting can be overridden by
any Sorption:Data record that comes later in the boundary data array.

region = 〈array [1, UINT] of String 〉

default: Optional

Labels of the regions where to set fields.
rid = 〈Integer [0, INT] 〉

default: Optional

ID of the region where to set fields.

173

time = 〈tuple: TimeValue 〉

default: 0.0

Apply field setting in this record after this time.
These times have to form an increasing sequence.

rock_density = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Rock matrix density. [m−3kg]
sorption_type = 〈array [1, UINT] of gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = SorptionType

default: Optional

Considered sorption is described by selected isotherm.
If porosity on an element is equal to 1.0 (or even higher), meaning no sorbing
surface, then type ’none’ will be selected automatically. [−]

distribution_coefficient = 〈array [1, UINT] of gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Distribution coefficient kl, kF , kL of linear, Freundlich or Langmuir isotherm re-
spectively. [m3kg−1]

isotherm_other = 〈array [1, UINT] of gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Additional parameter α of nonlinear isotherms. [−]
init_conc_solid = 〈array [1, UINT] of gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Initial solid concentration of substances. It is a vector: one value for every sub-
stance. [−]

selection: SorptionType

values:

174

none : No sorption considered.

linear : Linear isotherm runs the concentration exchange between liquid and solid.

langmuir : Langmuir isotherm runs the concentration exchange between liquid and
solid.

freundlich : Freundlich isotherm runs the concentration exchange between liquid and
solid.

abstract: GenericReaction

Abstract equation for a reaction of species in single compartment (e.g. mobile solid).It
can be part of: direct operator splitting coupling, dual porosity model, any sorption.
implementations:

FirstOrderReaction, RadioactiveDecay

selection: Sorption:OutputFields

Selection of output fields for the Sorption model.
values:

rock_density : [m−3kg] Input field: Rock matrix density.

sorption_type : [−] Input field: Considered sorption is described by selected isotherm.
If porosity on an element is equal to 1.0 (or even higher), meaning no sorbing
surface, then type ’none’ will be selected automatically.

distribution_coefficient : [m3kg−1] Input field: Distribution coefficient kl, kF , kL
of linear, Freundlich or Langmuir isotherm respectively.

isotherm_other : [−] Input field: Additional parameter α of nonlinear isotherms.

init_conc_solid : [−] Input field: Initial solid concentration of substances. It is a
vector: one value for every substance.

conc_solid : [−] Concentration solution in the solid phase.

record: DualPorosity

Dual porosity model in transport problems.
Provides computing the concentration of substances in mobile and immobile zone.

implements abstracts: ReactionTerm

175

input_fields = 〈array [0, UINT] of record: DualPorosity:Data 〉

default: Obligatory

Containes region specific data necessary to construct dual porosity model.
scheme_tolerance = 〈Double [0, +inf) 〉

default: 0.001

Tolerance according to which the explicit Euler scheme is used or not. Set 0.0 to
use analytic formula only (can be slower).

reaction_mobile = 〈abstract: ReactionTermMobile 〉

default: Optional

Reaction model in mobile zone.
reaction_immobile = 〈abstract: ReactionTermImmobile 〉

default: Optional

Reaction model in immobile zone.
output = 〈gen. record: EquationOutput 〉

gen. parameters: output_field_selection = DualPorosity:OutputFields

default: {"fields": ["conc_immobile"]}

Setting of the fields output.

record: DualPorosity:Data

Record to set fields of the equation.
The fields are set only on the domain specified by one of the keys: ’region’, ’rid’
and after the time given by the key ’time’. The field setting can be overridden by
any DualPorosity:Data record that comes later in the boundary data array.

region = 〈array [1, UINT] of String 〉

default: Optional

Labels of the regions where to set fields.
rid = 〈Integer [0, INT] 〉

default: Optional

ID of the region where to set fields.

176

time = 〈tuple: TimeValue 〉

default: 0.0

Apply field setting in this record after this time.
These times have to form an increasing sequence.

diffusion_rate_immobile = 〈array [1, UINT] of gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Diffusion coefficient of non-equilibrium linear exchange between mobile and im-
mobile zone. [s−1]

porosity_immobile = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Porosity of the immobile zone. [−]
init_conc_immobile = 〈array [1, UINT] of gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Initial concentration of substances in the immobile zone. [m−3kg]

abstract: ReactionTermMobile

Abstract equation for a reaction term of the MOBILE pores (sorption, reactions). Is
part of dual porosity model.
implementations:

FirstOrderReaction, RadioactiveDecay, SorptionMobile

record: SorptionMobile

Sorption model in the mobile zone, following the dual porosity model.

implements abstracts: ReactionTermMobile

substances = 〈array [1, UINT] of String 〉

default: Obligatory

Names of the substances that take part in the sorption model.

177

solvent_density = 〈Double [0, +inf) 〉

default: 1.0

Density of the solvent.
substeps = 〈Integer [1, INT] 〉

default: 1000

Number of equidistant substeps, molar mass and isotherm intersections
solubility = 〈array [0, UINT] of Double [0, +inf) 〉

default: Optional

Specifies solubility limits of all the sorbing species.
table_limits = 〈array [0, UINT] of Double [-1, +inf) 〉

default: Optional

Specifies the highest aqueous concentration in the isotherm function interpolation
table. Use any negative value for an automatic choice according to current maximal
concentration (default and recommended). Use ’0’ to always evaluate isotherm
function directly (can be very slow). Use a positive value to set the interpolation
table limit manually (if aqueous concentration is higher, then the isotherm function
is evaluated directly).

input_fields = 〈array [0, UINT] of record: Sorption:Data 〉

default: Obligatory

Containes region specific data necessary to construct isotherms.
reaction_liquid = 〈abstract: GenericReaction 〉

default: Optional

Reaction model following the sorption in the liquid.
reaction_solid = 〈abstract: GenericReaction 〉

default: Optional

Reaction model following the sorption in the solid.
output = 〈gen. record: EquationOutput 〉

gen. parameters: output_field_selection = SorptionMobile:OutputFields

default: {"fields": ["conc_solid"]}

Setting of the fields output.

selection: SorptionMobile:OutputFields

178

Selection of output fields for the SorptionMobile model.
values:

rock_density : [m−3kg] Input field: Rock matrix density.

sorption_type : [−] Input field: Considered sorption is described by selected isotherm.
If porosity on an element is equal to 1.0 (or even higher), meaning no sorbing
surface, then type ’none’ will be selected automatically.

distribution_coefficient : [m3kg−1] Input field: Distribution coefficient kl, kF , kL
of linear, Freundlich or Langmuir isotherm respectively.

isotherm_other : [−] Input field: Additional parameter α of nonlinear isotherms.

init_conc_solid : [−] Input field: Initial solid concentration of substances. It is a
vector: one value for every substance.

conc_solid : [−] Concentration solution in the solid mobile phase.

abstract: ReactionTermImmobile

Abstract equation for a reaction term of the IMMOBILE pores (sorption, reactions). Is
part of dual porosity model.
implementations:

FirstOrderReaction, RadioactiveDecay, SorptionImmobile

record: SorptionImmobile

Sorption model in the immobile zone, following the dual porosity model.

implements abstracts: ReactionTermImmobile

substances = 〈array [1, UINT] of String 〉

default: Obligatory

Names of the substances that take part in the sorption model.
solvent_density = 〈Double [0, +inf) 〉

default: 1.0

Density of the solvent.

179

substeps = 〈Integer [1, INT] 〉

default: 1000

Number of equidistant substeps, molar mass and isotherm intersections
solubility = 〈array [0, UINT] of Double [0, +inf) 〉

default: Optional

Specifies solubility limits of all the sorbing species.
table_limits = 〈array [0, UINT] of Double [-1, +inf) 〉

default: Optional

Specifies the highest aqueous concentration in the isotherm function interpolation
table. Use any negative value for an automatic choice according to current maximal
concentration (default and recommended). Use ’0’ to always evaluate isotherm
function directly (can be very slow). Use a positive value to set the interpolation
table limit manually (if aqueous concentration is higher, then the isotherm function
is evaluated directly).

input_fields = 〈array [0, UINT] of record: Sorption:Data 〉

default: Obligatory

Containes region specific data necessary to construct isotherms.
reaction_liquid = 〈abstract: GenericReaction 〉

default: Optional

Reaction model following the sorption in the liquid.
reaction_solid = 〈abstract: GenericReaction 〉

default: Optional

Reaction model following the sorption in the solid.
output = 〈gen. record: EquationOutput 〉

gen. parameters: output_field_selection = SorptionImmobile:OutputFields

default: {"fields": ["conc_immobile_solid"]}

Setting of the fields output.

selection: SorptionImmobile:OutputFields

Selection of output fields for the SorptionImmobile model.
values:

180

rock_density : [m−3kg] Input field: Rock matrix density.

sorption_type : [−] Input field: Considered sorption is described by selected isotherm.
If porosity on an element is equal to 1.0 (or even higher), meaning no sorbing
surface, then type ’none’ will be selected automatically.

distribution_coefficient : [m3kg−1] Input field: Distribution coefficient kl, kF , kL
of linear, Freundlich or Langmuir isotherm respectively.

isotherm_other : [−] Input field: Additional parameter α of nonlinear isotherms.

init_conc_solid : [−] Input field: Initial solid concentration of substances. It is a
vector: one value for every substance.

conc_immobile_solid : [−] Concentration solution in the solid immobile phase.

selection: DualPorosity:OutputFields

Selection of output fields for the DualPorosity model.
values:

diffusion_rate_immobile : [s−1] Input field: Diffusion coefficient of non-equilibrium
linear exchange between mobile and immobile zone.

porosity_immobile : [−] Input field: Porosity of the immobile zone.

init_conc_immobile : [m−3kg] Input field: Initial concentration of substances in the
immobile zone.

conc_immobile : [m−3kg]

record: Heat_AdvectionDiffusion_DG

Discontinuous Galerkin (DG) solver for heat transfer.

implements abstracts: AdvectionProcess

time = 〈record: TimeGovernor 〉

default: {}

Time governor setting.
balance = 〈record: Balance 〉

default: {}

Settings for computing balance.

181

output_stream = 〈record: OutputStream 〉

default: {}

Parameters of output stream.
solver = 〈record: Petsc 〉

default: {}

Solver for the linear system.
user_fields = 〈array [0, UINT] of record: Heat_AdvectionDiffusion_DG:UserData

〉

default: Optional

Input fields of the equation defined by user.
input_fields = 〈array [0, UINT] of record: Heat_AdvectionDiffusion_DG:Data 〉

default: Obligatory

Input fields of the equation.
dg_variant = 〈selection: DG_variant 〉

default: "non-symmetric"

Variant of the interior penalty discontinuous Galerkin method.
dg_order = 〈Integer [0, 3] 〉

default: 1

Polynomial order for the finite element in DG method (order 0 is suitable if there
is no diffusion/dispersion).

init_projection = 〈Bool 〉

default: true

If true, use DG projection of the initial condition field. Otherwise, evaluate initial
condition field directly (well suited for reading native data).

output = 〈gen. record: EquationOutput 〉

gen. parameters: output_field_selection = Heat_AdvectionDiffusion_DG:OutputFields

default: {"fields": ["temperature"]}

Specification of output fields and output times.

record: Heat_AdvectionDiffusion_DG:UserData

Record to set fields of the equation: Heat_AdvectionDiffusion_DG.

182

name = 〈String 〉

default: Obligatory

Name of user defined field.
is_boundary = 〈Bool 〉

default: false

Type of field: boundary or bulk.
scalar_field = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Obligatory

Instance of FieldAlgoBase ScalarField descendant.
One of keys ’scalar_field’, ’vector_field’, ’tensor_field’ must be set.
If you set more than one of these keys, only first key is accepted.

vector_field = 〈gen. abstract: Field_R3_to_R[3] 〉

gen. parameters: element_input_type = Double

default: Optional

Instance of FieldAlgoBase VectorField descendant. See above for details.
tensor_field = 〈gen. abstract: Field_R3_to_R[3,3] 〉

gen. parameters: element_input_type = Double

default: Optional

Instance of FieldAlgoBase TensorField descendant. See above for details.

record: Heat_AdvectionDiffusion_DG:Data

Record to set fields of the equation.
The fields are set only on the domain specified by one of the keys: ’region’, ’rid’
and after the time given by the key ’time’. The field setting can be overridden by
any Heat_AdvectionDiffusion_DG:Data record that comes later in the boundary data
array.

region = 〈array [1, UINT] of String 〉

default: Optional

Labels of the regions where to set fields.

183

rid = 〈Integer [0, INT] 〉

default: Optional

ID of the region where to set fields.
time = 〈tuple: TimeValue 〉

default: 0.0

Apply field setting in this record after this time.
These times have to form an increasing sequence.

bc_type = 〈array [1, UINT] of gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Heat_BC_Type

default: Optional

Type of boundary condition. [−]
bc_temperature = 〈array [1, UINT] of gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Boundary value of temperature. [K]
bc_flux = 〈array [1, UINT] of gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Flux in Neumann boundary condition. [m1−dkgs−1]
bc_robin_sigma = 〈array [1, UINT] of gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Conductivity coefficient in Robin boundary condition. [m4−ds−1]
init_temperature = 〈array [1, UINT] of gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Initial temperature. [K]
porosity = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Porosity. [−]

184

fluid_density = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Density of fluid. [m−3kg]
fluid_heat_capacity = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Heat capacity of fluid. [m2s−2K−1]
fluid_heat_conductivity = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Heat conductivity of fluid. [mkgs−3K−1]
solid_density = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Density of solid (rock). [m−3kg]
solid_heat_capacity = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Heat capacity of solid (rock). [m2s−2K−1]
solid_heat_conductivity = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Heat conductivity of solid (rock). [mkgs−3K−1]
disp_l = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Longitudinal heat dispersivity in fluid. [m]
disp_t = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

185

default: Optional

Transverse heat dispersivity in fluid. [m]
fluid_thermal_source = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Density of thermal source in fluid. [m−1kgs−3]
solid_thermal_source = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Density of thermal source in solid. [m−1kgs−3]
fluid_heat_exchange_rate = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Heat exchange rate of source in fluid. [s−1]
solid_heat_exchange_rate = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Heat exchange rate of source in solid. [s−1]
fluid_ref_temperature = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Reference temperature of source in fluid. [K]
solid_ref_temperature = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Reference temperature in solid. [K]
v_norm = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Velocity norm field. [ms−1]

186

mass_matrix_coef = 〈gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Matrix coefficients computed by model in mass assemblation. [m3−d]
retardation_coef = 〈array [1, UINT] of gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Retardation coefficients computed by model in mass assemblation. [m3−d]
sources_conc_out = 〈array [1, UINT] of gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Concentration sources output. [m−3kg]
sources_density_out = 〈array [1, UINT] of gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Concentration sources output - density of substance source, only positive part is
used.. [m−dkgs−1]

sources_sigma_out = 〈array [1, UINT] of gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Concentration sources - Robin type, in_flux = sources_sigma * (sources_conc -
mobile_conc). [m3−ds−1]

advection_coef = 〈array [1, UINT] of gen. abstract: Field_R3_to_R[3] 〉

gen. parameters: element_input_type = Double

default: Optional

Advection coefficients model. [ms−1]
diffusion_coef = 〈array [1, UINT] of gen. abstract: Field_R3_to_R[3,3] 〉

gen. parameters: element_input_type = Double

default: Optional

Diffusion coefficients model. [m2s−1]

187

fracture_sigma = 〈array [1, UINT] of gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Coefficient of diffusive transfer through fractures (for each substance). [−]
dg_penalty = 〈array [1, UINT] of gen. abstract: Field_R3_to_R 〉

gen. parameters: element_input_type = Double

default: Optional

Penalty parameter influencing the discontinuity of the solution (for each sub-
stance). Its default value 1 is sufficient in most cases. Higher value diminishes the
inter-element jumps. [−]

selection: Heat_BC_Type

Types of boundary conditions for heat transfer model.
values:

inflow : Default heat transfer boundary condition.
On water inflow (qw ≤ 0), total energy flux is given by the reference temperature
’bc_temperature’. On water outflow we prescribe zero diffusive flux, i.e. the energy
flows out only due to advection.

dirichlet : Dirichlet boundary condition T = TD.
The prescribed temperature TD is specified by the field ’bc_temperature’.

total_flux : Total energy flux boundary condition.
The prescribed incoming total flux can have the general form δ(fN +σR(TR−T)),
where the absolute flux fN is specified by the field ’bc_flux’, the transition parame-
ter σR by ’bc_robin_sigma’, and the reference temperature TR by ’bc_temperature’.

diffusive_flux : Diffusive flux boundary condition.
The prescribed incoming energy flux due to diffusion can have the general form
δ(fN + σR(TR − T)), where the absolute flux fN is specified by the field ’bc_flux’,
the transition parameter σR by ’bc_robin_sigma’, and the reference temperature
TR by ’bc_temperature’.

selection: Heat_AdvectionDiffusion_DG:OutputFields

Selection of output fields for the Heat_AdvectionDiffusion_DG model.
values:

188

init_temperature : [K] Input field: Initial temperature.

porosity : [−] Input field: Porosity.

water_content : [−] Input field:

fluid_density : [m−3kg] Input field: Density of fluid.

fluid_heat_capacity : [m2s−2K−1] Input field: Heat capacity of fluid.

fluid_heat_conductivity : [mkgs−3K−1] Input field: Heat conductivity of fluid.

solid_density : [m−3kg] Input field: Density of solid (rock).

solid_heat_capacity : [m2s−2K−1] Input field: Heat capacity of solid (rock).

solid_heat_conductivity : [mkgs−3K−1] Input field: Heat conductivity of solid
(rock).

disp_l : [m] Input field: Longitudinal heat dispersivity in fluid.

disp_t : [m] Input field: Transverse heat dispersivity in fluid.

fluid_thermal_source : [m−1kgs−3] Input field: Density of thermal source in fluid.

solid_thermal_source : [m−1kgs−3] Input field: Density of thermal source in solid.

fluid_heat_exchange_rate : [s−1] Input field: Heat exchange rate of source in fluid.

solid_heat_exchange_rate : [s−1] Input field: Heat exchange rate of source in solid.

fluid_ref_temperature : [K] Input field: Reference temperature of source in fluid.

solid_ref_temperature : [K] Input field: Reference temperature in solid.

temperature : [K] Temperature solution.

v_norm : [ms−1] Input field: Velocity norm field.

mass_matrix_coef : [m3−d] Input field: Matrix coefficients computed by model in
mass assemblation.

retardation_coef : [m3−d] Input field: Retardation coefficients computed by model
in mass assemblation.

sources_conc_out : [m−3kg] Input field: Concentration sources output.

sources_density_out : [m−dkgs−1] Input field: Concentration sources output - den-
sity of substance source, only positive part is used..

sources_sigma_out : [m3−ds−1] Input field: Concentration sources - Robin type,
in_flux = sources_sigma * (sources_conc - mobile_conc).

189

advection_coef : [ms−1] Input field: Advection coefficients model.

diffusion_coef : [m2s−1] Input field: Diffusion coefficients model.

fracture_sigma : [−] Input field: Coefficient of diffusive transfer through fractures
(for each substance).

dg_penalty : [−] Input field: Penalty parameter influencing the discontinuity of the
solution (for each substance). Its default value 1 is sufficient in most cases. Higher
value diminishes the inter-element jumps.

region_id : [−] Input field: Region ids.

subdomain : [−] Input field: Subdomain ids of the domain decomposition.

190

Alphabetical Index of Types

AdvectionProcess [A], 158

Balance_output_format [S], 139
Balance [R], 139
Bddc [R], 130

Coupling_Base [A], 99
Coupling_Iterative

Data [R], 145
Coupling_Iterative [R], 140
Coupling_OperatorSplitting [R],

158
Coupling_Sequential [R], 99

DarcyFlow [A], 109
Decay [R], 171
DG_variant [S], 168
Difference [R], 107
Discrete_output [S], 137
DtLimits [T], 103
DualPorosity

Data [R], 176
OutputFields [S], 181

DualPorosity [R], 175

Elasticity_BC_Type [S], 144
EquationOutput [R], 135

FE_discretization [S], 118
FieldConstant [R], 114, 120, 125
FieldFE [R], 117, 122, 127
FieldFormula [R], 115, 120, 126
FieldOutputSetting [R], 136
FieldPython [R], 114, 119, 124
FieldTimeFunction [R], 116, 121,

126
Field_R3_to_R[3,3] [A], 114
Field_R3_to_R[3] [A], 124
Field_R3_to_R [A], 119
FirstOrderReactionProduct [R],

170

FirstOrderReactionReactant [R],
170

FirstOrderReaction [R], 169
Flow_Darcy_BC_Type [S], 124
Flow_Darcy_LMH

OutputFields [S], 137
Flow_Darcy_LMH_Data [R], 111
Flow_Darcy_LMH [R], 110
Flow_Darcy_MH

OutputFields [S], 150
Flow_Darcy_MH_Data [R], 148
Flow_Darcy_MH_specific

OutputFields [S], 139
Flow_Darcy_MH [R], 146
Flow_Richards_LMH

OutputFields [S], 156
Flow_Richards_LMH [R], 151
From_Elements [R], 106
From_Id [R], 105
From_Label [R], 106

GenericReaction [A], 175
gmsh [R], 133
GraphType [S], 109

Heat_AdvectionDiffusion_DG
Data [R], 183
OutputFields [S], 188
UserData [R], 182

Heat_AdvectionDiffusion_DG [R],
181

Heat_BC_Type [S], 188

IndependentValue [T], 117, 122,
127

interpolation [S], 118
Intersection [R], 108

LinSys [A], 129

Mechanics_LinearElasticity_FE

191

Data [R], 142
OutputFields [S], 145

Mechanics_LinearElasticity_FE
[R], 141

Mesh [R], 104
MH_MortarMethod [S], 140

NonlinearSolver [R], 129

ObservePoint [R], 134
OutputMesh [R], 134
OutputStream [R], 131
OutputTime [A], 132
Output_DarcyMHSpecific [R], 138

Partition [R], 108
PartTool [S], 109
Petsc [R], 130

RadioactiveDecayProduct [R], 171
RadioactiveDecay [R], 171
ReactionTermImmobile [A], 179
ReactionTermMobile [A], 177
ReactionTerm [A], 169
Reaction [R], 170
Region [A], 105
RichardsLMH_Data [R], 152
Root [R], 99

SoilModel [R], 157
Soil_Model_Type [S], 157
Solute_AdvectionDiffusion_BC_Type

[S], 167
Solute_AdvectionDiffusion_DG

Data [R], 163
OutputFields [S], 168

UserData [R], 162
Solute_AdvectionDiffusion_DG [R],

161
Solute_Advection_FV

Data [R], 160
OutputFields [S], 161

Solute_Advection_FV [R], 159
Solute [A], 159
Sorption

Data [R], 173
OutputFields [S], 175

SorptionImmobile
OutputFields [S], 180

SorptionImmobile [R], 179
SorptionMobile

OutputFields [S], 178
SorptionMobile [R], 177
SorptionType [S], 174
Sorption [R], 172
Substance [R], 159

TableFunction [R], 116, 122, 127
TimeGovernor [R], 100
TimeGrid [R], 133
TimeValue [T], 102, 103
Types of search algorithm for

finding intersection
candidates. [S], 109

Union [R], 107
Unit [R], 102

VTK variant (ascii or binary)
[S], 133

vtk [R], 132

192

Bibliography

[1] B. T. Bowman. Conversion of freundlich adsorption k values to the
mole fraction format and the use of SY values to express relative adsorp-
tion of pesticides1. 46(4):740. ISSN 0361-5995. doi: 10.2136/sssaj1982.
03615995004600040014x. URL https://www.soils.org/publications/sssaj/
abstracts/46/4/SS0460040740?access=0&view=pdf. 2.5.2

[2] M. Ćıslerová and T. Vogel. Transportńı procesy. ČVUT, 1998. 2.4

[3] G. De Marsily. Quantitative hydrogeology: Groundwater hydrology for engineers.
Academic Press, New York, 1986. 2.4

[4] P. A. Domenico and F. W. Schwartz. Physical and chemical hydrogeology, volume
824. Wiley New York, 1990. 2.4

[5] B. L. Ehle. A-stable methods and Padé approximations to the exponential. SIAM
J. Math. Anal., 4(4):671–680. 3.5.3

[6] A. Ern, A. F. Stephansen, and P. Zunino. A discontinuous Galerkin method
with weighted averages for advection–diffusion equations with locally small and
anisotropic diffusivity. IMA Journal of Numerical Analysis, 29(2):235–256, 2009.
3.3

[7] A. Ern, A. F. Stephansen, and M. Vohraĺık. Guaranteed and robust discontinuous
galerkin a posteriori error estimates for convection–diffusion–reaction problems.
Journal of computational and applied mathematics, 234(1):114–130, 2010. 3.3

[8] V. Martin, J. Jaffré, and J. E. Roberts. Modeling fractures and barriers as interfaces
for flow in porous media. SIAM Journal on Scientific Computing, 26(5):1667, 2005.
ISSN 10648275. doi: 10.1137/S1064827503429363. URL http://link.aip.org/
link/SJOCE3/v26/i5/p1667/s1&Agg=doi. 2.2, 2.3.1

[9] R. Millington and J. Quirk. Permeability of porous solids. Transactions of the
Faraday Society, 57:1200–1207, 1961. 2.4

[10] O. of Radiation, I. A. O. of Solid Waste, and D. . Emergency Response U.S. Envi-
ronmental Protection Agency Washington. Understanding Variation in Partition
Coefficient, Kd, Values. 1999. URL https://www.epa.gov/sites/production/
files/2015-05/documents/402-r-99-004a.pdf. 2.5.2

[11] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Nu-
merical Recipes in C: The Art of Scientific Computing, Second Edition. Cam-
bridge University Press, 2 edition edition. ISBN 9780521431088. URL http:
//www.nrbook.com/a/bookcpdf.php. 3.5.3

193

https://www.soils.org/publications/sssaj/abstracts/46/4/SS0460040740?access=0&view=pdf
https://www.soils.org/publications/sssaj/abstracts/46/4/SS0460040740?access=0&view=pdf
http://link.aip.org/link/SJOCE3/v26/i5/p1667/s1&Agg=doi
http://link.aip.org/link/SJOCE3/v26/i5/p1667/s1&Agg=doi
https://www.epa.gov/sites/production/files/2015-05/documents/402-r-99-004a.pdf
https://www.epa.gov/sites/production/files/2015-05/documents/402-r-99-004a.pdf
http://www.nrbook.com/a/bookcpdf.php
http://www.nrbook.com/a/bookcpdf.php

[12] A. Younes, P. Ackerer, and F. Lehmann. A new mass lumping scheme for the mixed
hybrid finite element method. Int. J. Numer. Meth. Engng, 67:89–107, 2006. 3.1

194

	Getting Started
	Introduction
	Reading Documentation
	Installing Flow123d
	Installing Flow123d on Linux
	Installing Flow123d on Windows
	Before you install
	Installation
	Flow123d troubleshooting
	Uninstalling Flow123d
	Reinstalling Flow123d

	Running Flow123d
	Running Flow123d on Linux
	Running Flow123d on Windows
	Running from other batch file
	Adjusting memory of virtual machine

	Flow123d arguments
	Tutorial Problem
	Geometry
	YAML File Format
	Flow Setting
	Transport Setting
	Reaction Term
	Results

	Mathematical Models of Physical Reality
	Meshes of Mixed Dimension
	Advection-Diffusion Processes on Fractures
	Darcy Flow Model
	Coupling on mixed meshes
	Boundary conditions
	Steady and unsteady Darcian flow
	Initial condition
	Water balance
	Richards Equation
	van Genuchten
	Irmay

	Coupling of dimensions for non-conforming meshes

	Transport of Substances
	Reaction Term in Transport
	Dual Porosity
	Equilibrial Sorption
	Sorption in Dual Porosity Model
	Radioactive Decay
	First Order Reaction

	Heat Transfer
	Mechanics

	Numerical Methods
	Diagonalized Mixed-Hybrid Method
	Mixed-Hybrid Method on Non-conforming Mixed Meshes
	P0 method
	P1 method

	Discontinuous Galerkin Method
	Finite Volume Method for Convective Transport
	Solution Issues for Reaction Term
	Dual Porosity
	Equilibrial Sorption
	System of Linear Ordinary Differential Equations

	File Formats
	Main Input File
	YAML basics
	Hierarchy of Mappings and Lists
	Tags
	References
	Gotchas

	Flow123d input types
	Record (YAML Mapping, JSON object)
	Array (YAML List, JSON array)
	Abstract
	Flow123d specific tags

	Input subsystem

	Important Record Types of Flow123d Input
	Mesh Record
	Input Fields
	Field Algorithms
	Field automatic conversions
	Field Units

	Output Records
	Balance
	OutputStream
	EquationOuput
	TimeGrid Array

	Mesh and Data File Format MSH ASCII
	Output Files
	Auxiliary Output Files
	Profiling Information
	Balance of Conservative Quantities
	Raw Water Flow Data File

	Tutorials
	1D column
	Description
	Input
	Setting the computational mesh
	Setting the model and physical parameters
	Setting solver parameters
	Setting output

	Results
	Variant

	1D column transport
	Description and input
	Results

	2D tunnel
	Description
	Hydraulic model
	Transport of real isotopes
	Input
	Results

	Fractures and diffusion
	Description
	Input
	Geometry and mesh generation
	Hydraulic model
	Transport model

	Results

	Fractures and sorption
	Description
	Input
	Results

	Fractures and dual porosity
	Description
	Input
	Results and comparison

	Heat transport
	Description
	Input
	Geometry
	Hydraulic model
	Heat transport model

	Results

	Main Input File Reference

