
Technical university of Liberec

Faculty of mechatronics, informatics
and interdisciplinary studies

Flow123d

version 3.1.0

User Guide and Input Reference

Liberec, 2021

Authors:

Jan Březina, Jan Stebel, David Flanderka, Pavel Exner, Jan Hybš

Acknowledgment

2

Contents

1 Getting Started 5
1.1 Introduction . 5
1.2 Reading Documentation . 6
1.3 Installing Flow123d . 6

1.3.1 Installing Flow123d on Linux . 6
1.3.2 Installing Flow123d on Windows 7

1.4 Running Flow123d . 8
1.4.1 Running Flow123d on Linux . 8
1.4.2 Running Flow123d on Windows 10

1.5 Flow123d arguments . 10
1.6 Tutorial Problem . 13

1.6.1 Geometry . 13
1.6.2 YAML File Format . 14
1.6.3 Flow Setting . 15
1.6.4 Transport Setting . 16
1.6.5 Reaction Term . 17
1.6.6 Results . 19

2 Mathematical Models of Physical Reality 21
2.1 Meshes of Mixed Dimension . 21
2.2 Advection-Diffusion Processes on Fractures 22
2.3 Darcy Flow Model . 24

2.3.1 Coupling on mixed meshes . 25
2.3.2 Boundary conditions . 26
2.3.3 Steady and unsteady Darcian flow 27
2.3.4 Initial condition . 28
2.3.5 Water balance . 28
2.3.6 Richards Equation . 28
2.3.7 Coupling of dimensions for non-conforming meshes 29

2.4 Transport of Substances . 29
2.5 Reaction Term in Transport . 33

2.5.1 Dual Porosity . 35
2.5.2 Equilibrial Sorption . 35
2.5.3 Sorption in Dual Porosity Model 37
2.5.4 Radioactive Decay . 37
2.5.5 First Order Reaction . 39

2.6 Heat Transfer . 39
2.7 Mechanics . 42

3

3 Numerical Methods 44
3.1 Diagonalized Mixed-Hybrid Method . 44
3.2 Mixed-Hybrid Method on Non-conforming Mixed Meshes 46

3.2.1 P0 method . 47
3.2.2 P1 method . 47

3.3 Discontinuous Galerkin Method . 47
3.4 Finite Volume Method for Convective Transport 49
3.5 Solution Issues for Reaction Term . 50

3.5.1 Dual Porosity . 50
3.5.2 Equilibrial Sorption . 51
3.5.3 System of Linear Ordinary Differential Equations 53

4 File Formats 54
4.1 Main Input File . 54

4.1.1 YAML basics . 54
4.1.2 Flow123d input types . 57
4.1.3 Input subsystem . 62

4.2 Important Record Types of Flow123d Input 63
4.2.1 Mesh Record . 63
4.2.2 Input Fields . 64
4.2.3 Output Records . 66

4.3 Mesh and Data File Format MSH ASCII 67
4.4 Output Files . 68

4.4.1 Auxiliary Output Files . 69

5 Tutorials 72
5.1 1D column . 72
5.2 1D column transport . 75
5.3 2D tunnel . 78
5.4 Fractures and diffusion . 82
5.5 Fractures and sorption . 87
5.6 Fractures and dual porosity . 88
5.7 Heat transport . 89

6 Main Input File Reference 95

4

Chapter 1

Getting Started

1.1 Introduction

Flow123d is a software for simulation of water flow, reactionary solute transport and heat
transfer in a heterogeneous porous and fractured medium. In particular it is suited for
simulation of underground processes in a granite rock. The program is able to describe
explicitly processes in 3D medium, 2D fractures, and 1D channels and exchange between
domains of different dimensions. The computational mesh is therefore a collection of
tetrahedra, triangles and line segments.
Two water flow models are available: The water flow model for a saturated medium
based on the Darcy law and the model for partially saturated medium described by the
Richards’ equation. Both models use the mixed-hybrid finite element method for the
space discretization and the implicit Euler method for the time discretization. Both
models can also switch between a transient case and a sequence of the steady states
within a single simulation. The model for unsaturated medium use a lumped variant of
the mixed-hybrid method in order to guarantee stability for short time steps which is
connected with the satisfaction of the maximum principle.
In the present version, only the model for the unsaturated media can be sequentially
coupled with the transport models including two models for the solute transport and
one model for the heat transfer.
The first solute transport model can deal only with a pure advection of several sub-
stances without any diffusion-dispersion term. It uses the explicit Euler method for
time discretization and the finite volume method for space discretization. The second
solute transport model describes a general advection with hydrodynamic dispersion for
several substances. It uses the implicit Euler method for time discretization and the
discontinuous Galerkin method of the first, second or third order for the discretization
in space. The operator splitting method can be used to couple any of these two solute
transport models with various processes described by the reaction term. The reaction
term can treat any meaningful combination of the dual porosity, equilibrium sorptions,
decays and linear reactions.
The heat transfer model assumes equilibrium between temperature of the rock and the
fluid phase. It uses the same numerical scheme as the second transport model, that is
implicit DG method.

5

The program supports output of all input and output fields into two file formats. You
can use file format of GMSH mesh generator and post-processor or you can use output
into widely supported VTK format. In particular we recommend Paraview software for
visualization and post-processing of the VTK data.
The program is implemented in C/C++ using essentially PETSc library for linear alge-
bra. All models can run in parallel using MPI environment, however, the scalability of
the whole program is limited due to serial mesh data structures and serial outputs.
The program is distributed under GNU GPL v. 3 license and is available on the project
web page: http://flow123d.github.io
with sources on the GitHub: https://github.com/flow123d/flow123d.

1.2 Reading Documentation

The Flow123d documentation has two main parts. The chapters 1 up to 5 form a user
guide while the last chapter 6 provides an input reference. The user manual starts with
Chapter 1 providing instructions for installation and execution of the program. The
Chapter 2 provides detailed description of the implemented mathematical models. The
Chapter 3 presents used numerical methods. The input and output file formats are
documented by the Chapter 4. Finally, the Chapter 5 consists of tutorial problems.
The reference guide, consisting only of the chapter 6, is automatically generated. It mir-
rors directly the code and describes whole structure of the main input file. Description
of input records, their structure and default values are supplied there and bidirectional
links to the user guide are provided.
The document is interactive. The blue text marks the links in the document. The
magenta text marks the web links.

1.3 Installing Flow123d

Software Flow123d requires tool Docker. Docker is an open-source project that auto-
mates the deployment of Linux applications inside software containers. Entire Flow123d
software is wrapped in a docker image that contains also necessary libraries and crucial
components of the Linux operating system.
The installation process imports docker image into your machine and personalize the
docker image. The installation instructions for the Linux and the Windows operating
systems are provided in the next two sections.

1.3.1 Installing Flow123d on Linux

The installation is done under regular user, who must be in the group ’docker’. Download
the Linux installation package archive Flow123d-<version>-linux-install.tar.gz
and extract it to any folder:

> tar -xzf flow123d_<version>_linux_install.tar.gz

6

http://flow123d.github.io
https://github.com/flow123d/flow123d
https://www.docker.com

This will create a directory Flow123d-<version>. In next step, navigate to Flow123d-<version>
directory and execute the install.sh script:

> cd flow123d_2.1.0
> ./install.sh
Pulling docker image ’flow123d/v2.1.0’
...

Install script will download Docker image from the Docker Hub. The script will also
print additional information during personalization process. Whole process may take
several minutes (depending on your machine performance and internet connectivity).

Alternate way to install

Assuming you have Docker installed, you can simply run:

curl -s https://flow.nti.tul.cz/get | bash

This will check your system and download scripts flow123d and fterm.

1.3.2 Installing Flow123d on Windows

Before you install

This version uses Docker for Windows, previous versions which used Docker Toolbox
will stop working.
Make sure your system fullfills following requirements in order to support Docker for Windows:

• Windows 10 64bit: Pro, Enterprise or Education (1607 Anniversary Update, Build
14393 or later).

• Virtualization is enabled in BIOS. Typically, virtualization is enabled by default.
This is different from having Hyper-V enabled. For more detail see Virtualization
must be enabled in Troubleshooting.

• CPU SLAT-capable feature.

• At least 4GB of RAM.

Installation

To install Flow123d on Windows, download installer from Official pages, execute it
and follow instructions on your screen. To make things easier, you can also watch a
installation video.
If for some reason the installation failed, make sure eveything below is in order:

7

https://hub.docker.com/u/flow123d
https://www.docker.com
https://docs.docker.com/docker-for-windows/troubleshoot/#virtualization-must-be-enabled
https://docs.docker.com/docker-for-windows/troubleshoot/#virtualization-must-be-enabled
http://flow123d.github.io/
https://www.youtube.com/watch?v=xDR2vU-1IhM
https://www.youtube.com/watch?v=xDR2vU-1IhM

Flow123d troubleshooting

• Powershell is installed: On the Windows systems we require PowerShell. Win-
dows PowerShell needs to be installed on Windows Server 2008 and Windows
Vista only. It is already installed on Windows Server 2008 R2 and Windows 7 and
higher. To install PowerShell follow instructions at Microsoft pages.

• Powershell is in the system PATH: Make sure powershell command is in the
system PATH. PowerShell executable location is specific to the particular Windows
version, but usual location is:

%SystemRoot%\system32\WindowsPowerShell\v1.0\powershell.exe

To add this location to the system PATH variable follow the instructions at Mi-
crosoft pages.

• For detailed instructions refer to Docker docs.

Uninstalling Flow123d

To uninstall Flow123d, in Windows open Apps & features (Aplikace a funkce in
Czech), find the Flow123d in the list and click uninstall. This will only uninstall the
Flow123d but not Docker for Windows.

Reinstalling Flow123d

If you are installing same version of Flow123d again, installation process will be the
same, except Docker for Windows installation will be skipped.

1.4 Running Flow123d

1.4.1 Running Flow123d on Linux

All necessary scripts for Flow123d are located in the bin directory of installation direc-
tory Flow123d-<version>-linux-install. Docker container by default cannot easily
interact with host file system. But using scripts in bin will make things easier. Directory
bin contains:

• fterm.sh
Script will invoke shell inside docker container and mount your home directory.
In this shell you have access to system where Flow123d is installed. By default
command flow123d is in the PATH variable.
Note: On some systems, shell’s font is extremely small, you can change this
behavior by right-clicking on window bar and selecting default or (vychozi in
Czech) see Figure 1.1.

8

https://msdn.microsoft.com/en-us/powershell/scripting/setup/installing-windows-powershell
http://www.powershelladmin.com/wiki/PowerShell_Executables_File_System_Locations
https://msdn.microsoft.com/en-us/library/office/ee537574(v=office.14).aspx
https://msdn.microsoft.com/en-us/library/office/ee537574(v=office.14).aspx
https://docs.docker.com/docker-for-windows/

Figure 1.1: Changing default font family and font size

• flow123d.sh
Script will run Flow123d inside docker container and mount your home directory.
All arguments passed to this script will be passed to flow123d binary file inside
docker.

• runtest.sh
Script will run Flow123d tests inside docker container and mount your home di-
rectory. All arguments passed to this script will be passed to runtest.py binary
file inside docker.

Note: Using above .sh scripts will mount your your home directory to docker container
under the same name. Also your current working directory will be the same. Example
below shows behavior of the scripts:

$> pwd
/home/jan-hybs/install-folder

$> ls
bin data doc install.sh tests

$> bin/fterm.sh
Home directory mounted to ’/home/jan-hybs’

jan-hybs@v2.0.0:/home/jan-hybs/install-folder$ ls
bin data doc install.sh tests

9

1.4.2 Running Flow123d on Windows

On system Windows you will have a shortcut on your desktop, to verify everything is
working. To run flow123d from anywhere simple type flow123d.bat or fterm.bat (in
terminal, powershell, Total Commander, . . .).
Each bat file serves a different purpose:

• flow123d.bat serves as a binary, it possible to run the bat file multiple times
(useful for a batch processing)

• fterm.bat serves as an interactive shell console session invoked inside docker con-
tainer.

By default flow123d.bat will run the last installed version on your system. If you have
multiple version installed and want to run specific one, each version has a unique bat files
flow123d-<version>.bat and fterm-<version>.bat file (e.g. flow123d-3.0.9.bat
and fterm-3.0.9.bat).

Running from other batch file

The Windows system calls the batch files in the different way then the binaries. In
particular the calling batch file is not processed further after the child batch file is done.
In order to do so, one have to use the CALL command. This is especially necessary for
various calibration tools. The correct calling batch file may look like:

echo "Starting Flow123d ..."
call flow123d.bat a_simulation.yaml
echo "... simulation done."

Adjusting memory of virtual machine

To change the memory limits of the Virtual machine, open the Docker Settings dialog
(right click on the whale icon) and select Settings. Navigate to Advanced tab and
adjust the memory. Detailed instructions can be found Docker docs.

1.5 Flow123d arguments

When you are inside docker container, you have access to entire file system. Flow123d
is installed in /opt/flow123d directory. Folder /bin contains binary files and is auto-
matically added to PATH variable, meaning every executable in this folder can be called
from anywhere.
Main Flow123d binary is located in bin/flow123d and accepts following arguments:

--help
Help for parameters interpreted by Flow123d. Remaining parameters are passed
to PETSC.

10

https://docs.docker.com/docker-for-windows/#advanced

-s, --solve <file>
Set principal input file. Can be in YAML (or JSON) file format. All relative paths
of the input files are relative to the location of the principal input file.

-i, --input dir <directory>
The placeholder ${INPUT} used in the path of an input file will be replaced by the
<directory>. Default value is input.

-o, --output dir <directory>
All paths for output files will be relative to this <directory>. Default value is
output.

-l, --log <file_name>
Set base name of log files. Default value is flow123d. The log files are individual
for every MPI process, placed in the output directory. The MPI rank of the process
and the log suffix are appended to the base name.

--no log
Turn off logging.

--no profiler
Turn off profiler output.

--petsc redirect <file>
Redirect all PETSc stdout and stderr to given file.

--input format
Prints a description of the main input file in JSON format. Is used by GeoMop
model editor and by python scripts for generating reference documentation in
Latex or HTML format.

--yaml balance
Generate balance file also in machine readable YAML format. Will be default in
future, used by GeoMop.

--no signal handler
For debugging purpose.

All other parameters will be passed to the PETSC library. An advanced user can
influence lot of parameters of linear solvers. In order to get list of supported options use
parameter -help together with some valid input. Options for various PETSC modules
are displayed when the module is used for the first time.
Alternatively, you can use python script exec_parallel located in bin/python to start
parallel jobs or limit resources used by the program.
After double dash specify which mpiexec binary will be used (MPI-EXECUTABLE) and
then specify what should be run. The script does not need to run solely flow123d.
If we want to run command whoami in parallel we can do:

bin $> exec_parallel -n 4 -- ./mpiexec whoami

To execute Flow123d in parallel we can do:

11

bin $> exec_parallel -n 4 -- ./mpiexec ./flow123d --help

exec_parallel [OPTIONS] -- [MPI-EXECUTABLE] [PARAMS]

The script has following options:

-h, --help
Usage overview.

--host <hostname>
Valid only when option --queue is set. Default value is the host name ob-
tained by python platform.node() call, this argument can be used to override
it. Resulting value is used to select a correct PBS module from lookup table
config/host_table.yaml.

-n <number of processes>
Specify number of MPI parallel processes for calculation.

-t, --limit-time <timeout>
Upper estimate for real running time of the calculation. Kill calculation after
timeout seconds. Value can also be float number. When in PBS mode, value can
also affect PBS queue.

-m, --limit-memory <memory limit>
Limits total available memory to <memory limit> MB in total.

-q, --queue <queue>
If set activates PBS mode. If argument queue is also set selects particular job
queue on PBS systems otherwise default PBS queue is used. Default PBS queue
automatically choose valid queue based on resources.

Another script which runs Flow123d is runtest.sh. This script will run tests speci-
fied as arguments. Script accepts both folders and yaml files. To see full details run
runtest.sh --help. The script will run yaml tests and then compare results with
reference output. Example usage of the script:

$> bin/runtest.sh -n 1 tests/10_darcy/01_source.yaml
...
Case 01 of 02
Running: 1 x 10_darcy/01_source
Done | elapsed time 0:00:00:898

Comparison: 01 of 03 | 10_darcy: 01_source/flow.pvd (0.22kB)
Comparison: 02 of 03 | 10_darcy: 01_source/flow/flow-000000.vtu (0.63MB)
Comparison: 03 of 03 | 10_darcy: 01_source/water_balance.txt (0.32kB)

--
Case 02 of 02
Running: 2 x 10_darcy/01_source
Done | elapsed time 0:00:00:900

Comparison: 01 of 03 | 10_darcy: 01_source/flow.pvd (0.22kB)

12

Comparison: 02 of 03 | 10_darcy: 01_source/flow/flow-000000.vtu (0.63MB)
Comparison: 03 of 03 | 10_darcy: 01_source/water_balance.txt (0.32kB)

--
Summary:

[PASSED] | 1 x 10_darcy/01_source [1.40 sec]
[PASSED] | 2 x 10_darcy/01_source [1.41 sec]
--
[PASSED] | passed=2, failed=0, skipped=0 in [2.81 sec]

1.6 Tutorial Problem

In the following section, we shall provide an example cook book for preparing and
running a model, based on one of the test problems, namely

tests/21_solute_fv_frac/03_fv_dp_sorp_small.yaml.

We shall start with the preparation of the geometry using an external software and
then we shall go step by step through the commented main input file. The problem
includes steady Darcy flow, transport of two substances with explicit time discretization
and a reaction term consisting of dual porosity and sorption model. Further tutorials
focused on particular features can be found in Chapter 5.

1.6.1 Geometry

We consider a simple 2D problem with a branching 1D fracture (see Figure 1.2 for the
geometry). To prepare a mesh file we use the GMSH software. First, we construct
a geometry file. In our case the geometry consists of:

• one physical 2D domain corresponding to the whole square

• three 1D physical domains of the fracture

• four 1D boundary physical domains of the 2D domain

• three 0D boundary physical domains of the 1D domain

In this simple example, we can in fact combine physical domains in every group, however
we use this more complex setting for demonstration purposes. Using GMSH graphical
interface we can prepare the GEO file where physical domains are referenced by numbers,
then we use any text editor and replace numbers with string labels in such a way that
the labels of boundary physical domains start with the dot character. These are the
domains where we will not do any calculations but we will use them for setting boundary
conditions. Finally, we get the GEO file like this:

1 cl1 = 0.16;
2 Point(1) = {0, 1, 0, cl1};

3 Point(2) = {1, 1, 0, cl1};
4 Point(3) = {1, 0, 0, cl1};

13

http://geuz.org/gmsh/

5 Point(4) = {0, 0, 0, cl1};
6 Point(6) = {0.25, -0, 0, cl1};
7 Point(7) = {0, 0.25, 0, cl1};
8 Point(8) = {0.5, 0.5, -0, cl1};
9 Point(9) = {0.75, 1, 0, cl1};

10 Line(19) = {9, 8};
11 Line(20) = {7, 8};
12 Line(21) = {8, 6};
13 Line(22) = {2, 3};
14 Line(23) = {2, 9};
15 Line(24) = {9, 1};
16 Line(25) = {1, 7};
17 Line(26) = {7, 4};
18 Line(27) = {4, 6};
19 Line(28) = {6, 3};

20 Line Loop(30) = {20, -19, 24, 25};
21 Plane Surface(30) = {30};
22 Line Loop(32) = {23, 19, 21, 28, -22};
23 Plane Surface(32) = {32};
24 Line Loop(34) = {26, 27, -21, -20};
25 Plane Surface(34) = {34};
26 Physical Point(".1d_top") = {9};
27 Physical Point(".1d_left") = {7};
28 Physical Point(".1d_bottom") = {6};
29 Physical Line("1d_upper") = {19};
30 Physical Line("1d_lower") = {21};
31 Physical Line("1d_left_branch") = {20};
32 Physical Line(".2d_top") = {23, 24};
33 Physical Line(".2d_right") = {22};
34 Physical Line(".2d_bottom") = {27, 28};
35 Physical Line(".2d_left") = {25, 26};
36 Physical Surface("2d") = {30, 32, 34};

Notice the labeled physical domains on lines 26 – 36. Then we just set the discretization
step cl1 and use GMSH to create the mesh file. The mesh file contains both the ’bulk’
elements where we perform calculations and the ’boundary’ elements (on the boundary
physical domains) where we only set the boundary conditions.

1.6.2 YAML File Format

The main input file uses the YAML file format with some restrictions. We prefer to
call YAML objects “records” and we introduce also “abstract records” that mimic C++
abstract classes. Arrays have only elements of the same type (possibly using abstract
record types for polymorphism). The usual keys are in lower case and without spaces
(using underscores instead). For detailed description see Section 4.1.
Having the computational mesh from the previous step, we can create the main input
file with the description of our problem.

1 flow123d_version: 2.0.0
2 problem: !CouplingSequential
3 description: Tutorial problem: Transport 1D-2D (convection, dual
4 porosity, sorption, sources).
5 mesh:
6 mesh_file: ../00_mesh/square_1x1_frac_fork.msh
7 regions:
8 - !Union
9 name: 1d_domain

10 regions:
11 - 1d_upper
12 - 1d_lower
13 - 1d_left_branch

The file starts with a selection of problem type (CouplingSequential), and a textual
problem description. Next, we specify the computational mesh, here it consists of the

14

name of the mesh file and the declaration of one region given as the union of all 1D
regions i.e. representing the whole fracture. Other keys of the mesh record allow labeling
regions given only by numbers, defining new regions in terms of element numbers (e.g
to have leakage on single element), defining boundary regions, and several operations
with region sets, see Section 4.2.1 for details.

1.6.3 Flow Setting

Next, we setup the flow problem. We shall consider a steady flow (i.e. with zero stora-
tivity) driven only by the pressure gradient (no gravity), setting the Dirichlet bound-
ary condition on the whole boundary with the pressure head equal to x + y. The
conductivity will be k2 = 10−7 ms−1 on the 2D domain and k1 = 10−6 ms−1 on the 1D
domain. We leave the default value for the cross section of the 2D domain, meaning
that the thickness of 2D domain is δ2 = 1 m. For the 1D fractures cross-section, we pre-
scribe δ1 = 0.04 m2 on the 1D domain. The transition coefficient σ2 between dimensions
can be scaled by setting the dimensionless parameter σ21 (sigma). This can be used for
simulating additional effects which prevent the liquid transition from/to a fracture, like
a thin resistance layer. Notice that the scaling parameter is set on the lower dimensional
domain, i.e. σ21 = 0.9 on line 19. Read Section 2.3 for more details.

14 flow_equation: !Flow_Darcy_MH
15 input_fields:
16 - region: 1d_domain
17 conductivity: 1.0e-06
18 cross_section: 0.04
19 sigma: 0.9
20 - region: 2d
21 conductivity: 1.0e-07
22 - region: .BOUNDARY
23 bc_type: dirichlet
24 bc_pressure: !FieldFormula
25 value: x+y
26 nonlinear_solver:
27 linear_solver: !Petsc
28 a_tol: 1.0e-12
29 r_tol: 1.0e-12
30 output:
31 fields:
32 - pressure_p0
33 - pressure_p1
34 - velocity_p0
35 output_stream:
36 file: flow.pvd
37 format: !vtk
38 variant: ascii
39 balance:

On line 14, we specify particular implementation (numerical method) of the flow solver,

15

in this case the Mixed-Hybrid solver for steady problems. On lines 15 – 25 in the
array input fields, we set both mathematical fields that live on the computational
domain and those defining the boundary conditions. We use implicitly defined region
“.BOUNDARY” that contains all boundary regions and we set there Dirichlet boundary
condition in terms of the pressure head. In this case, the field is not of the implicit
type FieldConstant, so we must specify the type of the field !FieldFormula. See
Section 4.2.2 for other field types. Next, we specify the type of the linear solver and its
tolerances. On lines 30 – 34, we specify which output fields should be written to the
output stream (that means particular output file, with given format). See Section 4.4
for the list of available output fields. Currently, we support only one output stream
per equation. We specify the filename and the format of the output stream (the used
ASCII VTK format is the default). All the keys in record balance are left with default
values.

1.6.4 Transport Setting

The flow model is followed by a transport model in the record solute equation be-
ginning on line 40. Here, we use an implementation called Solute Advection FV which
stands for an explicit finite volume solver of the convection equation (without diffu-
sion). The operator splitting method is used for equilibrium sorption as well as for dual
porosity model and first order reactions simulation.

40 solute_equation: !Coupling_OperatorSplitting
41 substances:
42 - name: age # water age
43 molar_mass: 0.018
44 - name: U235 # uranium 235
45 molar_mass: 0.235
46 transport: !Solute_Advection_FV
47 input_fields:
48 - region: ALL
49 init_conc: 0
50 porosity: 0.25
51 # source is in the whole volume (l+s) -> times porosity
52 sources_density:
53 - 0.25
54 - 0
55 - region: .BOUNDARY
56 bc_conc:
57 - 0.0
58 - 1.0
59 time:
60 end_time: 1000000
61 balance:
62 cumulative: true

On lines 41 – 45, we set the transported substances, which are identified by their
names. Here, the first one is the age of the water, with the molar mass of water, and

16

the second one U235 is the uranium isotope 235. On lines 47 – 58, we set the input
fields, in particular zero initial concentration for all substances, porosity θ = 0.25 and
sources of concentration by sources density. Notice line 49 where we can see only
single value since an automatic conversion is applied to turn the scalar zero into the
zero vector (of size 2 according to the number of substances).
The boundary fields are set on lines 55 – 58. We do not need to specify the type of
the condition since there is only one type in the Solute Advection FV transport model.
The boundary condition is equal to 1 for the uranium 235 and 0 for the age of the water
and is automatically applied only on the inflow part of the boundary.
We also have to prescribe the time setting – here it is only the end time of the simulation
(in seconds: 106 s ≈ 11.57 days). The step size is determined automatically from the
CFL condition, however, a smaller time step can be enforced if necessary.
Reaction term of the transport model is described in the next subsection, including dual
porosity and sorption.

1.6.5 Reaction Term

The input information for dual porosity, equilibrial sorption and possibly first order
reactions are enclosed in the record reaction term, lines 63 – 107. Go to section 2.5 to
see how the models can be chained.
The type of the first process is determined by !DualPorosity, on line 63. The input fields
of the dual porosity model are set on lines 64 – 72 and the output is disabled by setting
an empty array on line 74.

63 reaction_term: !DualPorosity
64 input_fields:
65 - region: ALL
66 diffusion_rate_immobile:
67 - 0.01
68 - 0.01
69 porosity_immobile: 0.25
70 init_conc_immobile:
71 - 0.0
72 - 0.0
73 output:
74 fields: []
75 reaction_mobile: !SorptionMobile
76 solvent_density: 1000.0 # water
77 substances:
78 - age
79 - U235
80 solubility:
81 - 1.0
82 - 1.0
83 input_fields: &anchor1
84 - region: ALL

17

85 rock_density: 2800.0 # granite
86 sorption_type:
87 - none
88 - freundlich
89 distribution_coefficient:
90 - 0
91 - 0.68
92 isotherm_other:
93 - 0
94 - 1.0
95 output:
96 fields: []
97 reaction_immobile: !SorptionImmobile
98 solvent_density: 1000.0 # water
99 substances:

100 - age
101 - U235
102 solubility:
103 - 1.0
104 - 1.0
105 input_fields: *anchor1
106 output:
107 fields: []
108 output_stream:
109 file: transport.pvd
110 format: !vtk
111 variant: ascii
112 times:
113 - step: 100000.0

Next, we define the equilibrial sorption model such that SorptionMobile type takes
place in the mobile zone of the dual porosity model while SorptionImmobile type
takes place in its immobile zone, see lines 75 and 97. Isothermally described sorption
simulation can be used in the case of low concentrated solutions without competition
between multiple dissolved species.
On lines 76 – 82, we set the sorption related input information. The solvent is water so
the solvent density is supposed to be constant all over the simulated area. The vector
substances contains the list of names of solute substances which are considered to be
affected by the sorption. Solubility is a material characteristic of a sorbing substance
related to the solvent. Elements of the vector solubility define the upper bound of
aqueous concentration which can appear. This constrain is necessary because some
substances might have limited solubility and if the solubility exceeds its limit they start
to precipitate. solubility is a crucial parameter for solving a set of nonlinear equations,
described further.
The record input fields covers the region specific parameters. All implemented types
of sorption can take the rock density in the region into account. The value of rock density
is a constant in our case. The sorption type represents the empirically determined
isotherm type and can have one of four possible values: {"none", "linear", "freundlich",

18

"langmuir"}. Linear isotherm needs just one parameter given whereas Freundlich and
Langmuir isotherms require two parameters. We will use Freundlich isotherm for demon-
stration but we will set the other parameter (exponent) α = 1 which means it will be
the same as the linear type.
Let us suppose we would like to use a sorption coefficient for uranium Kd = 1.6 · 10−4

kg−1m3 (www.skb.se, report R-10-48 by James Crawford, 2010). At first, we need to
convert it to dimensionless value of distribution coefficient in the following way:
kl = KdM

−1
s ρl = Kd

1000
0.235 ≈ 0.68. For further details, see mathematical description in

Section 2.5.2.
On line 105, notice the reference pointing to the definition of input fields on lines 83 –
94. Only entire records can be referenced which is why we have to repeat parts of the
input such as solvent density and solubility (records for reaction mobile and reaction
immobile have different types).
On lines 96 and 107, we define which sorption specific outputs are to be written to the
output file. An implicit set of outputs exists. In this case we define an empty set of
outputs thus overriding the implicit one. This means that no sorption specific outputs
will be written to the output file. On lines 108 – 113 we specify which output fields
should be written to the output stream. Currently, we support output into VTK and
GMSH data format. In the output record for time-dependent process we have to specify
the time step (line 113) which determines the frequency of output data writing.

1.6.6 Results

In Figure 1.2 one can see the results: the pressure and the velocity field on the left and
the concentration of U235 at time t = 9 · 105 s on the right. Even though the pressure
gradient is the same both in the 2D domain and in the fracture, the velocity field is ten
times faster in the fracture due to its higher conductivity. Since porosity is the same,
the substance is transported faster by the fracture. Therefore nonzero concentration
appears in the bottom left of the 2D domain long before the main wave propagating
solely through the 2D domain reaches that corner.

19

0.40

0.80

1.20

1.60

0.09

1.89
pressure head

(a) Elementwise pressure head and
velocity field denoted by triangles.
(Steady flow.)

0.20

0.40

0.60

0.80

0.01

concentration
1.00

(b) Propagation of U235 from the inflow part
of the boundary.
(At the time 9 · 105 s.)

Figure 1.2: Results of the tutorial problem.

20

Chapter 2

Mathematical Models
of Physical Reality

In this chapter we describe mathematical models used in Flow123d. Then in chapter 4
we briefly describe structure of individual input files, in particular the main YAML file.
The complete description of the YAML format is given in chapter 6.
Flow123d provides models for Darcy flow in porous media as well as for the transport
and reactions of solutes. In this section, we describe mathematical formulations of these
models together with physical meaning and units of all involved quantities. In the first
section we present basic notation and assumptions about computational domains and
meshes that combine different dimensions. In the next section we derive approximation
of thin fractures by lower dimensional interfaces for a general transport process. Latter
sections describe details for models of particular physical processes.

2.1 Meshes of Mixed Dimension

Unique feature common to all models in Flow123d is the support of domains with
mixed dimension. Let Ω3 ⊂ R3 be an open set representing continuous approximation
of porous and fractured medium. Similarly, we consider a set of 2D manifolds Ω2 ⊂ Ω3,
representing the 2D fractures and a set of 1D manifolds Ω1 ⊂ Ω2 representing the 1D
channels or preferential paths (see Fig 2.1). We assume that Ω2 and Ω1 are polytopic
(i.e. polygonal and piecewise linear, respectively). For every dimension d = 1, 2, 3, we
introduce a triangulation Td of the open set Ωd that consists of finite elements T id, i =
1, . . . , Nd

E. The elements are simplices, i.e. lines, triangles and tetrahedra, respectively.
Present numerical methods used by the software require meshes satisfying the compat-
ibility conditions

T id−1 ∩ Td ⊂ Fd, where Fd =
⋃
k

∂T kd (2.1)

and
T id−1 ∩ Fd is either T id−1 or ∅ (2.2)

for every i ∈ {1, . . . , Nd−1
E }, j ∈ {1, . . . , Nd

E}, and d = 2, 3. That is, the (d − 1)-
dimensional elements are either between d-dimensional elements and match their sides
or they poke out of Ωd. Support for a coupling between non-compatible meshes of

21

Figure 2.1: Scheme of a problem with domains of multiple dimensions.

different dimensions is under development and partially supported by the Darcy Flow
model.

2.2 Advection-Diffusion Processes on Fractures

This section presents derivation of an abstract advection-diffusion process on 2D and
1D manifolds and its coupling with the higher dimensional domains. The reader not
interested in the details of this approximation may skip directly to the later sections
describing mathematical models of individual physical processes.
As was already mentioned, the unique feature of Flow123d is support of models liv-
ing on 2D and 1D manifolds. The aim is to capture features significantly influencing
the solution despite of their small cross-section. Such a tiny features are challenging
for numerical simulations since a direct discretization requires highly refined computa-
tional mesh. One possible solution is to model these features (fractures, channels) as
lower dimensional objects (2D and 1D manifolds) and introduce their coupling with the
surrounding continuum. The equations modeling a physical process on a manifold as
well as its coupling to the model in the surrounding continuum has to be derived from
the model on the 3D continuum. This section presents such a procedure for the case
of the abstract advection-diffusion process inspired by the paper [8]. Later, we apply
this abstract approach to particular advection-diffusion processes: Darcy flow, solute
transport, and heat transfer.
Let us consider a fracture as a strip domain

Ωf ⊂ [0, δ]×Rd−1

for d = 2 or d = 3 and surrounding continuum domains

Ω1 ⊂ (−∞, 0)×Rd−1,Ω2 ⊂ (δ,∞)×Rd−1.

Further, we denote by γi, i = 1, 2 the fracture faces common with domains Ω1 and Ω2
respectively. By x, y we denote normal and tangential coordinate of a point in Ωf . We
consider the normal vector n = n1 = −n2 = (1, 0, 0)>. An advection-diffusion process

22

is given by equations:

∂twi + divji = fi on Ωi, i = 1, 2, f, (2.3)
ji = −Ai∇ui + biwi on Ωi, i = 1, 2, f, (2.4)
ui = uf on γi, i = 1, 2, (2.5)

ji · n = jf · n on γi, i = 1, 2, (2.6)

where wi = wi(ui) is the conservative quantity and ui is the principal unknown, ji is
the flux of wi, fi is the source term, Ai is the diffusivity tensor and bi is the velocity
field. We assume that the tensor Af is symmetric positive definite with one eigenvector
in the direction n. Consequently the tensor has the form:

Af =
(
an 0
0 At

)

Furthermore, we assume that Af (x,y) = Af (y) is constant in the normal direction.
Our next aim is to integrate equations on the fracture Ωf in the normal direction and
obtain their approximations on the surface γ = Ωf ∩ {x = δ/2} running through the
middle of the fracture. For the sake of clarity, we will not write subscript f for quantities
on the fracture. To make the following procedure mathematically correct we have to
assume that functions ∂xw, ∂x∇yu, ∂xby are continuous and bounded on Ωf . Here and
later on bx = (b · n) n is the normal part of the velocity field and by = b − bx is the
tangential part. The same notation will be used for normal and tangential part of the
field q.
We integrate (2.3) over the fracture opening [0, δ] and use approximations to get

∂t(δW)− j2 · n2 − j1 · n1 + divJ = δF, (2.7)

where for the first term, we have used mean value theorem, first order Taylor expansion,
and boundedness of ∂xw to obtain approximation:∫ δ

0
w(x,y) dx = δw(ξy,y) = δW (y) +O(δ2|∂xw|),

where
W (y) = w(δ/2,y) = w(u(δ/2,y)) = w(U(y)).

Next two terms in (2.7) come from the exact integration of the divergence of the normal
flux jx. Integration of the divergence of the tangential flux jy gives the fourth term,
where we introduced

J(y) =
∫ δ

0
jy(x,y) dx.

In fact, this flux on γ is scalar for the case d = 2. Finally, we integrate the right-hand
side to get ∫ δ

0
f(x,y) dx = δF (y) +O(δ2|∂xf |), F (y) = f(δ/2,y).

Due to the particular form of the tensor Af , we can separately integrate tangential
and normal part of the flux given by (2.4). Integrating the tangential part and using
approximations∫ δ

0
∇yu(x,y) dx = δ∇yu(ξy,y) = δ∇yU(y) +O

(
δ2|∂x∇yu|

)
23

and ∫ δ

0

(
byw

)
(x,y) dx = δB(y)W (y) +O

(
δ2|∂x(byw)|

)
where

B(y) = by(δ/2,y),
we obtain

J = −Atδ∇yU + δBW +O
(
δ2(|∂x∇yu|+ |∂x(byw)|)

)
. (2.8)

So far, we have derived equations for the state quantities U and J on the fracture
manifold γ. In order to get a well-posed problem, we have to prescribe two conditions
for boundaries γi, i = 1, 2. To this end, we perform integration of the normal flux jx,
given by (2.4), separately for the left and right half of the fracture. Similarly as before
we use approximations ∫ δ/2

0
jx dx = (j1 · n1)δ2 +O(δ2|∂xjx|)

and ∫ δ/2

0
bxw dx = (b1 · n1)w̃1

δ

2 +O(δ2|∂xbx||w|+ δ2|bx||∂xw|)

and their counter parts on the interval (δ/2, δ) to get

j1 · n1 = −2an
δ

(U − u1) + b1 · n1w̃1 (2.9)

j2 · n2 = −2an
δ

(U − u2) + b2 · n2w̃2 (2.10)

where w̃i can be any convex combination of wi and W . Equations (2.9) and (2.10) have
meaning of a semi-discretized flux from domains Ωi into fracture. In order to get a stable
numerical scheme, we introduce a kind of upwind already on this level using a different
convex combination for each flow direction:

ji · ni =− σi(U − ui)

+
[
bi · ni

]+(
ξwi + (1− ξ)W

)
+
[
bi · ni

]−(
(1− ξ)wi + ξW

)
, i = 1, 2 (2.11)

where σi = 2an
δ

is the transition coefficient and the parameter ξ ∈ [1
2 , 1] can be used to

interpolate between upwind (ξ = 1) and central difference (ξ = 1
2) scheme. Equations

(2.7), (2.8), and (2.11) describe the general form of the advection-diffusion process on
the fracture and its communication with the surrounding continuum which we shall later
apply to individual processes.

2.3 Darcy Flow Model

We consider the simplest model for the velocity of the steady or unsteady flow in porous
and fractured medium given by the Darcy flow:

w = −K∇H in Ωd, for d = 1, 2, 3. (2.12)

24

Here and later on, we drop the dimension index d of the quantities if it can be deduced
from the context. In (2.12), w [ms−1] is the superficial velocity, Kd is the conductivity
tensor, and H [m] is the piezometric head. The velocity wd is related to the flux qd
[m4−ds−1] through

qd = δdwd,

where δd [m3−d] is the cross section coefficient, in particular δ3 = 1, δ2 [m] is the thickness
of a fracture, and δ1 [m2] is the cross-section of a channel. The flux qd ·n is the volume
of the liquid (water) that passes through a unit square (d = 3), unit line (d = 2), or
through a point (d = 1) per one second. The conductivity tensor is given by the product
Kd = kdAd, where kd > 0 [ms−1] is the hydraulic conductivity and Ad is the 3 × 3
dimensionless anisotropy tensor which has to be symmetric and positive definite. The
piezometric-head Hd is related to the pressure head hd through

Hd = hd + z (2.13)

assuming that the gravity force acts in the negative direction of the z-axis. Combining
these relations, we get the Darcy law in the form:

q = −δkA∇(h+ z) in Ωd, for d = 1, 2, 3. (2.14)

Next, we employ the continuity equation for saturated porous medium and the dimen-
sional reduction from the preceding section (with w = u := H, j := w, A := K and
b := 0), which yields:

∂t(δS h) + divq = F + FM in Ωd, for d = 1, 2, 3, (2.15)

where Sd [m−1] is the storativity and Fd [m3−ds−1] is the source term. The extra source
term FM [m3−ds−1] due to mechanics is described in (2.52). In our setting the principal
unknowns of the system (2.14, 2.15) are the pressure head hd and the flux qd.
The storativity (or the volumetric specific storage) Sd > 0 can be expressed as

Sd = γw(βr + ϑβw), (2.16)

where γw [kgm−2s−2] is the specific weight of water, ϑ [−] is the porosity, βr is compress-
ibility of the bulk material of the pores (rock) and βw is compressibility of the water,
both with units [kg−1ms−2]. For steady problems, we set Sd = 0 for all dimensions
d = 1, 2, 3. The source term Fd on the right hand side of (2.15) consists of the volume
density of the water source fd[s−1] and flux from the from the higher dimension. Precise
form of Fd slightly differs for every dimension and will be discussed presently.
In Ω3 we simply have F3 = f3 [s−1].

2.3.1 Coupling on mixed meshes

In the set Ω2∩Ω3 the fracture is surrounded by at most one 3D surface from every side.
On ∂Ω3 ∩ Ω2 we prescribe a boundary condition of the Robin type:

q3 · n+ = q+
32 = σ3(h+

3 − h2),
q3 · n− = q−32 = σ3(h−3 − h2),

25

http://en.wikipedia.org/wiki/Superficial_velocity

where q3 · n+/− [ms−1] is the outflow from Ω3, h+/−
3 is a trace of the pressure head in

Ω3, h2 is the pressure head in Ω2, and σ3 [s−1] is the transition coefficient given by (see
section 2.2 and [8])

σ3 = σ32
2K2 : n2 ⊗ n2

δ2
.

Here n2 is the unit normal to the fracture (sign does not matter). On the other hand,
the sum of the interchange fluxes q+/−

32 forms a volume source in Ω2. Therefore F2 [ms−1]
on the right hand side of (2.15) is given by

F2 = δ2f2 + (q+
32 + q−32). (2.17)

The communication between Ω2 and Ω1 is similar. However, in the 3D ambient space,
a 1D channel can join multiple 2D fractures 1, . . . , n. Therefore, we have n independent
outflows from Ω2:

q2 · ni = qi21 = σ2(hi2 − h1),
where σ2 [ms−1] is the transition coefficient integrated over the width of the fracture i:

σ2 = σ21
2δ2

2K1 : ni
1 ⊗ ni

1
δ1

.

Here ni
1 is the unit normal to the channel that is tangential to the fracture i. Sum of

the fluxes forms a part of F1 [m2s−1]:

F1 = δ1f1 +
n∑
i=1

qi21. (2.18)

We remark that the direct communication between 3D and 1D (e.g. model of a well) is
not supported yet. The transition coefficients σ32 [−] and σ21 [−] are independent scaling
parameters which represent the ratio of the crosswind and the tangential conductivity
in the fracture. For example, in the case of impermeable film on the fracture walls one
may choice σ32 < 1.

2.3.2 Boundary conditions

In order to obtain unique solution we have to prescribe boundary conditions. Currently
we consider a disjoint decomposition of the boundary

∂Ωd = ΓDd ∪ ΓTFd ∪ ΓSpd ∪ ΓRid

where we support the following types of boundary conditions:
Dirichlet boundary condition

hd = hDd on ΓDd ,
where hDd [m] is the boundary pressure head . Alternatively one can prescribe the
boundary piezometric head HD

d [m] related to the pressure head through (2.13).
Total flux boundary condition (combination of Neumann and Robin type)

−qd · n = δd
(
qNd + σRd (hRd − hd)

)
on ΓTFd ,

26

where qNd [ms−1] is the surface density of the water inflow, hRd [m] is the boundary
pressure head and σRd [s−1] is the transition coefficient. As before one can also prescribe
the boundary piezo head HR

d to specify hRd .
Seepage face condition is used to model a surface with possible springs:

hd ≤ hSd and − qd · n ≤ δdq
N
d (2.19)

while the equality holds in at least one inequality. The switch pressure head hSd [m] can
alternatively be given by switch piezometric head.
The first inequality in (2.19) with the default value hSd = 0 disallows non-zero water
height on the surface, the later inequality with default value qNd = 0 allows only outflow
from the domain (i.e. spring). In practice one may want to allow given water height hSd
or given infiltration (e.g. precipitation-evaporation) qNd .
River boundary condition models free water surface with bedrock of given conductivity.
We prescribe:

−qd · n = δd
(
σRd (Hd −HD

d) + qNd
)
, for Hd ≥ HS

d , (2.20)

−qd · n = δd
(
σRd (HS

d −HD
d) + qNd

)
, for Hd < HS

d , (2.21)

where Hd is piezometric head. The parameters of the condition are given by similar
fields of other boundary conditions: the transition coefficient of the bedrock σRd [s−1],
the piezometric head of the water surface given as boundary piezometric head HD

d [m],
the head of the bottom of the river given as the switch piezometric head HS

d [m]. The
boundary flux qNd is zero by default, but can be used to express approximation of the
seepage face condition (see discussion below). The piezometric heads HS

d and HR
d may

be alternatively given by pressure heads hSd and hRd , respectively.
The physical interpretation of the condition is as follows. For the water level Hd above
the bottom of the river HS

d the infiltration is given as Robin boundary condition with
respect to the surface of the river HD

d . For the water level below the bottom the
infiltration is given by the water column of the river and transition coefficient of the
bedrock.
The river could be used to approximate the seepage face condition in the similar way
as the Robin boundary condition with large σ can approximate Dirichlet boundary
condition. We rewrite the condition as follows

−qd · n = δd
(
σRd (hd − hDd) + qNd

)
, for − qd · n ≥ δd

(
σRd (hSd − hDd) + qNd

)
, (2.22)

−qd · n = δd
(
σRd (hSd − hDd) + qNd

)
, for hd < hSd . (2.23)

Now if we take hSd = hDd , we obtain

−qd · n = δd
(
σRd (hd − hSd) + qNd

)
, for − qd · n ≥ δdq

N
d , (2.24)

−qd · n = δdq
N
d , for hd < hSd , (2.25)

where the first equation approximates hd = hSd if σRd is sufficiently large.

2.3.3 Steady and unsteady Darcian flow

By default, the storativity is zero which means that the flow is calculated steady. If,
in addition, some input fields are time-dependent, a sequence of steady problems is

27

calculated for times in which the data change. When storativity is nonzero, the problem
becomes unsteady and one has to specify the initial condition and the computational
time interval.

2.3.4 Initial condition

For unsteady problems one has to specify an initial condition in terms of the initial
pressure head h0

d [m] or the initial piezometric head H0
d [m].

2.3.5 Water balance

The equation (2.15) satisfies the volume balance of the liquid in the following form:

V (0) +
∫ t

0
s(τ) dτ +

∫ t

0
f(τ) dτ = V (t)

for any instant t in the computational time interval. Here

V (t) :=
3∑
d=1

∫
Ωd

(δSh)(t,x) dx,

s(t) :=
3∑
d=1

∫
Ωd
F (t,x) dx,

f(t) := −
3∑
d=1

∫
∂Ωd

q(t,x) · n(x) dx

is the volume [m3], the volume source [m3s−1] and the volume flux [m3s−1] of the liquid
at time t, respectively. The volume, flux and source on every geometrical region is
calculated at each output time and the values together with the control sums are written
to the file water balance.{dat|txt}. If, in addition, cumulative is set to true then the
time-integrated flux and source is written. The format of balance output is described
in Section 4.4.1.

2.3.6 Richards Equation

This section contains a preliminary documentation to the unsaturated water flow model.
We use the Richards equation in the form:

∂tδθt + divq = F ∈ Ωd, for d = 1, 2, 3 (2.26)
where the total water content θt(h) [−] is a function of the principal unknown h and the
water flux q is given by (2.14) in which the conductivity kd is function of the pressure
head h as well. Currently the total water content is given as:

θt(h) = θ(h) + Sh (2.27)

where S is the storativity and θ(h) is the water content. The functions θ(h) and k(h)
are given by the chosen soil model. Two soil models are currently supported.

28

van Genuchten

Classical van Genuchten model use:
θ(h) = (θs − θr)θe + θr, θe = (1 + (αh)n)m

for the negative pressure head h < 0 and θ = θs for h ≥ 0.
The model parameters are: θs [−] the saturated water content, θr [−] the residual water
content, α [m−1] the pressure scaling parameter, n [−] the exponent parameter. The
exponent m is taken as 1/n− 1 and θe [−] is called the effective water content.
The conductivity function k(h) is then derived from the capillary model due to Mualem
with result:

k(h) = θ0.5
e

[
1− F (θ)
1− F (θs)

]2

, F (θ) =
[
1− θ1/m

e

]m
In fact we use slight modification due to Vogel and Ćıslerová where the saturation
happens at some pressure head slightly smaller then zero. Then the water content curve
is given by

θ(h) = (θm − θr)θe + θr,

for h < hs and θ = θs for h ≥ hs. Currently the fraction θm/θs is fixed to 0.001.

Irmay

The model used for bentonite is due to Irmay and use simple power relation for the
conductivity:

k(h) = θ3
e .

2.3.7 Coupling of dimensions for non-conforming meshes

Version 3.0.0 introduce an experimental support for the non-conforming meshes of mixed
dimension. In particular 1D-2D coupling is supported in the 2D ambient space and
2D-3D and 2D-2D coupling is supported for the 3D ambient space. Non-conforming
coupling is supported only by the Darcy flow model and lower dimensional elements
can not represent barriers, i.e. we consider that the pressure and the velocity fields
are continuous across the lower dimensional fractures. Search for the non-conforming
intersections and assembly of the associated terms in the weak formulation is turned on
by the key mortar method. One of two methods can be selected: P0 method is faster
but can be a bit unstable for coarse meshes, P1 method should be more robust.

2.4 Transport of Substances

The motion of substances dissolved in water is governed by the advection, and the
hydrodynamic dispersion. In Ωd, d ∈ {1, 2, 3}, we consider the following system of mass
balance equations1:

∂t(δϑci) + div(qci)− div(ϑδDi∇ci) = F i
S + F c

C + FR(c1, . . . , cs). (2.28)
1For d ∈ {1, 2} this form can be derived as in Section 2.2 using w := δϑci, u := ci, A := δϑDi,

b := v = q
ϑδ .

29

The principal unknown is the concentration ci [kgm−3] of a substance i ∈ {1, . . . , s},
which means the weight of the substance in the unit volume of water. Other quantities
are:

• The porosity ϑ [−], i.e. the fraction of space occupied by water and the total
volume.

• The hydrodynamic dispersivity tensor Di [m2s−1] has the form

Di = τDi
m + |v|

(
αiT I + (αiL − αiT)v ⊗ v

|v|2

)
, (2.29)

which represents (generally anisotropic) molecular diffusion, and mechanical dis-
persion in longitudinal and transverse direction to the flow. Here Di

m [m2s−1] is
the 2nd-order molecular diffusion coefficient of the i-th substance (usual magni-
tude in clear water is 10−9), τ = ϑ1/3 is the tortuosity (by [9]), αiL [m] and αiT
[m] is the longitudinal dispersivity and the transverse dispersivity, respectively.
The diffusion and dispersion coefficients are related to the liquid phase. Note that
although we allow dispersivity to have different values for different substances, it
is often assumed that they are intrinsic parameters of the porous medium. Finally,
v [ms−1] is the microscopic water velocity, also called seepage velocity, related to
the Darcy flux q by the relation q = ϑδv. The value of Di

m for specific substances
can be found in literature (see e.g. [2]). For instructions on how to determine αiL,
αiT we refer to [3, 4].

• F i
S [kgm−ds−1] represents the density of concentration sources in the porous medium.

Its form is:
F i
S = δf iS + δ(ciS − ci)σiS. (2.30)

Here f iS [kgm−3s−1] is the density of concentration sources, ciS [kgm−3] is an
equilibrium concentration and σiS [s−1] is the concentration flux. One has to pay
attention when prescribing the source, namely to determine whether it is related
to the liquid or the porous medium. We mention several examples:

– extraction of solution: f iS = 0, ciS = 0, σiS > 0 is the intensity of extraction,
i.e. volume of liquid extracted from a unit volume of porous medium per
second;

– injection of solution: f iS = 0, ciS is the concentration of the substance in the
injected liquid, σiS > 0 is the intensity of injection (volume of liquid injected
into a unit volume of porous medium per second);

– production or degradation of substances due to bacteria present in liquid:
f iS = ϑpi, where pi is the production/degradation rate in a unit volume of
liquid;

– age of liquid: if f iS = ϑ then ci is the age of liquid, i.e. the time spent in the
domain.

• F c
C [kgm−ds−1] is the density of concentration sources due to exchange between

regions with different dimensions, see (2.32) below.

• The reaction term FR(. . .) [kgm−ds−1] is thoroughly described in the next section
2.5, see also paragraph ”Two transport models” below.

30

Initial and boundary conditions. At time t = 0 the concentration is determined
by the initial condition

ci(0,x) = ci0(x).
The physical boundary ∂Ωd is decomposed into the parts ΓI∪ΓD∪ΓTF∪ΓDF , which may
change during simulation time. The first part ΓI is further divided into two segments:

Γ+
I (t) = {x ∈ ∂Ωd | q(t,x) · n(x) < 0},

Γ−I (t) = {x ∈ ∂Ωd | q(t,x) · n(x) ≥ 0},

where n stands for the unit outward normal vector to ∂Ωd. We prescribe the following
boundary conditions:

• inflow Default transport boundary condition. On the inflow Γ+
I the reference

concentration ciD [kgm−3] is enforced through total flux:

(qci − ϑδDi∇ci) · n = q · nciD on Γ+
I ,

while on the outflow Γ−I we prescribe zero diffusive flux:

−ϑδDi∇ci · n = 0 on Γ−I .

• Dirichlet On ΓD, the Dirichlet condition is imposed via prescribed concentration
ciD:

ci = ciD on ΓD.

• total flux On ΓTF we impose total mass flux condition:

(−qci + ϑδDi∇ci) · n = δ(f iN + σiR(ciD − ci)),

with user-defined incoming concentration flux f iN [kgm−2s−1], transition parameter
σiR [ms−1], and reference concentration ciD [kgm−3].

• diffusive flux Finally on ΓDF we prescribe diffusive mass flux (analogously to the
previous case):

ϑδDi∇ci · n = δ(f iN + σiR(ciD − ci)).

We mention several typical uses of boundary conditions:

• natural inflow: Use Dirichlet or inflow b.c. (the later type is useful when the
location of liquid inflow is not known a priori) and specify ciD.

• natural outflow: The substance leaves the domain only due to advection by the liq-
uid. Use zero diffusive flux or inflow (the latter in case that the outflow boundary
is not known a priori).

• boundary with known mass flux: Use total flux and f iN .

• impermeable boundary: Use zero total flux.

• partially permeable boundary: When the exterior of the domain represents a reser-
voir with known concentration and the Darcy flux is reasonably small, the mass
exchange is proportional to the concentration difference inside and outside the
domain. Use diffusive flux, ciD and σiR.

31

Communication between dimensions. Transport of substances is considered also
on interfaces of physical domains with adjacent dimensions (i.e. 3D-2D and 2D-1D, but
not 3D-1D). Denoting cd+1, cd the concentration of a given substance in Ωd+1 and Ωd,
respectively, the communication on the interface between Ωd+1 and Ωd is described by
the quantity

qcd+1,d = σcd+1,d
δ2
d+1
δd

2ϑdDd : n⊗ n(cd+1 − cd) + qld+1,d

cd+1 if qld+1,d ≥ 0,
cd if qld+1,d < 0,

(2.31)

where

• qcd+1,d [kgm−ds−1] is the density of concentration flux from Ωd+1 to Ωd,

• σcd+1,d [−] is a transition parameter. Its value determines the mass exchange be-
tween dimensions whenever the concentrations differ. In general, it is recom-
mended to leave the default value σc = 1 or to set σc = 0 (when exchange is due
to water flux only).

• qld+1,d [m3−ds−1] is the water flux from Ωd+1 to Ωd, i.e. qld+1,d = qd+1 · nd+1.

The communication between dimensions is incorporated as the total flux boundary con-
dition for the problem on Ωd+1:

− ϑδD∇c · n + qlc = qc (2.32)

and a source term in Ωd:

F c
C3 = 0, F c

C2 = qc32, F c
C1 = qc21. (2.33)

Two transport models. Within the above presented model, Flow123d presents two
possible approaches to solute transport.

• For modeling pure advection (D = 0) one can choose TransportOperatorSplitting
method, which represents an explicit in time finite volume solver. Only the in-
flow/outflow boundary condition is available and the source term has the form

F i
S = δf iS + δ(ciS − ci)+σiS.

The solution process for one time step is faster, but the maximal time step is re-
stricted. The resulting concentration is piecewise constant on mesh elements. This
solver supports reaction term (involving simple chemical reactions, dual porosity
and sorptions).

• The full model including dispersion is solved by SoluteTransport DG, an implicit
in time discontinuous Galerkin solver. It has no restriction of the computational
time step and the space approximation is piecewise polynomial, currently up to
order 3. Reaction term is implemented only for the case of linear sorption, i.e.

F i
R = −∂t

(
(1− ϑ)δ%scis

)
, cis = kilc,

where cis [−] is the relative concentration of sorbed substance, kil [kg−1m3] is the
sorption coefficient, %s and %l [kgm−3] is the density of the solid (rock) and of the
liquid (solvent), respectively. The initial concentration in solid is assumed to be
in equilibrium with the concentration in liquid.

32

Mass balance. The advection-dispersion equation satisfies the balance of mass in the
following form:

mi(0) +
∫ t

0
si(τ) dτ +

∫ t

0
f i(τ) dτ = mi(t)

for any instant t in the computational time interval and any substance i. Here

mi(t) :=
3∑
d=1

∫
Ωd

(δϑci)(t,x) dx,

si(t) :=
3∑
d=1

∫
Ωd
F i
S(t,x) dx,

f i(t) :=
3∑
d=1

∫
∂Ωd

(
−qci + ϑδDi∇ci

)
(t,x) · n dx

is the mass [kg], the volume source [kgs−1] and the mass flux [kgs−1] of i-th substance at
time t, respectively. The mass, flux and source on every geometrical region is calculated
at each output time and the values are written to the file mass balance.{dat|txt}.
If, in addition, cumulative is set to true then the time-integrated flux and source is
written. In that case the cumulative source contains also contribution due to reactions.
The format of balance output is described in Section 4.4.1.

2.5 Reaction Term in Transport

The TransportOperatorSplitting method supports the reaction term FR(c1, . . . , cs)
on the right hand side of the equation (2.28). It can represent several models of chemical
or physical nature. Figure 2.2 shows all possible reactional models that we support
in combination with the transport process. The Operator Splitting method enables
us to deal with the convection part and reaction term side by side. The convected
quantities do not influence each other in the convectional process and are balanced over
the elements. On the other hand the reaction term relates the convected quantities and
can be computed separately on each element.
We move now to the description of the reaction models which can be seen again in
Figure 2.2. The convected quantity is considered to be the concentration of substances.
Up to now we can have dual porosity, sorption (these two are more of a physical nature)
and (chemical) reaction models in the reaction term.
The reaction model acts only on the specified substances and computes exchange of
concentration among them. It does not have its own output because it only changes the
concentration of substances in the specified zone where the reaction takes place.
The sorption model describes the exchange of concentration of the substances between
liquid and solid. It can be followed by another reaction that can run in both phases.
The concentration in solid is an additional output of this model. See Subsection 2.5.2.
The dual porosity model, described in Subsection 2.5.1, introduces the so called immo-
bile (or dead-end) pores in the matrix. The convection process operates only on the
concentration of the substances in the mobile zone (open pores) and the exchange of
concentrations from/to immobile zone is governed by molecular diffusion. This pro-
cess can be followed by sorption model and/or chemical reaction, both in mobile and
immobile zone. The immobile concentration is an additional output.

33

Operator Splitting

Transport process
- independent substances

Dual Porosity

Reaction term
- independent elements (dofs)

Sorption

Dual Porosity

Mobile

Sorption

Immobile Liquid Solid
...

Decay

Sorption Reaction

Reaction

Sorption

Reaction

Reaction

Reaction Reaction

Figure 2.2: The scheme of the reaction term objects. The lines represents connections
between different models. The tables under model name include the possible models
which can be connected to the model above.

34

2.5.1 Dual Porosity

Up to now, we have described the transport equation for the single porosity model. The
dual porosity model splits the mass into two zones – the mobile zone and the immobile
zone. Both occupy the same macroscopic volume, however on the microscopic scale, the
immobile zone is formed by the dead-end pores, where the liquid is trapped and cannot
pass through. The rest of the pore volume is occupied by the mobile zone. Since the
liquid in the immobile pores is immobile, the exchange of the substance is only due to
molecular diffusion. We consider simple non-equilibrium linear model:

ϑm∂tcm = Ddp(ci − cm), (2.34a)
ϑi∂tci = Ddp(cm − ci), (2.34b)

where cm is the concentration in the mobile zone, ci is the concentration in the immobile
zone and Ddp is a diffusion rate between the zones. ϑi denotes porosity of the immobile
zone and ϑm = ϑ the mobile porosity from transport equation (2.28). One can also set
non-zero initial concentration in the immobile zone ci(0).
To solve the system of first order differential equation, we use analytic solution or Euler’s
method, which are switched according to a given error tolerance. See subsection 3.5.1
in numerical methods.

2.5.2 Equilibrial Sorption

The simulation of an equilibrium sorption is based on the solution of two algebraic
equations, namely the mass balance (in unit volume)

ϑ%lcl + (1− ϑ)%scs = cT = const. (2.35)

and an empirical sorption law
cs = f(cl), (2.36)

given in terms of the so-called isotherm function f . In these equations we use following
notation. The concentration in the solid phase, cs = msorbed

ms
[−] is the adsorbed mass

of the substance per the unit mass of the solid adsorbent in a reference volume. The
concentration in the solid can be selected for output. The concentration in the liquid
phase, cl = m

ml
[−] is the mass of dissolved substance per the unit mass of the liquid.

The relation between cl and the concentration c from the transport equation (2.28) is
c = cl%l. Finally, θ is the porosity, %s is the solid density i.e. density of a compact rock
with zero porosity, and %l is the liquid density, i.e. density of the solvent.
The form of the isotherm f is determined by the parameter sorption type:

35

sorption type f(cl)

“none” 0 The sorption model returns zero concentra-
tion in solid.

“linear” kl%lcl

“freundlich” kF%lc
α
l

“langmuir” kL%l
αcl

1+αcl
Langmuir isotherm has been derived from
thermodynamic laws. The number kL%l de-
notes the maximal amount of sorbing specie
which can be kept in an unit volume of a bulk
matrix. Coefficient α is a fraction of sorption
and desorption rate constant α = ka

kd
.

Main parameter of these isotherms is the distribution coefficient ki, i ∈ {l, F, L} [kg−1m3].
Nonlinear isotherms have an additional parameter α [−]. Note that older versions of
Flow123d prior to 2.0.0 used a different coefficient ki denoted isotherm mult with the
unit [mol kg−1]. The conversion rule between the old and new distribution coefficient is

knewi = Ms

%l
koldi ,

where Ms stands for the molar mass of a substance.
Concept of the general distribution coefficient is thoroughly discussed e.g. in [10]. Key
assumptions about k are:

• Density ρl in isotherm expressions is technically the density of the solvent used
during measurement of k, which could be different then the density of the solvent
used in calculation. E.g. slight changes in the density of water according to
variations in chemical composition and isotopes. But usually the difference is
negligible.

• Concentrations in both liquid and solid phase are very small. In particular the
number of unoccupied adsorption sites dominates the number of occupied sites.

• All adsorption sites are equivalent.

• Sorption is understood in general manner including all linear processes that are
able to store the substance.

• System is considered in thermodynamic equilibrium.

• Single distribution coefficient K is specific for combination adsorbent, solvent,
substance.

Non-zero initial concentration in the solid phase cs(0) can be set in the input record.
Now, further denoting

µl = %lϑ, µs = %s · (1− ϑ),

36

and using (2.36), the mass balance (2.35) reduces to the equation

cT = µlcl + µsf(cl), (2.37)

which can be either solved iteratively or using interpolation. See subsection 3.5.2 in
numerical methods for details.
The units of cl, cs and ki can vary in literature. For an example of conversion rules in
the case of Freundlich isotherm we refer to Bowman [1].

2.5.3 Sorption in Dual Porosity Model

There are two parameters µl and µs, scale of aqueous concentration and scale of sorbed
concentration, respectively. There is a difference in computation of these in the dual
porosity model because both work on different concentrations and different zones.
Let cml and cms be concentration in liquid and in solid in the mobile zone, cil and cis be
concentration in liquid and in solid in the immobile zone, ϑm and ϑi be the mobile and
the immobile porosity, and ϕ be the sorbing surface.
The sorbing surface in the mobile zone is given by

ϕ = ϑm
ϑm + ϑi

, (2.38)

while in the immobile zone it becomes

1− ϕ = 1− ϑm
ϑm + ϑi

= ϑi
ϑm + ϑi

.

Remind the mass balance equation (2.37). In the dual porosity model, the scaling
parameters µl, µs are slightly different. In particular, the mass balance in the mobile
zone reads:

cT = µl · cml + µs · cms,
µl = %l · ϑm,
µs = %s · (1− ϑm − ϑi)ϕ,

(2.39)

while in the immobile zone it has the form:

cT = µl · cil + µs · cis,
µl = %l · ϑi,
µs = %s · (1− ϑm − ϑi)(1− ϕ).

(2.40)

2.5.4 Radioactive Decay

The radioactive decay is one of the processes that can be modeled in the reaction term
of the transport model. This process is coupled with the transport using the operator
splitting method. It can run throughout all the phases, including the mobile and im-
mobile phase of the liquid and also the sorbed solid phase, as it can be seen in figure
2.2.

37

The radioactive decay of a parent radionuclide A to a nuclide B

A
k−→ B, A

t1/2−−→ B

is mathematically formulated as a system of first order differential equations

dcA
dτ = −kcA, (2.41)
dcB
dτ = kcA, (2.42)

where k is the radioactive decay rate. Usually, the half life of the parent radionuclide
t1/2 is known rather than the rate. Relation of these can be derived:

dcA
dτ = −kcA
dcA
cA

= −k dτ

c0
A/2∫
c0
A

dcA
cA

= −k
t1/2∫
0

1 dτ

[
ln cA

]c0
A/2

c0
A

= −
[
kτ
]t1/2

0

k = ln 2
t1/2

.

Let us now suppose a more complex situation. Consider substances (radionuclides)
A1, . . . , As which take part in a complex radioactive chain, including branches, e.g.

A1
k1−→ A2

k2−→ A3
k34−−→ A4

k4−→ A8

A3
k35−−→ A5

k5−→ A4

A3
k36−−→ A6

k6−→ A7
k7−→ A8

Now the problem turned into a system of differential equations ∂tc = Dc with the
following matrix, generally full and nonsymmetric:

D =


M1

M2
. . .

Ms



−k1 k21 · · · ks1
k12 −k2 · · · ks2
...
k1s k2s · · · −ks




1
M1 1

M2 . . .
1
Ms

 ,

where Mi is molar mass. We can then write

dij =
kji

Mi

Mj
, i 6= j,

−kij, i = j.
(2.43)

We denote the rate constant of the i-th radionuclide

ki =
s∑
j=1

kij =
s∑
j=1

bijki

38

which is equal to a sum of partial rate constants kij. Branching ratio bij ∈ (0, 1)
determines the distribution into different branches of the decay chain, holding ∑s

j=1 bij =
1.
Notice, that physically it is not possible to create a chain loop, so in fact one can
permutate the vector of concentrations and rearrange the matrix D into a lower triangle
matrix

D =


d11
d21 d22
...
ds1 ds2 · · · dss

 .
However, we do not do this and we do not search the reactions for chain loops.
The system of first order differential equations with constant coefficients is solved using
one of the implemented linear ODE solvers, described in section 3.5.3.

2.5.5 First Order Reaction

First order kinetic reaction is another process that can take part in the reaction term.
Similarly to the radioactive decay, it is connected to transport by operator splitting
method and can run in all the possible phases, see figure 2.2.
Currently, reactions with single reactant and multiple products (decays) are available
in the software. The mathematical description is the same as for the radioactive decay,
it only uses kinetic reaction rate coefficient k in the input instead of half life.

2.6 Heat Transfer

Under the assumption of thermal equilibrium between the solid and liquid phase, the
energy balance equation has the form2

∂t (δs̃T) + div(%lclTq)− div(δΛ∇T) = F T + F T
C .

The principal unknown is the temperature T [K]. Other quantities are:

• %l, %s [kgm−3] is the density of the fluid and solid phase, respectively.

• cl, cs [Jkg−1K−1] is the heat capacity of the fluid and solid phase, respectively.

• s̃ [Jm−3K−1] is the volumetric heat capacity of the porous medium defined as

s̃ = ϑ%lcl + (1− ϑ)%scs.

• Λ [Wm−1K−1] is the thermal dispersion tensor:

Λ = Λcond + Λdisp

Λcond =
(
ϑλcondl + (1− ϑ)λconds

)
I,

2For lower dimensions this form can be derived as in Section 2.2 using w := δs̃T , u := T , A := δλI,
b := %lcl

s̃ w.

39

Λdisp = ϑ%lcl|v|
(
αT I + (αL − αT)v ⊗ v

|v|2

)
,

where λcondl , λconds [Wm−1K−1] is the thermal conductivity of the fluid and solid
phase, respectively, and αL, αT [m] is the longitudinal and transverse dispersivity
in the fluid.

• F T [Jm−ds−1] represents the thermal source:

F T = δϑF T
l + δ(1− ϑ)F T

s ,

F T
l = fTl + %lclσ

T
l (T − Tl),

F T
s = fTs + %scsσ

T
s (T − Ts),

where fTl , fTs [Wm−3] is the density of thermal sources in fluid and solid, respec-
tively, Tl, Ts [K] is a reference temperature and σTl , σTs [s−1] is the heat exchange
rate.

Initial and boundary conditions. At time t = 0 the temperature is determined by
the initial condition T0 [K]:

T (0,x) = T0(x).
Given the decomposition of ∂Ωd into ΓI ∪ ΓD ∪ ΓTF ∪ ΓDF (see also Section 2.4), we
prescribe the following boundary conditions:

• inflow Default boundary condition. On the inflow Γ+
I the reference temperature

TD [K] is enforced through total flux:

(%lclTq − δΛ∇T) · n = %lclTDq · n,

while on the outflow Γ−I we prescribe zero diffusive flux:

−δΛ∇T · n = 0.

• Dirichlet On ΓD, the Dirichlet condition is imposed via prescribed temperature
TD:

T = TD on Γ+
I ∪ ΓD.

• total flux On ΓTF we impose total energy flux condition:

(−%lclTq + δΛ∇T) · n = δ(fTN + σTR(TD − T)).

with user-defined incoming energy flux fTN [Jm−2s−1], transition parameter σTR
[Jm−2s−1K−1] and reference temperature TD.

• diffusive flux Finally on ΓDF we prescribe diffusive energy flux (similarly as
above):

δΛ∇T · n = δ(fTN + σTR(TD − T)).

We mention several typical uses of boundary conditions:

40

• natural inflow: Use Dirichlet or inflow b.c. (the later type is useful when the
location of liquid inflow is not known a priori) and specify TD.

• natural outflow: The energy in the domain decreases only due to advection. Use
zero diffusive flux or inflow (the latter in case that the outflow boundary is not
known a priori).

• boundary with known energy flux: Use total flux and fTN .

• thermally insulated boundary: Use zero total flux.

• partially permeable boundary: The energy transfer is proportional to the temper-
ature difference inside and outside the domain. Use diffusive flux, TD and σTR.

Communication between dimensions. Denoting Td+1, Td the temperature in Ωd+1
and Ωd, respectively, the communication on the interface between Ωd+1 and Ωd is de-
scribed by the quantity

qTd+1,d = σTd+1,d
δ2
d+1
δd

2Λd : n⊗ n(Td+1 − Td) + %lclq
l
d+1,d

Td+1 if qld+1,d ≥ 0,
Td if qld+1,d < 0,

(2.44)

where

• qTd+1,d [Wm−2] is the density of heat flux from Ωd+1 to Ωd,

• σTd+1,d [−] is a transition parameter. Its value determines the exchange of energy
between dimensions due to temperature difference. In general, it is recommended
to leave the default value σT = 1 or to set σT = 0 (when exchange is due to water
flux only).

• qld+1,d = qd+1 · n is the water flux from Ωd+1 to Ωd.

The communication between dimensions is incorporated as the total flux boundary con-
dition for the problem on Ωd+1:

(%lclTq − δΛ∇T) · n = qT (2.45)

and a source term in Ωd:

F T
C3 = 0, F T

C2 = qT32, F T
C1 = qT21. (2.46)

Energy balance. The heat equation satisfies the balance of energy in the following
form:

e(0) +
∫ t

0
s(τ) dτ +

∫ t

0
f(τ) dτ = e(t)

for any instant t in the computational time interval. Here

e(t) :=
3∑
d=1

∫
Ωd

(δs̃T)(t,x) dx,

41

s(t) :=
3∑
d=1

∫
Ωd
F T
S (t,x) dx,

f(t) :=
3∑
d=1

∫
∂Ωd

(−%lclTq + δΛ∇T) (t,x) · n dx

is the energy [J], the volume source [Js−1] and the energy flux [Js−1] at time t, respec-
tively. The energy, flux and source on every geometrical region is calculated at each
output time step and the values together with the control sums are written to the file
energy balance.{dat|txt}. If, in addition, cumulative is set to true then the time-
integrated flux and source is written. The format of balance output is described in
Section 4.4.1.

2.7 Mechanics

Deformation of the porous media is modelled by the stationary linear elasticity equation:

− div(δσ(u)) = δf + fC + fH . (2.47)

Here u [m] is the displacement vector field with 3 components, the stress tensor is given
by the Hooke law

σ(u) = Cε(u) = 2µε(u) + λ(I : ε(u))I, (2.48)
and the Lamé parameters are determined in terms of the Young modulus E [Pa] and
Poisson’s ratio ν [−]:

µ = E

2(1 + ν) , λ = Eν

(1 + ν)(1− 2ν) . (2.49)

The strain tensor in Ωd is defined as follows:

ε(u) = 1
2(∇ud +∇u>d) +

0 if d = 3,
1
δ

∑n
i=1 ui

d+1 ⊗s ni
d+1 else.

(2.50)

Here a⊗s b := 1
2(a⊗ b + b⊗ a).

The symbol f stands for the body load [Nm−3].

Hydromechanical coupling. The mechanics equation (2.47) is coupled to flow by
the term

fH = −∇(δαp), p = %lgh, (2.51)
where p [Pa] is the pressure, α [−] is the Biot coefficient, %l [kgm−3] is the fluid density
and g [ms−2] is the gravitational acceleration. Conversely, the deformation affects the
flow via the additional term

FM = −∂t(δαd̃ivu) (2.52)

on the right hand side of (2.15). The expression d̃ivu is defined as follows:

d̃ivud = div ud +

δd+1
δd

∑n
i=1 ui

d+1 · ni
d+1 if d ∈ {1, 2},

0 else.
(2.53)

42

Boundary conditions. Given the decomposition ∂Ωd = ΓD∪ΓDN ∪ΓT , we prescribe
the following boundary conditions:

• displacement condition prescribes

u = uD on ΓD (2.54)

via given displacement uD [m].

• displacement n: Displacement is prescribed only in the normal component, in
tangent directions(s) zero traction is assumed:

u · n = uD · n
(σ(u)n)τ = 0

}
on ΓDN . (2.55)

Here aτ := a− (a ·n)n is the projection of a vector a to the tangent plane of the
boundary

• traction condition (default) is imposed via given traction tN [N]:

σ(u)n = tN on ΓT . (2.56)

Communication between dimensions. The mechanical interaction on the interface
between Ωd+1 and Ωd is realized via the traction condition on the boundary of Ωd+1:

δd+1(σ(ui
d+1)− αd+1pd+1I)ni

d+1 = tid+1,d, (2.57)

where

tid+1,d = σUd+1,dδd+1

(
2δd+1

δd
Cd

(
(ui

d+1 − ud)⊗ ni
d+1

)
− αdpdI

)
ni
d+1 (2.58)

and σUd+1,d [−] is the transition coefficient. The force term in Ωd due to the interaction
with Ωd+1 is

fCd =

∑n
i=1 tid+1,d if d ∈ {1, 2},

0 else.
(2.59)

43

Chapter 3

Numerical Methods

3.1 Diagonalized Mixed-Hybrid Method

Model of flow described in section 2.3 is solved by the mixed-hybrid formulation (MH)
of the finite element method. As in the previous chapter, let τ be the time step and
Td a regular simplicial partition of Ωd, d = 1, 2, 3. Denote by W d(Td) ⊂ H(div, Td)
the space of Raviart-Thomas functions of order zero (RT0) on an element Td ∈ Td. We
introduce the following spaces:

W = W 1 ×W 2 ×W 3, W d =
∏

Td∈Td
W d(Td),

Q = Q1 ×Q2 ×Q3, Qd = L2 (Ωd) . (3.1)
For every Td ∈ Td we define the auxiliary space of values on interior sides of Td:

Q̊(Td) =
{
q̊ ∈ L2(∂Td \ ∂ΩD

d) : q̊ = w · n|∂Td ,w ∈W d

}
. (3.2)

Further we introduce the space of functions defined on interior sides that do not coincide
with elements of the lower dimension:

Q̊d =
{
q̊ ∈

∏
T∈Td

Q̊(T); q̊|∂T = q̊|∂T̃ on the side F = ∂T∩∂T̃ if F∩Ωd−1 = ∅
}
. (3.3)

Finally we set Q̊ = Q̊1 × Q̊2 × Q̊3.
The mixed-hybrid method for the unsteady Darcy flow reads as follows. We are looking
for a trio (u, h, h̊) ∈W ×Q× Q̊ which satisfies the saddle-point problem:

a(u,v) + b(v, p) + b̊(v, p̊) = 〈g,v〉, ∀v ∈W , (3.4)
b(u, q) + b̊(u, q̊)− c(p, p̊, q, q̊) = 〈f, (q, q̊)〉, ∀q ∈ Q, q̊ ∈ Q̊, (3.5)

44

where

a(u,v) =
3∑
d=1

∑
T∈Td

∫
T

1
δd
K−1
d ud · vd dx, (3.6)

b(u, q) = −
3∑
d=1

∑
T∈Td

∫
T
qd div ud dx, (3.7)

b̊(u, q̊) =
3∑
d=1

∑
T∈Td

∫
∂T\∂Ωd

q̊|∂T (ud · n) ds, (3.8)

c(h, h̊, q, q̊) = cf (h, h̊, q, q̊) + ct(h, h̊, q, q̊) + cR(̊h, q̊) (3.9)

cf (h, h̊, q, q̊) =
∑
d=2,3

∑
T∈Td

∫
∂T∩Ωd−1

σd(pd−1 − p̊d)(qd−1 − q̊d) ds (3.10)

ct(h, h̊, q, q̊) =
3∑
d=1

∑
T∈Td

∫
T

δdSd
τ

hdqd dx, (3.11)

cR(̊h, q̊) =
3∑
d=1

∑
T∈Td

∫
∂T∩ΓTF

d

σRd hdq̊d ds, (3.12)

〈g,v〉 = −
3∑
d=1

∑
T∈Td

∫
∂T∩∂ΩN

pDd (v · n) ds, (3.13)

〈f, q〉 = −
3∑
d=1

∫
Ωd
δd fd qd dx, (3.14)

−
3∑
d=1

∑
T∈Td

∫
∂T∩ΓTF

d

qNd q̊d + σRd h
R
d q̊d ds (3.15)

− ct(h̃,˚̃h, q, q̊). (3.16)

All quantities are meant in time t, only h̃ is the pressure head in time t− τ .
The advantage of the mixed-hybrid method is that the set of equations (3.4)− (3.5) can
be reduced by eliminating the unknowns u and q to a sparse positive definite system
for q̊. This equation can then be efficiently solved using a preconditioned conjugate
gradient method. Unfortunately, it appears that the resulting system does not satisfy
the discrete maximum principle which in particular for short time steps τ can lead to
nonphysical oscillations. One possible solution is the diagonalization of the method
(lumped mixed-hybrid method, LMH) proposed in [12]. This method was implemented
in Flow123d as well. It consists in replacing the form ct by

ct(h, h̊, q, q̊) =
3∑
d=1

∑
T∈Td

d+1∑
i=1

αT,i|T |
δdSd
τ

(̊
h|ST,i q̊|ST,i

)
,

and the source term ∑3
d=1

∫
Ωd δd fd qd dx by

3∑
d=1

∑
T∈Td

d+1∑
i=1

αT,i|T |δdfd q̊|ST,i ,

where |T | is the size of an element T , ST,i is the i-th side of T , and h̊|ST,i is the degree of
freedom on the side ST,i. Weights αT,i can be chosen to be 1/(d+ 1). After solving the

45

Figure 3.1: Comparison of MH (left) and LMH scheme (right), τ = 10−4.

set of equations it is necessary to modify the velocity field u by adding the time term.
This modified system already satisfies the discrete maximum principle and does not
produce oscillations. Figure 3.1 shows a comparison of the results using conventional
MH scheme and LMH scheme. At the MH scheme one can observe oscillations in the
wavefront where the minimum value is significantly less than zero.

3.2 Mixed-Hybrid Method on Non-conforming Mixed
Meshes

The non-conforming coupling introduces a new term cF (h, h̊, q, q̊) to the formulation
(3.4) − (3.5) similar to the term cf responsible for the compatible coupling. We dis-
tinguish coupling of codimension d′ = 1, i.e. 2d in 3d and 1d in 2d, and coupling of
codimension d′ = 0, 2d-2d in 3d space and 1d-1d in 2d space. This way we split cF into

cF =
∑
d′=0,1

∑
d=1,2

cF,d′,d

All these terms have a common structure. For codimension 1 we have:

cF,1,d(h, h̊, q, q̊) =
∫
T d
σd
(
R(̊hd)− T (̊hd+1)

)(
R(φ̊d)− T (φ̊d+1)

)
,

where R is the reconstruction operator of the pressure he and T is the trace approxi-
mation. For the sake of consistency with codimension 0, we name Td a master element
and intersecting elements of dimension d+ 1 slave elements.
For codimension 0 we first introduce a numbering Sd of d dimensional manifolds (2d
or 1d fractures), for every intersection line Ii,j of two manifolds i, j ∈ Sd we define the
manifold with smaller number as a master while the other as a slave. The intersection
curve Ii,j of manifolds Si and Sj, i < j is decomposed into segments corresponding to
the elements of the master manifold, i.e.

Ii,j = ∪T∈SiIT,Sj

46

With such a notation at our disposal we can write the coupling term as:

cF,0,d(h, h̊, q, q̊) =
∑

Ii,j ,i<j

∑
T∈Si

∫
IT,Sj

σd
(
R(̊hi)− T (̊hj)

)(
R(φ̊i)− T (φ̊j)

)
,

where R is the trace approximation on the master element while T is the trace approx-
imation of the slave manifold, mapping the local discrete spaces of all intersecting slave
elements to the discrete space of the master element.

3.2.1 P0 method

Denoting hT the average of the pressures on the edges of a master element T , i.e. com-
ponents of h̊ and hTi , i = 1, . . . ,mT the average of the edge pressures on the intersecting
slave elements Ti. We prescribe the operators R and T restricted to T as:

R(̊h) = hT , T (̊h) = 1
δT

∑
i

δT,ihTi , deltaT =
∑
i

δT,i.

3.2.2 P1 method

First, we introduce local projection of the edge pressures to the linear broken space. Let
us denote Pi, i = 0, . . . , d the edge barycenters of an element T of dimension d. We find
a basis φi(x), i = 0, . . . , d of the space of linear functions on T that is orthogonal to the
functionals Φj(φ) = φ(Pi), j = 0, . . . , d. Denoting h̊i, i = 0, . . . , d the edge values (of
the pressure) on element T , we introduce the projection:

XT (̊h) =
∑
i

h̊iφi(x).

Resulting functions of neighboring elements are continuous in the edge barycenters.
Finally, let IK,L be an intersection of the elements K and L. Operators R and T are
defined on every such intersection independently as:

R(̊h) = XK (̊hK)|IK,L , T (̊h) = XL(̊hL)|IK,L ,
i.e. the restriction of the linear functions on individual elements to the intersection set.

3.3 Discontinuous Galerkin Method

Models for solute transport and heat transfer described in sections 2.4 and 2.6 are
collectively formulated as a system of abstract advection-diffusion equations on domains
Ωd, d = 1, 2, 3, connected by communication terms. Consider for d = 1, 2, 3 the equation

∂tud + div(bud)− div(A∇ud) = f 0 + f 1(uS − ud) + q(ud+1, ud) in (0, T)× Ωd (3.17a)
with initial and boundary conditions

ud(0, ·) = u0 in Ωd, (3.17b)
ud = uD on (0, T)× ΓDd , (3.17c)

(bud − A∇ud) · n = fN + σR(ud − uD) on (0, T)× ΓNd , (3.17d)
(bud − A∇ud) · n = q(ud, ud−1) on (0, T)× ΓCd , (3.17e)

47

where
ΓCd := Ωd ∩ Ωd−1.

The communication term q(ud+1, ud) has the form

q(ud+1, ud) =
αud+1 + βud in ΓCd+1, d = 1, 2,

0 on Ωd \ ΓCd+1, d = 1, 2, and for d = 0, 3.
(3.17f)

System (3.17) is spatially discretized by the discontinuous Galerkin method with weighted
averages, which was derived for the case of one domain in [6] (for a posteriori estimate
see [7]). For time discretization we use the implicit Euler method.
Let τ denote the time step. For a regular splitting Td of Ωd, d = 1, 2, 3, into simplices
we define the following sets of element sides:

Ed sides of all elements in Td (i.e. triangles for d = 3, lines for d = 2 and nodes for d = 1),
Ed,I interior sides (shared by 2 or more d-dimensional elements),
Ed,B outer sides (belonging to only one element),
Ed,D(t) sides, where the Dirichlet condition (3.17c) is given,
Ed,N(t) sides, where the Neumann or Robin condition (3.17d) is given,
Ed,C sides coinciding with ΓCd .

For an interior side E we denote by Nd(E) the set of elements that share E (notice that
1D and 0D sides can be shared by more than 2 elements). For an element T ∈ Nd(E) we
denote qT := (b · n)|T the outflow from T , and define N−d (E) := {T ∈ Nd(E) | qT ≤ 0},
N+
d (E) := {T ∈ Nd(E) | qT > 0} the sets of all outflow and inflow elements, respectively.

For every pair (T+, T−) ∈ N+
d (E)×N−d (E) we define the flux from T+ to T− as

qT+→T− := qT+qT−∑
T∈N−

d
(E) qT

.

We select arbitrary element TE ∈ Nd(E) and define nE as the the unit outward normal
vector to ∂TE at E. The jump in values of a function f between two adjacent elements
T1, T2 ∈ Nd(E) is defined by [f]T1,T2 = f|T1|E − f|T2|E , similarly we introduce the average
{f}T1,T2

= 1
2(f|T1|E + f|T2|E) and a weighted average {f}ωT1,T2

= ωf|T1|E + (1 − ω)f|T2|E .
The weight ω is selected in a specific way (see [6]) taking into account the possible
inhomogeneity of the tensor A.
For every time step tk = kτ we look for the discrete solution uk = (uk1, uk2, uk3) ∈ V ,
where

V =
3∏
d=1

Vd and Vd = {v : Ωd → R | v|T ∈ Pp(T) ∀T ∈ Td}

are the spaces of piecewise polynomial functions of degree at most p on elements Td,
generally discontinuous on interfaces of elements. The initial condition for u0

d is defined
as the L2-projection of u0 to Vd. For k = 1, 2, . . ., uk is given as the solution of the
problem

1
τ

(
uk − uk−1, v

)
V

+ ak(uk, v) = bk(v) ∀v ∈ V.

48

Here (f, g)V = ∑d
d=1 (f, g)Ωd , (f, g)Ωd =

∫
Ωd fg, and forms ak, bk are defined as follows:

ak((u1, u2, u3), (v1, v2, v3))

=
3∑
d=1

(
akd(ud, vd)− (q(ud+1, ud), vd)Ωd −

∑
E∈Ed

d,C
(tk)

(q(ud, ud−1), vd)E
)
, (3.18)

bk((v1, v2, v3)) =
3∑
d=1

bkd(vd),

(3.19)

akd(u, v) = (A∇u,∇v)Ωd − (bu,∇v)Ωd +
(
f 1u, v

)
Ωd

−
∑

E∈Ed
d,I

∑
T1,T2∈Nd(E)

T1 6=T2

((
{A∇u}ωT1,T2

· nE, [v]T1,T2

)
E

+ Θ
(
{A∇v}ωT1,T2

· nE, [u]T1,T2

)
E

− γE ([u]T1,T2 , [v]T1,T2)E

)
−

∑
E∈Ed

d,I

∑
T+∈N+

d
(E)

T−∈N−
d

(E)

(
qT+→T− {u}T+,T− , [v]T+,T−

)
E

+
∑

E∈Ed
d,D

(tk)

(
γE (u, v)E + (b · nu, v)E − (A∇u · n, v)E −Θ (A∇v · n, u)E

)

+
∑

E∈Ed
d,N

(tk)

(
σRu, v

)
E
,

bkd(v) =
(
f 0 + f 1uS, v

)
Ωd

+
∑

E∈Ed
d,D

(tk)

(
γE
(
uD, v

)
E
−Θ

(
uD,A∇v · n

)
E

)

+
∑

E∈Ed
d,N

(tk)

(
σRuD − fN , v

)
E
.

The Dirichlet condition is here enforced by a penalty with an arbitrary parameter γE >
0; its value influences the level of solution’s discontinuity. For γE → +∞ we obtain
asymptotically (at least formally) the finite element method. The constant Θ can take
the values −1, 0 or 1, where −1 corresponds to the nonsymmetric, 0 to the incomplete
and 1 to the symmetric variant of the discontinuous Galerkin method.

3.4 Finite Volume Method for Convective Trans-
port

In the case of the purely convective solute transport (D = 0), problem (3.17) is replaced
by:

∂tud + div(bud) = f 0 + f 1(uS − ud) + q(ud+1, ud) in (0, T)× Ωd, (3.20a)
ud(0, ·) = u0 in Ωd, (3.20b)

(b · n)ud = (b · n)uD on ΓId, (3.20c)

where
ΓId := {(t,x) ∈ (0, T)× ∂Ωd | b(t,x) · n(x) < 0}.

49

The communication term q(ud+1, ud) has the same structure as in (3.17f).
The system is discretized by the cell-centered finite volume method combined with the
explicit Euler time discretization. Using the notation of Section 3.3, we consider the
space V of piecewise constants on elements and define the discrete problem:

1
τ

(
uk − uk−1, v

)
V

+ ak−1(uk−1, v) = bk−1(v) ∀v ∈ V,

where the forms ak and bk are defined in (3.18)-(3.19) and akd, bkd now have simplified
form:

akd(u, v) =−
∑
Ti∈Td

((b · n)+u, v
)
∂Ti

+
∑
Tj∈Td

(
qTj→Tiu, v

)
∂Ti∩∂Tj

 ,
bkd(v) =

(
f 0 + f 1(uS − uk−1

d)+, v
)

Ωd
+

∑
Ti∈Td

(
(b · n)−uD, v

)
∂Ti∩∂Ωd

.

The above formulation corresponds to the upwind scheme, ideal mixing in case of mul-
tiple elements sharing one side, and explicit treatment of linear source term.

3.5 Solution Issues for Reaction Term

3.5.1 Dual Porosity

The analytic solution of the system of differential equations (2.34) at the time t with
initial conditions cm(0) and ci(0) is

cm(t) = (cm(0)− ca(0)) exp
(
−Ddp

(1
ϑm

+ 1
ϑi

)
t
)

+ ca(0), (3.21)

ci(t) = (ci(0)− ca(0)) exp
(
−Ddp

(1
ϑm

+ 1
ϑi

)
t
)

+ ca(0), (3.22)

where ca is the weighted average

ca = ϑmcm + ϑici
ϑm + ϑi

.

If the time step is large, we use the analytic solution to compute new values of concen-
trations. Otherwise, we replace the time derivatives in (2.34a) and (2.34b) by first order
forward differences and we get the classical Euler scheme

cm(t+) = Ddp∆t
ϑm

(ci(t)− cm(t)) + cm(t), (3.23a)

ci(t+) = Ddp∆t
ϑi

(cm(t)− ci(t)) + ci(t), (3.23b)

(3.23c)

where ∆t = t+ − t is the time step.

50

The condition on the size of the time step is derived from the Taylor expansion of (3.21)
or (3.22), respectively. We neglect the higher order terms and we want the second order
term to be smaller than the given scheme tolerance tol, relatively to ca,

(cm(0)− ca(0))
D2
dp(∆t)2

(
ϑm+ϑi
ϑmϑi

)2

2
1
ca
≤ tol. (3.24)

We then transform the above inequation into the following condition which is tested in
the program

max(|cm(0)− ca(0)|, |ci(0)− ca(0)|) ≤ 2ca
(

ϑmϑi
Ddp∆t(ϑm + ϑi)

)2

tol. (3.25)

In addition, the explicit Euler method (3.23) requires the satisfaction of a CFL condition
of the form

∆t ≤ 1
Ddp

ϑmϑi
ϑm + ϑi

. (3.26)

If either of the inequalities (3.25) or (3.26) is not satisfied, then the analytic solution is
used.

3.5.2 Equilibrial Sorption

Let us now describe the actual computation of the sorption model. To solve (2.37)
iteratively, it is very important to define the interval where to look for the solution
(unknown cl), see Figure 3.2. The lower bound is 0 (concentration can not reach negative
values). The upper bound is derived using a simple mapping. Let us suppose limited
solubility of the selected transported substance and let us denote the limit c̄l. We keep
the maximal ”total mass” c̄T = µl · c̄l + µs · f(c̄l), but we dissolve all the mass to get
maximal cmaxl > c̄l. That means cs = 0 at this moment. We can slightly enlarge the
interval by setting the upper bound equal to cmaxl + constsmall.

cs

clcl
maxcl

c = g(c)lT

f(c)l

cl
R

Figure 3.2: Sorption in combination with limited solubility.

51

To approximate the equation (2.37) using interpolation, we need to prepare the set
of values which represents [cl, f(cl)], with cl equidistantly distributed in transformed
(rotated and rescaled) coordination system at first. The construction process of the
interpolation table follows.

1. Maximal “total mass” c̄T = µl · c̄l + µs · f(c̄l) is computed.

2. Total mass step is derived mass step = c̄T/n steps. n steps is the number of
substeps.

3. Appropriate cjT = (mass step · j)/µl, j ∈ {0, . . . , n steps} are computed.

4. The equations µl · cjT = µl · cjl + µs · f(cjl) j ∈ {0, . . . , n steps} are solved for cjl
as unknowns. The solution is the set of ordered couples (points) [cjl , f(cjl)], j ∈
{0, . . . , n steps}.

After the computation of {[cjl , f(cjl)]}, we transform these coordinates to the system
where the total mass is an independent variable. This is done by multiplication of
precomputed points using the transformation matrix A:

~c R = A · ~c[
cR,jl

cR,js

]
=
[

ϑ · ρw Ms(1− ϑ)ρR
−Ms(1− ϑ)ρR ϑ · ρw

]
·
[
cjl
cjs

]
j ∈ {0, . . . , n steps}

(3.27)

The values cR,jl are equidistantly distributed and there is no reason to save them, but
the values cR,js are stored in one-dimensional interpolation table.
Once we have the interpolation table, we can use it for projecting the transport results
[cl, cs] on the isotherm under consideration. Following steps must be taken.

1. Achieved concentrations are transformed to the coordinate system through multi-
plication with the matrix A, see (3.27).

2. Transformed values are interpolated.

3. The result of interpolation is transformed back. The backward transformation con-
sists of multiplication with AT which is followed by rescaling the result. Rescaling
the result is necessary because A is not orthonormal as it is shown bellow.

AT ·A = ((ϑ− 1)2 ·M2
s · ρ2

R + ϑ2 · ρ2
w) ·

[
1 0
0 1

]

Limited solubility. When µl ·cl+µs ·f(cl) > µl · c̄l+µs ·f(c̄l), neither iterative solver
nor interpolation table is used. The aqueous concentration is set to be c̄l and sorbed
concentration is computed cs = (µl · cl + µs · f(cl)− µl · c̄l)/µs.

52

3.5.3 System of Linear Ordinary Differential Equations

A system of linear ordinary differential equations (ODE) appears in several places in
the model. Let us denote the ODE system

∂tc(t) = A(t)c(t) + b(t).

For the moment the only implemented method to solve the system is usage of Padé
approximant which corresponds to a family of implicit R-K methods.

Padé approximant. For homogeneous systems with constant matrix A, we can use
Padé approximation to find the solution. This method finds a rational function whose
power series agrees with a power series expansion of a given function to the highest
possible order (e.g. in [11]). Let

f(t) =
∞∑
j=0

cjt
j =

∞∑
j=0

1
n!f

(j)(t0)

be the function being approximated and its power series given by Taylor expansion
about t0. Then the rational function

Rmn(t) = Pm(t)
Qn(t) =

m∑
j=0

pjt
j

n∑
j=0

qjtj
, (3.28)

which satisfies
f(t) ≈

m+n∑
j=0

cjt
j = Rmn(t), (3.29)

is called Padé approximant. From (3.29), we obtain m+ n+ 2 equations for coefficients
of the nominator Pm (polynomial of degree m) and the denominator Qn (polynomial of
degree n). We also see that the error of the approximation is O(tm+n+1). By convention,
the denominator is normalized such that q0 = 1. Theoretical results show that for
m = n − 1 and m = n − 2 the Padé approximant corresponds to an implicit Runge-
Kutta method which is A-stable and L-stable (see [5]).
Now, we consider the solution of our ODE system in a form c(t) = eAtc(0). We shall
approximate the matrix exponential function using a matrix form of (3.28). For expo-
nential functions, there are known coefficients of the nominator and denominator:

Pm(At) =
m∑
j=0

(m+ n− j)!m!
(m+ n)!j!(m− j)!(At)

j, (3.30)

Qn(At) =
n∑
j=0

(−1)j (m+ n− j)!n!
(m+ n)!j!(n− j)!(At)

j. (3.31)

Finally, we can write the solution at time t+ ∆t

c(t+ ∆t) = Pm(A∆t)
Qn(A∆t) c(t) = Rmn(A∆t)c(t). (3.32)

If the time step ∆t is constant, we do not need to compute the matrix Rmn repeatedly
and we get the solution cheaply just by matrix multiplication. In the opposite case, we
avoid evaluating the exponential function and still get the solution quite fast (comparing
to computing semi-analytic solution).

53

Chapter 4

File Formats

In this chapter, we shall describe structure of the main input file and data formats of
other input files. In particular we briefly describe the GMSH file format used for both
the computational mesh as well as for the input of general spatial data.

4.1 Main Input File

In this section, we shall describe structure of the main input file that is given either as
the first positional argument or through the parameter -s on the command line. First,
we provide a quick introduction to the YAML file format. Then, we demonstrate the
most important input structures on the examples.

4.1.1 YAML basics

YAML is a human readable data format. It is designed to be both human readable and
human editable. As it is not a markup languages, there are no tags to determine type
of the data. The indentation and justification is used instead for data organization.
Moreover the used YAML format (version 1.2) is superset of the JSON format, another
minimalist data serialization format where braces and brackets are used instead of in-
dentation. For the more detailed description see Wikipedia for further technical details
and for reference parsers for various programming languages see YAML home page .

Hierarchy of Mappings and Lists

Elementary data are organized to lists and mappings. Let us start with an example of
a list:

Example of list
- 3.14 # a number
- 2014-01-14 # a date
- Simple string. # a string
- "3 is three" # quoting necessary
- ’3 is three’ # other quoting
- true # boolean

54

https://en.wikipedia.org/wiki/YAML
http://yaml.org/

Comments are started by a hash (#) which can appear anywhere on a line and marks the
comment up to the end of line. The the list follows with single item per line preceded
by a dash (-). Any value starting by a digit is interpreted as a number or date. Values
starting with letter is interpreted as a string. Otherwise one may use double ("") or
single (’’) quotas to mark a string value explicitly. Finally some strings are interpreted
as Boolean values, it is recommended to use true and false (other possible pairs are
e.g. yes/no, y/n, on/off).
Alternatively a list may be written in compact ”JSON” way enclosing the list into
brackets:

Compact list
[3.14, 2014-01-14, Simple string.,
"3 is three", ’3 is three’]

Other data structure is called mapping, which is also known as directory or associative
array:

Example of a mapping
pi: 3.14
date: 2014-01-14
name: Mr. Simple String

Again one may use also JSON syntax with mapping enclosed in braces:

Compact mapping
{ pi: 3.14, date: 2014-01-14,
name: Mr. Simple String }

Mappings and lists may by mutually nested:

list:
- one
- two
-

- three one
- three two

map:
a: one
b: two

A string may be split to more lines using greater then (>) and multi-line strings may be
entered after vertical line (|):

single long string
one_line: >

Single line string
broken into two lines.

multi line string
multi_line: |

First line.
Second line.

55

In the first case the line breaks are replaced by space, in the second case the line breaks
are preserved. In both cases the leading indentation is removed.

Tags

YAML format defines a syntax for explicit specification of types of values including the
types specific to an application. The application specific tags are used by Flow123d
to specify particular implementation of various algorithms or data types. The general
syntax of tags is quite complicated, so we present only the syntax used in the Flow123d
input.

field_a: !FieldFormula
value: !!str "5 * x"

field_b: !FieldFormula "5 * x"

The field_a have specified evaluation algorithm FieldFormula, the key value have ex-
plicitly specified the default tag str. Note that default types are detected automatically
and need not to be specified. On the third line we use even more compact way to express
the same thing. Further details about usage of tags in Flow123d follows in Section 4.1.2.

References

Anchors and references allows to reduce redundancy in the input data:

aux_name: &anchor_name John Smith
aux_man: &common_man

sex: man
city: Prague

people:
- << *_common_man

name: John Paul
- << *_common_man

name: *anchor_name

On the first line, we define the anchor &anchor_name for the value John Smith. On the
second line, we define the anchor &common_man for the dictionary. Later, we use << to
inject the dictionary referenced by *common_man. Finally the anchor &anchor_name is
referenced by *anchor_name to reuse the name John Smith.
Ignoring the auxiliary keys aux_name and aux_man this is equivalent to:

people:
- sex: man

city: Prague
name: John Paul

- sex: man
city: Prague
name: John Smith

56

Gotchas

• Unquoted string values can not contain characters: colon :, hash #, brackets [],
braces {}, less then <, vertical bar |.

• For indentation one can use only spaces; tabs are not allowed. However, your
editor may automatically convert tabs to spaces.

• Boolean special strings must be quoted if you want to express a string. This is
not problem for the Flow123d input.

• Numbers starting with digit zero are interpreted as octal numbers.

4.1.2 Flow123d input types

Flow123d have a subsystem for definition of the structure of the input file including pre-
liminary checks for the correctness of the values. This subsystem works with elementary
data types:

• Bool corresponds to the YAML Boolean values

• Double, Integer initialized from YAML numeric values.

• String, FileName, Selections initialized from YAML strings.

Numerical values have defined valid ranges. FileName values are used for reference to
external files either for input or for output. Selection type defines a finite number of
valid string values which may appear on the input. These elementary types are further
organized into Records and Arrays in order to specify strongly typed definition of the
input data file. Array and Records forms so called input structure tree (IST).
In order to make ”simple things simple and complex things possible” (Alan Kay) the
input system provides so called automatic conversions. If the YAML type on input does
not match the expected data type automatic conversion tries to convert the input to
the expected type. Automatic conversion rules for individual composed types follows.

Record (YAML Mapping, JSON object)

A Record is initialized from the YAML mapping. However, in contrast to YAML map-
pings the Records have fixed keys with fixed types. This is natural as Records are used
for initialization of C++ objects which are also strongly typed. Every Record type
have unique name and have defined list of its keys. Keys are lowercase strings without
spaces, possibly using digits and underscore. Every key has a type and default value
specification. Default value specification can be:

obligatory — means no default value, which has to be specified at input.

optional — means no default value, but value is needs not to be specified. Unspecified
value usually means that you turn off some functionality.

57

default at declaration — the default value is explicitly given in declaration and is
automatically provided by the input subsystem if needed

default at read time — the default value is provided at read time, usually from some
other variable. In the documentation, there is only textual description where the
default value comes from.

Records that have all keys with default value or optional safe the single key K may
support autoconversion from an input of the type that match the type of the key K.
For example:

mesh: "mesh_file.msh"

is converted to:

mesh:
mesh_file: "mesh_file.msh"
regions: null
partitioning: any_neighboring
print_regions: false
intersection_search: BIHsearch

with the key regions being optional and the last three keys having its default values.

Array (YAML List, JSON array)

An Array is initialized from a YAML list. But, in opposition to the YAML mapping,
the values in a single Array have all the same type. So the particular Array type is given
by the type of its elements and a specification of its size range.
Automatic conversion performs kind of transposition of the data. It simplifies input of
the list of records (or arrays) with redundant structure, e.g. consider input

list:
a: [1,2)
b: 4
c: [5,6]

Assuming that key list have the type Array of Records and keys a, b, c are all numerical
scalars this input is equivalent to

list:
- a: 1

b: 4
c: 5

- a: 2
b: 4
c: 6

58

The rule works as follows, if a key K should have type Array, but some other type is
on the input, we search through the input under the key K for all Arrays S standing
instead of scalars. All these arrays must have the same length n. Then the i-th element
of the key A array is copy of the input keeping only i-th elements of the Arrays S. As
a special case if there are no Arrays S a list with single element equal to the input is
created. Only this simplest conversion to an Array is applied if inappropriate type is
found while the transposition is processed.

Abstract

An Abstract type allows a certain kind of polymorphism corresponding to a pure abstract
class in C++ or to an interface in Java. Every Abstract type have unique name and
set of Records that implements the Abstract. The particular type must be provided on
input through the YAML tag. See description of Fields below for examples.
An Abstract type may have specified the default implementation. If this default Record
supports automatic conversion from one of its keys we can see it as an automatic con-
version from that key to the Abstract. For example

conductivity: 2.0

where conductivity is of Abstract type Field with scalar values, is in fact converted to

conductivity: !FieldConstant
value: 2.0

as the FieldConstant is default implementation of the field and it is auto=convertible
from the key value.

Flow123d specific tags

Currently just two specific tags are implemented, both allowing inclusion of data in
other files.
Include other YAML file The tag !include can be used to read a key value from
other YAML file. Path to the file is specified as the value of the key. A relative path
is rooted in the folder of the main input file. A particular type of an Abstract key is
specified as a composed tag !include,<TYPE>.
Example, the main input file:

flow123d_version: 2.0.0
problem: !Coupling_Sequential

description: Test8 - Steady flow with sources
mesh:

mesh_file: ../00_mesh/square_1x1_shift.msh
flow_equation: !include,Flow_Darcy_MH

input_darcy.yaml

Content of input_darcy.yaml, included Record:

59

nonlinear_solver:
linear_solver: !Petsc

input_fields:
darcy_input_fields.yaml

balance: {}
output_stream:

file: ./flow.pvd

Content of darcy_input_fields.yaml, included Array:

- region: plane
anisotropy: 1
water_source_density: !FieldFormula
value: 2*(1-xˆ2)+2*(1-yˆ2)

- region: .plane_boundary
bc_type: dirichlet
bc_pressure: 0

Include general CSV data The custom tag include_csv can be used to include
a table (e.g. coma separated values, CSV file) as an Array of Records. Every line of
the input table is converted to a single element of the Array. The tag is followed by
a Record with several keys to specify format of the data:

file
A valid path to a text data file. Relative to the main input file.

separator
A string of characters used as separators of the values on the single line (default
is coma ”,”). Tab and space are always added. Double quotas can be used to
express string values containing separators, backslash can be used to escaping any
character with special meaning. Consecutive row of separators is interpreted as
a single separator.

n_head_lines
Skip given number of lines at the beginning.

format
An input structure of a single element in the resulting array. Type of Abstracts
must be same through the whole resulting Array. String scalar values with a place-
holder ’$<column>’ will be replaced by the value at corresponding column in the
input file.

Current implementation have substantial limitation as it can not be combined with
auto conversions. This makes these includes little bit verbose. For example consider
this section from a main input file:

...
substances: [A, B]
...
input_fields:

60

- region: A
porosity: !FieldTimeFunction

time_function: !include_csv
values:

file: data.txt
separator: " "
n_head_lines: 1
format:

time: #0
value: #1

- region: .boundary_A
bc_conc:

- !FieldTimeFunction # Substance A
time_function: !include_csv

values:
file: data.txt
separator: " "
n_head_lines: 1
format:

time: #0
value: #2

- !FieldTimeFunction # Substance B
time_function: !include_csv

values:
file: data.txt
separator: " "
n_head_lines: 1
format:

time: #0
value: #3

Content of data.txt:

time porosity bc_conc_X bc_conc_Y
0.0 0.01 1.0 0.6
0.1 0.015 0.9 0.5
0.2 0.03 0.8 0.4

This together will be equivalent to:

input_fields:
- region: A

porosity: !FieldTimeFunction
time_function:

- time: 0.0
value: 0.01

- time: 0.1
value: 0.015

61

- time: 0.2
value: 0.03

- region: .boundary_A
bc_conc: !FieldTimeFunction

time_function:
- time: 0.0

value: [1.0, 0.6]
- time: 0.1

value: [0.9, 0.5]
- time: 0.2

value: [0.8, 0.4]

So in this particular case it would be simpler to write data directly into the main file.
The include from the text table is efficient for the long time series.

4.1.3 Input subsystem

This section provides some implementation details about the Flow123d input subsystem.
This may be helpful to better understand behavior of the program for some special input
constructions.

JSON fileYAML file HDF5 file

JSON
parser

YAML
parser

HDF5
parser

conversion & check Input
Structure
Treeinternal data storage

uniform data access

IST file
(JSON)

LATEX

HTML

GeoMopFlow123d

Figure 4.1: Structure of the input subsystem. HDF5 format not yet supported.

The input subsystem of Flow123d is designed with the aim to provide uniform initializa-
tion of C++ classes and data structures. The scheme of the input is depicted on Figure
4.1. The structure of the input file is described by the Input Structure Tree (IST) con-
sisting of the input objects describing the types discussed in the previous Section 4.1.2.
The structure of the tree mostly follows follows the structure of the computational
classes.
When reading the input file, the file is first parsed by the specific format parser. Using
a common interface to the parsed data, the structure of the data is checked against the
IST and the data are pushed into the storage tree. If the input data and IST do not
match the automatic conversions described above are applied, where appropriate. An

62

accessor object to the root data record is the result of the file reading. The data can
be retrieved through the accessors which combine raw data of the storage with their
meaning described in IST. The IST can be written out in the JSON format providing
the description of the input file structure. This IST file is used both for generation of
the input reference in HTML and LATEXformats and for the Model editor — specialized
editor for the input file that is part of the GeoMop tools currently in development.
While the recommended format of the input file is YAML the JSON format can be used
as well. This may be useful in particular if the input file should be machine generated.
Although the JSON format is technically subset of the YAML format. We use separate
parser and use special keys in order to mimic tags and references supported by the
YAML. The type of an abstract is specified by the key TYPE. A reference is given by
a record with the only key REF which contains a string specifying the address of the
value that should be substituted.

4.2 Important Record Types of Flow123d Input

Complete description of the input structure tree can be generated into HTML or LaTeX
format. While the former one provides better interactivity through the hyperlinks the
later one is part of this user manual. The generated documentation provides whole
details for all keys, but it may be difficult to understand the concept of the input
structures. This section is aimed to provide this higher level picture.

4.2.1 Mesh Record

The mesh record provides initialization of the computational mesh consisting of points,
lines, triangles and tetrahedrons in the 3D ambient space. Currently, we support only
GMSH mesh file format MSH ASCII. The input file is provided by the key mesh file.
The file format allows to group elements into regions identified by a unique label (or
by ID number). The regions with labels starting with the dot character are treated as
boundary regions. Their elements are removed from the computational domain, however
they can be used to specify boundary conditions. Other regions are called bulk regions.
Every element lies directly in just one simple region while the simple regions may be
grouped into composed regions called also region sets. A simple region may be part
of any number of composed regions. Initial assignment of the simple regions to the
elements is given by the physical groups of the input GMSH file. Further modification
of this assignment as well as creation of new simple or composed regions can be done
through the list of operations under the key regions. The operations are performed in
the order given by the input. Operation From Id sets the name of a simple region having
only ID in the input GMSH file. Operation From Label can rename a simple region.
Operation From Elements assign new simple region to the given list of elements over-
writing their region given by the input mesh file. Finally operations Union, Difference
and Intersection implements standard set operations with both simple and complex
regions resulting in new composed regions.

63

http://geuz.org/gmsh/doc/texinfo/gmsh.html#MSH-ASCII-file-format

4.2.2 Input Fields

Input of every equation contains the key input_fields used consistently for the input of
the equation parameters in form of general time–space dependent fields. The input fields
are organized into a list of field descriptors, see e.g. Data record, the field descriptor of
the Darcy flow equation. The field descriptor is a Record with keys time, region, rid
and further keys corresponding to the names of input fields supported by the equation.
The field descriptor is used to prescribe a change of one or more fields in particular
time (key time) and on particular region given by the name (key region, preferred
way) or by the region id (key rid). The array is processed sequentially and latter
values overwrite the previous ones. Change times of a single field must form a non-
decreasing sequence. Changes in fields given by the fields descriptor are interpreted as
discontinuous changes of the changed fields and equations try to adopt its time stepping
to match these time points. This is in contrast with changes of the field values given
by the evaluation algorithms, these are always assumed to be continuous and the time
steps are not adapted.
Example:

input_fields:
- # time=0.0 - default value

region: BULK
conductivity: 1 # setting the conductivity field on all regions

- region: 2d_part
conductivity: 2 # overwriting the previous value

- time: 1.0
region: 2d_part
conductivity: !FieldFormula

from time=1.0 we switch to the linear function in time
value: 2+t

- time: 2.0
region: 2d_part
conductivity: !FieldElementwise

from time=2.0 we switch to elementwise field, but only
on the region "2d_part"
gmsh_file: ./input/data.msh
field_name: conductivity

Field Algorithms

A general time and space dependent, scalar, vector, or tensor valued function can be
specified through the family of abstract records Field:R3 -> X, where X is a type of
value returned by the field, which can be:

• T — scalar valued field, with scalars of type T

• T [d] — vector valued field, with vector of fixed size d and elements of type T

• T [d, d] — tensor valued field, with square tensor of fixed size and elements of type
T

64

the scalar type T can be one of

• Real — scalar real valued field

• Int — scalar integer valued field

• Enum — scalar non negative integer valued field. Values on the input are of the
type Selection.

Each of these abstract records have the same set of descendants which implement various
evaluation algorithms of the fields. These are

FieldConstant — field that is constant both in space and time

TimeFunction — field that is constant in space and continuous in time. Values are
interpolated (currently only linear interpolation) from the sequence of time-value
pairs provided on input.

FieldFormula — field that is given by runtime parsed formula using x, y, z, t coordi-
nates. The Function Parser library is used with syntax rules described here.

FieldPython — field can be implemented by Python script either specified by string
(key script string) or in external file (key script file.

FieldElementwise — discrete field, currently only piecewise constant field on elements
is supported, the field can given by the MSH ASCII file specified in key gmsh file
and field name in the file given by key field name. The file must contain same
mesh as is used for computation.

FieldInterpolated — allows interpolation between different meshes. Not yet fully
supported.

Several automatic conversions are implemented. Scalar values can be used to set con-
stant vectors or tensors. Vector value of size d can be used to set diagonal tensor d× d.
Vector value of size d(d − 1)/2, e.g. 6 for d = 3, can be used to set symmetric ten-
sor. These rules apply only for FieldConstant and FieldFormula. Moreover, all Field
abstract types have default value TYPE=FieldConstant. Thus you can just use the
constant value instead of the whole record.
Examples:

input fields:
- conductivity: 1.0

is equivalent to
- conductivity: !FieldConstant

value=1.0

- anisotropy: [1 ,2, 3] # diagonal tensor
is equivalent to

- anisotropy: !FieldConstant
value=[[1,0,0],[0,2,0],[0,0,3]]

65

http://warp.povusers.org/FunctionParser/
http://warp.povusers.org/FunctionParser/fparser.html#literals
http://geuz.org/gmsh/doc/texinfo/gmsh.html#MSH-ASCII-file-format

concentration for 2 components
- conc: !FieldFormula ["x+y", "x+z"]

is equivalent to
- conc:

- !FieldFormula
value: "x+y"

- !FieldFormula
value: "x+z"

Field Units

Every field (e.g. conductivity or storativity) have specified unit in terms of powers of the
base SI units. The user, however, may set input in different units specified by the key
unit supported by every field algorithm. The key have type Unit record with a single
auto convertible key unit_formula. The unit formula is evaluated into a coefficient
and an SI unit. The resulting SI unit must match expected SI unit of the field, while
the input value of the field (including values from external files or returned by Python
functions) is multiplied by the coefficient before further processing.
The unit formula have form: <UnitExpr>;<Variable>=<Number>*<UnitExpr>;...,
where <Variable> is a variable name and <UnitExpr> is a units expression which con-
sists of products and divisions of terms, where a term has form <Base>ˆ<N>, where <N>
is an integer exponent and <Base> is either a base SI unit, a derived unit, or a variable
defined in the same unit formula. Example, unit for the pressure head:

MPa/rho/g_; rho = 990*kg*mˆ-3; g_ = 9.8*m*sˆ-2

4.2.3 Output Records

Output from the models is controlled by an interplay of following records: OutputStream,
Balance, and EquationOutput. The first two are part of the records of so called bal-
ance equations which provides complete description of some balanced quantity. Every
such equation have its own balance output controlled by the Balance record and its
own output stream for the spatial data controlled by the OutputStream record. Further
every equation with its own output fields (every input field is also output field) have the
EquationOutput record to setup output of its fields.

Balance

The balance output is performed in times given by the key times with type TimeGrid
described below. Setting the key add output times to true the set of balance output
times is enriched by the output times of the output stream of the same equation.

OutputStream

Set the file format of the output stream, possibly setting the output name, however the
default value for the file name is preferred and the corresponding key file is obsolete.

66

The time set provided by the optional key times is used as a default time set for
a similar key in associated EquationOutput records. Finally, the key observe points
is used to specify observation points in which the associated equation output evaluates
the observed fields.

EquationOuput

The output of the fields can be done in two ways: full spatial information saved only at
selected time points in form of VTU or GMSH file, or full temporal information saved
for every computational time, but only in selected output points. The list of fields for
spatial output is given by key fields while the fields evaluated in the observation points
are selected by the key observe fields. The outputs times for the spatial output can
be selected individually for every field in the fields however the default list of output
times is given by the key times which can by optionally extended by the list of input
times using the key add input times.

TimeGrid Array

An array of the TimeGrid records may be used to setup a sequence of times. Such
sequence is used in particular to trigger various types of output. A single TimeGrid
represents a regular grid of times with given start time, end time and step.

4.3 Mesh and Data File Format MSH ASCII

Currently, the only supported format for the computational mesh is MSH ASCII format
used by the GMSH software. You can find its documentation on:
http://gmsh.info//doc/texinfo/gmsh.html#MSH-file-format-version-2-_0028Legacy_
0029
The scheme of the file is as follows:

$MeshFormat
<format version>
$EndMeshFormat

$PhysicalNames
<number of items>
<dimension> <region ID> <region label>
...
$EndPhysicalNames

$Nodes
<number of nodes>
<node ID> <X coord> <Y coord> <Z coord>
...
$EndNodes

67

http://gmsh.info//doc/texinfo/gmsh.html#MSH-file-format-version-2-_0028Legacy_0029
http://gmsh.info//doc/texinfo/gmsh.html#MSH-file-format-version-2-_0028Legacy_0029

$Elements
<number of elements>
<element ID> <element shape> <n of tags> <tags> <nodes>
...
$EndElements

$ElementData
<n of string tags>

<field name>
<interpolation scheme>

<n of double tags>
<time>

<n of integer tags>
<time step index>
<n of components>
<n of items>
<partition index>

<element ID> <component 1> <component 2> ...
...
$EndElementData

Detailed description of individual sections:

PhysicalNames : Assign labels to region IDs. Elements of one region should have
common dimension. Flow123d interprets regions with labels starting with period
as the boundary elements that are not used for calculations.

Nodes : <number of nodes> is also number of data lines that follows. Node IDs are
unique but need not to form an arithmetic sequence. Coordinates are float num-
bers.

Elements : Element IDs are unique but need not to form an arithmetic sequence.
Integer code <element shape> represents the shape of element, we support only
points (15), lines (1), triangles (2), and tetrahedrons (4). Default number of tags
is 3. The first is the region ID, the second is ID of the geometrical entity (that
was used in original geometry file from which the mesh was generated), and the
third tag is the partition number. nodes is list of node IDs with size according to
the element shape.

ElementData : The header has 2 string tags, 1 double tag, and 4 integer tags with de-
fault meaning. For the purpose of the FieldElementwise the tags <field name>,
<n of components>, and <n of items> are obligatory. This header is followed
by field data on individual elements. Flow123d assumes that elements are sorted
by element ID, but doesn’t need to form a continuous sequence.

4.4 Output Files

Flow123d supports output of scalar, vector and tensor data fields into two formats. The
first is the native format of the GMSH software (usually with extension msh) which

68

contains computational mesh followed by data fields for sequence of time levels. The
second is the XML version of VTK files. These files can be viewed and post-processed
by several visualization software packages. However, our primal goal is to support data
transfer into the Paraview visualization software. See key format.
Input records of most equations (flow, transport, heat, some reaction models) contain
the keys output stream and output. In output stream, the name and type of the
output file is specified. Further, in output, one determines the list of fields intended for
output. The available output fields include input data as well as the simulation results.
We mention the most important output fields of all equations and link to the complete
lists in Table 4.1.

4.4.1 Auxiliary Output Files

Profiling Information

On every run we collect some basic profiling information. After all computations these
data are written into the file profiler%y%m%d_%H.%M.%S.out where %y, %m, %d, %H, %M,
%S are two digit numbers representing year, month, day, hour, minute, and second of
the program start time.

Balance of Conservative Quantities

Primary and secondary equations can produce additional information on fluxes, sources
and state of conservative quantities (for flow it is the volume of water, for transport
the mass of a substance, for heat transfer the energy). The computation of bal-
ance is governed by the key balance. The balance file (default water_balance.txt,
mass_balance.txt, energy_balance.txt) contains the following information:

• time

• region

• quantity [unit]: name and unit of the conservative quantity

• flux, flux in, flux out: flux through boundary regions (positive value stands
for flux into the domain)

• mass: current mass in bulk regions

• source, source in, source out: volume source in bulk regions, its positive and
negative part

In addition, the following values for cumulative balance are shown when region is ALL:

• flux increment, source increment: flux and source increment since the last
balance time

• flux cumulative, source cumulative: cumulative flux and source from the ini-
tial time

• error: current mass − (initial mass + cumulative sources + cumulative fluxes)

69

Table 4.1: Most important output fields.

Flow Darcy MH and Richards LMH
pressure p0 Pressure head [m], piecewise constant on every element.

This field is directly produced by the MH method and
thus contains no postprocessing error.

pressure p1 Same pressure head field, but interpolated into P1 con-
tinuous scalar field. Namely you lost discontinuities on
fractures.

velocity p0 Vector field of water flux [m3s−1]. For every element we
evaluate discrete flux field at barycenter.

piezo head p0 Piezometric head [m], piecewise constant on every ele-
ment. This is just pressure on element plus z-coordinate
of the barycenter. This field is produced only on demand
(see key piezo head p0).

complete list See Darcy flow output fields.
Solute Advection FV
conc Concentration [kgm−3], piecewise constant on every el-

ement.
complete list See Convection transport output fields.
Solute AdvectionDiffusion DG
conc Concentration [kgm−3], piecewise linear on every ele-

ment. Even if higher order polynomial approximation is
used in simulation, the results are saved only in element
corners.

complete list See Transport with dispersion output fields.
DualPorosity
conc immobile Concentration [kgm−3] in immobile zone, piecewise lin-

ear on every element.
complete list See Dual porosity output fields.
Sorption, SorptionMobile, SorptionImmobile
conc solid Concentration [mol kg−1] of sorbed substance, piecewise

linear on every element.
complete list See Sorption output fields, Mobile sorption output fields,

Immobile sorption output fields.
Heat AdvectionDiffusion DG
temperature Temperature [K], piecewise linear on every element.

Even if higher order polynomial approximation is used
in simulation, the results are saved only in element cor-
ners.

complete list See Heat transfer output fields.

Raw Water Flow Data File

You can force Flow123d to write raw data about results of MH method. The file format
is:

$FlowField

70

T=<time>
<number of elements>
<eid> <pressure> <flux x> <flux y> <flux z> <number of sides> <pressures on sides> <fluxes on sides>
...
$EndFlowField

where

<time> — is simulation time of the raw output.

<number of elements> — is number of elements in mesh, which is same as number
of subsequent lines.

<eid> — element id same as in the input mesh.

<flux x,y,z> — components of water flux interpolated to barycenter of the element

<number of sides> — number of sides of the element, influence number of remaining
values

<pressures on sides> — for every side average of the pressure over the side

<fluxes on sides> — for ever side total flux through the side

The side values are reported according to the side order, with sides numbering given by
Table 4.2.

Table 4.2: Side numbering relative to vertices.

element dimension side vertices

1 0 0
1 1

2
0 0 1
1 0 2
2 1 2

3

0 0 1 2
1 0 1 3
2 0 2 3
3 1 2 3

71

Chapter 5

Tutorials

In this chapter we describe several tutorial files that demonstrate various features of
Flow123d. The tutorial files are placed in tests/05 tutorial.

5.1 1D column

File: 01 column.yaml

5.1.1 Description

The first example is inspired by a real locality of a water treatment plant tunnel
Bedřichov in the granite rock massif. There is a particular seepage site 23 m under
the surface which has a very fast reaction on rainfall events. Real data of discharge and
concentration of stable isotopes are used.
The user will learn how to:

• Set up the mesh and flow model input parameters;
• Set up the solver and output parameters.

A pseudo one-dimensional model is considered in the range 10 × 23 m with the atmo-
spheric pressure on the surface and on the bottom, and no flow boundary condition on
the edges (Figure 5.1).

5.1.2 Input

The model settings are given in the control file, which is in YAML format. Every line
contains one parameter and its value(s). The indentation of lines is important, since it
indicates the section to which the parameter belongs.

Setting the computational mesh

The mesh file can be generated using the software GMSH. It has to contain:

72

http://www.gmsh.info

pressure/flux

pressure/flux

23
m

10 m

K=1e-8

no
fl

ow

no
fl

ow

-22.8 -0.184

piezo_head_p0

Figure 5.1: a) the mesh; b) the boundary conditions; c) computed piezometric head and
flux.

• point coordinates;
• simplicial elements (lines, triangles, tetrahedra). Elements of lower dimensions

represent fractures or channels;
• physical regions (groups of elements, labeled either by numerical id or string cap-

tion). Names of regions defining boundary have to start by a dot;

The mesh file is specified by the following lines:

mesh:
mesh_file: 01_mesh.msh

Setting the model and physical parameters

In this example we use the Darcy flow model, which is set by:

flow_equation: !Flow_Darcy_MH

Note: The equation name consists of three parts: physical process (flow), mathematical
model (Darcy) and numerical method (MH = mixed hybrid finite element method).
The bulk parameters and boundary conditions are defined in the section input fields.
For the rock massif (- region: rock) we prescribe the hydraulic conductivity K = 10−8

m/s (typical value for the granite rock massif):

input_fields:
- region: rock

conductivity: 1e-8

We prescribe the atmospheric presure both at the surface and the tunnel:

73

- region: .tunnel
bc_type: dirichlet
bc_pressure: 0

- region: .surface
bc_type: dirichlet
bc_pressure: 0

If no boundary condition is given then the default “no flow” is applied.

Setting solver parameters

For the solution of the linear algebra problem we have to specify solver type and tol-
erances for controlling the residual. In flow equation we can use either Petsc solver
which performs well for small and moderate size problems, or Bddc (a scalable domain
decomposition solver). Two stopping criteria can be given: absolute and relative toler-
ance of residual.

nonlinear_solver:
linear_solver: !Petsc

a_tol: 1e-15
r_tol: 1e-15

The key nonlinear solver has further parameters which play role in other (nonlinear)
flow models.

Setting output

In the section output stream we define the file name and type (supported types are
gmsh and vtk, which can be viewed by GMSH, ParaView, respectively) to which the
solution is saved:

output_stream:
file: flow.msh
format: !gmsh

The list of fields (solution components, input fields etc.) to be saved is specified by:

output:
fields:

- piezo_head_p0
- pressure_p0
- pressure_p2_disc
- velocity_p0

The above code can be alternatively written in a more compact form, namely

74

output:
fields: [piezo_head_p0, pressure_p0, pressure_p2_disc, velocity_p0]

In addition to the output of solution, Flow123d provides computation of balance of fluid
volume, flux through boundaries and volume sources. This is turned on by

balance: {}

5.1.3 Results

The results of computation are generated to the files flow.msh and water balance.txt.
From the balance file, one can see that the input flux on the surface is 1× 10−7 and the
output flux on the tunnel is −1× 10−7 (Table 5.1).

Table 5.1: Results in water balanced.txt (edited table, extract from the file).

“time” “region” “quantity [m(3)]” “flux” “flux in” “flux out”

0 “rock” “water volume” 0 0 0
0 “.surface” “water volume” 1e-07 1e-07 0
0 “.tunnel” “water volume” -1e-07 0 -1e-07
0 “IMPLICIT BOUNDARY” “water volume” 2.58e-26 6.46e-26 -3.87e-26

5.1.4 Variant

Control file 02 column transport.yaml contains modified boundary conditions and so-
lute transport model for the same physical problem.

5.2 1D column transport

File: 02 column transport.yaml

5.2.1 Description and input

This is a variant of 01 column.yaml. The user will learn how to:

• Use flux boundary conditions;
• Set up the advective transport model.

For the fluid flow model we change the atmospheric pressure on the surface to the more
realistic infiltration 200 mm/yr (= 6.34× 10−9 m/s):

- region: .surface
bc_type: total_flux
bc_flux: 6.34E-09

75

In the resulting file water balance.txt we can see that the value of the input and output
flux changes to 6.34× 10−8. The visual results are similar to the case 01 column.yaml.
Next we demonstrate a simulation of the transport of a tracer. The equation of advective
transport (no diffusion/dispersion) is specified by:

solute_equation: !Coupling_OperatorSplitting
transport: !Solute_Advection_FV

The boundary condition of concentration is prescribed on the surface region:

input_fields:
- region: .surface

bc_conc: 100

The default type of boundary condition is inflow, i.e. prescribed concentration is applied
where water flows into the domain.
We provide the name of the transported substance (in general there can be multiple
transported substances):

substances: O-18

The end time of the simulation is set in the section time to value 1010 seconds (381
years):

time:
end_time: 1e10

The output files can be generated for specific time values. We set the time step for
output to 108 seconds (=3 years and 2 months):

output_stream:
times:

- step: 1e8

Finally, we turn on computation of mass balance with cumulative sums over the simu-
lation time interval.

balance:
cumulative: true

5.2.2 Results

The results of the mass balance computation are in the output folder in the file mass balance.txt.
The evolution of concentration is depicted in Figure 5.2. A selected part of numerical
results of mass balance is in the Table 5.2. On the region “.surface”, the mass flux
of the tracer is still identical (6 × 10−6 kg/s). On “.tunnel”, the mass flux is zero at
the beginning and then it changes within around 100 years to the opposite value of
inflow -6 × 10−6 kg/s. Figure 5.3 depicts results from the file mass balance.txt for
mass transported through the boundaries “.surface” and “.tunnel” and in the volume of
“rock”.

76

0 100

O-18_conc (5/100)
0 100

O-18_conc (10/100)
0 100

O-18_conc (15/100)
0 100

O-18_conc (20/100)

Figure 5.2: Tracer concentration after 5, 10, 15 and 20 time steps.

 0

 5000

 10000

 15000

 20000

 25000

 0 50 100 150 200 250 300 350
-8x10-6

-6x10-6

-4x10-6

-2x10-6

 0

 2x10-6

 4x10-6

 6x10-6

 8x10-6

m
a
ss

 i
n
 t

h
e
 r

o
ck

 [
kg

]

m
a
ss

 fl
u
x
 t

h
ro

u
g

h
 .
su

rf
a
ce

/.
tu

n
n
e
l
[k

g
/s

]

time [years]

rock .surface .tunnel

Figure 5.3: Results of evolution of mass in the volume and flux through boundaries.

77

Table 5.2: Illustration of the results in mass balance.txt – selected columns in two
time steps.

time region quantity [kg] flux flux in flux out mass error

3.9e+09 rock O-18 0 0 0 22654.4 0
3.9e+09 .surface O-18 6.34e-06 6.34e-06 0 0 0
3.9e+09 .tunnel O-18 -4.99e-06 0 -4.99e-06 0 0
3.9e+09 IMPLICIT BOUNDARY O-18 -1.02e-19 0 -1.02e-19 0 0
3.9e+09 ALL O-18 1.34e-06 6.34e-06 -4.99e-06 22654.4 -5.78e-10

4e+09 rock O-18 0 0 0 22774.9 0
4e+09 .surface O-18 6.34e-06 6.34e-06 0 0 0
4e+09 .tunnel O-18 -5.39e-06 0 -5.39e-06 0 0
4e+09 IMPLICIT BOUNDARY O-18 -1.02e-19 0 -1.02e-19 0 0
4e+09 ALL O-18 9.40e-07 6.34e-06 -5.39e-06 22774.9 -6.03e-10

5.3 2D tunnel

File: 03 tunnel.yaml

5.3.1 Description

The tutorial models the seepage site 23 m under the surface of the water treatment
plant tunnel Bedřichov in the granite rock massif. This seepage site has fast reaction to
the precipitation and measurements of various chemical values are available.
The user will learn how to:

• Prescribe time-dependent input data.

The geometry consists of a rectangle 500 × 300 m with a circular hole of diameter 3.6
m placed 23 meters under the surface, which represents a plane perpendicular to the
tunnel.

5.3.2 Hydraulic model

The hydraulic model was fitted on the shape of the flux field, where it was assumed that
the tunnel drains only a part of the model surface. In particular, the model was fitted
on the estimated discharge of the seepage site.
We impose the following input data (see Figure 5.4):

• The hydraulic conductivity of the rock medium is set to 2.59e-2 m/day (= 3e-7
m/s);

• On the surface we prescribe the annual precipitation 2.33e-3 m/day (= 852 mm/yr);
• On the bottom part “.base” we prescribe the pressure 270 m because of assumption

of local groundwater flow;
• In the tunnel, the measured flux -9.16e-2 m/day (= -1.06e-6 m/s) is prescribed.

For convenience we use day as the unit of time. The corresponding YAML code is:

78

input_fields:
- region: rock

conductivity: 2.59E-02
- region: .tunnel

bc_type: total_flux
bc_flux: -9.16E-02

- region: .base
bc_type: dirichlet
bc_pressure: 270

- region: .surface
bc_type: total_flux
bc_flux: 2.33E-03

500 m

30
0

m

n
o

fl
ow

n
o

fl
ow

pressure 270 m

k=3e-7 m/s

ϑ=0.07

d
ep

th
23

m

drainage 1.06 µm/s

infiltration 850 mm/yr

flux field

Figure 5.4: Geometry and boundary condition of model.

The results are shown in Figure 5.5, where the flux field and the pressure is shown. In
the unsaturated layer the piezometric head is depicted.

5.3.3 Transport of real isotopes

The stable isotope O-18 was sampled in monthly steps in precipitation at nearby exper-
imental catchment Uhlirska and at the seepage site 23m depth. The measured values
are used for the boundary condition on the surface in the transport model as well as
reference values in the tunnel.

Input

We use the value 0.067 for porosity. The initial concentration of O-18 is set to -10.5
kg/m3:

79

0 132 264

pressure_p1
-53.3 -35.7 -18.2

piezo_head_p0

1.33e-05 0.00112 0.0936

velocity_p0

Figure 5.5: Pressure, boundary of water level and piezometric head in unsaturated zone
and flux field.

80

transport: !Solute_Advection_FV
input_fields:

- region: rock
porosity: 0.067
init_conc: -10.5

The monthly measured values of δ18O [per mil V-SMOW] on the surface from the period
1/2006 till 6/2013 are supplied as the boundary condition:

- region: .surface
bc_conc: -12.85443
time: 11

- region: .surface
bc_conc: -14.00255
time: 42

- region: .surface
bc_conc: -12.80081
time: 72

- region: .surface
bc_conc: -12.34748
time: 103

...

Results

In Figure 5.6, the computed mass flux through tunnel is compared to the measured
data. The evolution of the transported substance is depicted in Figure 5.7.

-11

-10.5

-10

-9.5

-9

2006 2007 2008 2009 2010 2011 2012 2013 2014
-18

-16

-14

-12

-10

-8

-6

-4

δ
1

8
O

 i
n
 t

u
n
n
e
l
[p

e
rm

il
V

-S
M

O
W

]

δ
1

8
O

 i
n
 p

re
ci

p
it

a
ti

o
n
 [

p
e
rm

il
V

-S
M

O
W

]

time [years]

measured precipitation computed

Figure 5.6: Concentration of O-18 on the seepage site 23m under the surface.

81

-10.7 -10.5 -10.3

O-18_conc (93/93)

Figure 5.7: Transport of isotopes in two-dimensional model.

5.4 Fractures and diffusion

File: 04 frac diffusion.yaml

5.4.1 Description

In Flow123D domain interaction with fractures can be implemented. This example
comes from a study of evaluation of influence of an individual processes (diffusion, linear
sorption, dual-porosity) between domain interaction in transport. The background of
this study is movement of contaminant mass from deep repository along fractures. The
output mass from fracture and rock is evaluated for every individual process.
The user will learn how to:

• prepare mesh of fractured zone
• define union of mesh regions
• use advection-diffusion transport model
• define variable time step

82

5.4.2 Input

Geometry and mesh generation

The simulation area 100 × 100 m is cut by two flow fractures from which two blind
fractures separate (see Figure 5.8). The cross-section of the fractures is 0.01 m.
Instead of defining a geometry with thin 2D fractures (which would yield too large mesh),
in Flow123d one can treat fractures as lines with intrinsic cross-section area (or surfaces
with intrinsic width). In order to produce a compatible mesh, where fracture elements
are faces of triangles, we use additional GMSH command in the file 04 mesh.geo:

Line { 9:16 } In Surface { 20 };

This ensures that the 2D mesh will adapt so that elements do not cross the fracture
lines (see Figure 5.8).

p
ie

zo
m

et
ri

c
h

ei
gh

t
0.

1
m

p
ie

zo
m

et
ri

c
h

ei
gh

t
0

m

no flow

no flow

co
n

ce
n

tr
at

io
n

f(
t)

kg

100 m

10
0

m

0 25 50 75 100
0

25

50

75

100

Figure 5.8: Geometry and mesh of simulation area.

In the YAML file one can define regions in addition to those from MSH file. We use the
type !Union type in the array regions to define sets of regions sharing some properties
(e.g. boundary conditions):

mesh:
mesh_file: 04_mesh.msh
regions:

- !Union
name: flow_fractures
regions:

- flow_fracture1
- flow_fracture2

- !Union
name: blind_fractures

83

regions:
- blind_fracture1
- blind_fracture2

- !Union
name: BC_right
regions:

- .right
- .right_points

- !Union
name: BC_left
regions:

- .left
- .left_points

Hydraulic model

We are interested in simulation for 50000 years, hence we use year as the time units in
the definition of model parameters. Hydraulic conductivity k = 10−11 m/s (0.000315
m/yr) was considered for rock massif. For the flow fractures and for the blind fractures
we considered k = 10−6 (31.5 m/yr) and k = 10−7 (3.15 m/yr), respectively. These
values are in accordance with typical values of conductivity of a massif considered for
deep repository. The thickness of model was set to 0.01 m for fractures:

input_fields:
- region: rock

conductivity: 0.000315
- region: flow_fractures

conductivity: 31.5
cross_section: 0.01

- region: blind_fractures
conductivity: 3.15 # variant without blind-fractures conductivity: 0.000315
cross_section: 0.01

To eliminate the blind fractures from the model, one can set their conductivity identical
to the rock. Other possibility is to use the same conductivity as in the flow-fractures.
Two dirichlet boundary conditions were defined for the flux: piezometric head 0.1 m on
the left side and 0 m on the right side:

- region: BC_left
bc_type: dirichlet
bc_piezo_head: 0.1

- region: BC_right
bc_type: dirichlet
bc_piezo_head: 0

The above values were chosen in order to obtain filtration flux in the flux-fractures
approximately 1× 10−9 m/s (≈ 0.1 m/yr). Other sides are nonpermeable.

84

Transport model

We use the advection-diffusion equation:

solute_equation: !Coupling_OperatorSplitting
transport: !Solute_AdvectionDiffusion_DG

The porosity was set to 0.005 for rock and 0.1 for fractures. The parameters of me-
chanical dispersion are set to 5 m for longitudinal dispersivity and 0.5 m for transversal
dispersivity. For the molecular diffusivity we use the same value at rock and fractures:
Dm = 3.69×10−2 m2/yr. Since in Flow123d the molecular diffusion tensor has the form
Dmϑ

1/3I, the effective molecular diffusivity will be 2.7 times higher on the fractures than
in the rock (Table 5.3):

input_fields:
- region: rock

init_conc: 0
porosity: 0.005
diff_m: 0.0369
disp_l: 5
disp_t: 0.5

- region: flow_fractures
init_conc: 0
porosity: 0.1
diff_m: 0.0369
disp_l: 5
disp_t: 0.5

- region: blind_fractures
init_conc: 0
porosity: 0.1
diff_m: 0.0369
disp_l: 5
disp_t: 0.5

Table 5.3: Coefficient of molecular diffusion prescribed in Flow123d.

Quantity Rock Fracture

Porosity ϑ [−] 0.005 0.1
Coefficient of molecular diffusion Dm [m2/s] 1e-9 1e-9
Effective molecular diffusion Dmϑ1/3 [m2/s] 1.71e-10 4.64e-10

The boundary condition for the concentration at the fracture was prescribed in the form
of Gaussian curve

f(t) = 1
20

1
σ
√

2π
e−

1
2(t−t0σ)2

,

with the meanvalue t0 = 2000 years and standard deviation σ = 700 years:

85

- region: .left_0
bc_type: dirichlet
bc_conc: !FieldFormula

value: 2.84959e-5*exp(-0.5*((t-2000)/700)ˆ2)

It means that during the simulation time T = 50000 years, almost 0.05 kg/m3 (=∫ T
0 f(t) dt) of water is released. Maximum concentration of realised water is 0.028 g/m3

(= f(t0)). The mean value corresponds with real values of release of isotopes of deep
repository.
For better resolution of the time-dependent boundary condition, we refine the initial
output time step and after 5000 years we increase it:

output_stream:
times:

- step: 500
end: 5000

- begin: 5000
step: 5000

Here times is an array of time grids, each having optional parameters begin, end and
step. The computational time step will adapt to this grid automatically.

5.4.3 Results

The result of model with and without blind fractures (file 04 frac diffusion noblind.yaml)
is depicted in Figure 5.9. We can see that with blind fractures, the water is more con-
taminated at the outflow from the rock. The influence on flow fractures is negligible.

-1.6x10-11

-1.4x10-11

-1.2x10-11

-1x10-11

-8x10-12

-6x10-12

-4x10-12

-2x10-12

 0

 0 10000 20000 30000 40000 50000
-5x10-10

-4.5x10-10

-4x10-10

-3.5x10-10

-3x10-10

-2.5x10-10

-2x10-10

-1.5x10-10

-1x10-10

-5x10-11

 0

fl
u
x
 i
n
 r

o
ck

 [
kg

/y
e
a
r]

fl
u
x
 i
n
 f

ra
ct

u
re

s
[k

g
/y

e
a
r]

time [years]

rock (no blind fractures)
rock

fractures (no blind)
fractures

Figure 5.9: Outgoing mass flux through the right part of the boundary. Comparison of
results with and without blind fractures.

86

5.5 Fractures and sorption

File: 05 frac sorption.yaml

5.5.1 Description

This is a variant of 04 frac diffusion.yaml. Instead of diffusion we consider advective
transport with equilibrial sorption.

5.5.2 Input

Flow123d provides several types of sorption (linear, Langmuir and Freundlich isotherm).
Each substance can be assigned its own sorption type. In this test, the transport of
three substances is computed: Iodium without sorption, Radium with liner sorption
and Selenium with Langmuir isotherm. The solvent density and solubility was set to 1.
Initial condition of solid was set to zero; rock density to 1 and parameter of linear and
Langmuir isotherm was set to 1.0.

reaction_term: !Sorption
substances:

- I
- Ra-lin
- Se-lang

solvent_density: 1.0
solubility: [1.0, 1.0, 1.0]
input_fields:

- region: ALL
init_conc_solid: 0
rock_density: 1.0
sorption_type:

- none
- linear
- langmuir

distribution_coefficient: 1.0
isotherm_other: 0.4

In fact, the fields init conc solid, isotherm mult, isotherm other can have different
values for each substance. In that case we define them as YAML arrays.

5.5.3 Results

Figure 5.10 depicts the influence of linear and Langmuir isotherm on the transport of
substances. The substance I without sorption flows out of the fracture fastest and the
substance Ra flows out slowest.

87

-1.8x10-8

-1.6x10-8

-1.4x10-8

-1.2x10-8

-1x10-8

-8x10-9

-6x10-9

-4x10-9

-2x10-9

 0

 0 2000 4000 6000 8000 10000

fl
u
x
 i
n
 f

ra
ct

u
re

 [
kg

/y
e
a
r]

time [years]

I
Ra
Se

Figure 5.10: Results of sorption.

5.6 Fractures and dual porosity

File: 06 frac dualpor.yaml

5.6.1 Description

This is a variant of 04 frac diffusion.yaml. Instead of diffusion we consider advective
transport with dual porosity.

5.6.2 Input

Dual porosity substitutes blind fractures in this task. The dual-porosity parameter
diffusion rate immobile was calibrated to the value 5.64742e-06 for identical results
with the model with the blind fractures. Other settings of transport are identical to the
diffusion model.
The dual porosity model is set by the following lines:

reaction_term: !DualPorosity
input_fields:

- region: rock
init_conc_immobile: 0

- region: flow_fractures
diffusion_rate_immobile: 5.64742e-06
porosity_immobile: 0.01
init_conc_immobile: 0

- region: blind_fractures
init_conc_immobile: 0

88

5.6.3 Results and comparison

Results of calibration of the model with dual porosity and model with flow in blind
fractures (file 06 frac nodualpor.yaml) is depicted in Figure 5.11.

-7x10-9

-6x10-9

-5x10-9

-4x10-9

-3x10-9

-2x10-9

-1x10-9

 0

 0 200 400 600 800 1000

fl
u
x
 i
n
 f

ra
ct

u
re

 [
kg

/y
e
a
r]

time [years]

dual porosity
flow in blind fractures

Figure 5.11: Results of calibration.

5.7 Heat transport

File: 07 heat.yaml

5.7.1 Description

The task is inspired by the hot-dry-rock method of geothermal heat exchanger. The
exchanger should be in progress for 30 years and give the power of 25 MW.
The user will learn how to:

• Set up heat transfer model;
• Use transition parameters at interfaces;
• Specify linear algebra solver.

5.7.2 Input

Geometry

We consider a two-dimensional model 5000 × 5000 m with two vertical wells at the
distance of 3000 m. The wells are 4300 m deep with the diameter approx. 11 cm (Figure
5.12). In order to better capture the 3D nature of the problem, we set cross section
(width) of the rock region to 100 m (the value was gained from calibration), and the
cross section of the wells to 0.04 m2.

89

Table 5.4: Geometrical parameters.

Parameter Value

Model width 5000 m
Model depth 5000 m
Depth of heat exchanger 4100 – 4300 m
Distance of wells 3000 m
Depth of wells 4200 m
Model cross section 100 m
Well cross section 0.04 m2

no flow temperature=283 K

no flow temperature=433 K

n
o

fl
ow

th
er

m
al

gr
ad

ie
n

t
=

30
K

/1
km

k=1e-10 m/s

k=1e-10 m/s

k=1e-4 m/s

50
00

m

5000 m

4100 m

4200 m

4500 m

water flux 60 l/s

temperature=288 K pressure=0 m

Figure 5.12: Geometry, boundary conditions and computational mesh.

Hydraulic model

The hydraulic conductivity was set to 1 × 10−10 m/s for the rock and to 1 × 10−4 m/s
for the exchanger zone.

- region: rock
cross_section: 100
conductivity: 1.0e-10

- region: exchanger
conductivity: 1e-4

The flow in the wells is modelled using the Darcy equation with a high hydraulic con-
ductivity (10 m/s). The transition coefficient sigma [–], determines the rate of exchange
between 2D rock and 1D wells. Its default value 1 is kept at the lower well ends,
elsewhere the wells are isolated and hence we set sigma to zero.

- region: wells
conductivity: 10.0
cross_section: 0.04
sigma: 0

- region: wells_deep

90

sigma: 1

On the injection well (“.well1 surface”), we prescribe the flux 60 l/s, i.e. the flux velocity
is 1.5 m/s. On the production well (“.well2 surface”) we prescribe zero pressure.

- region: .well1_surface
bc_type: total_flux
bc_flux: 1.5

- region: .well2_surface
bc_type: dirichlet
bc_pressure: 0

We assume that the system does not have contact with its surrounding because of high
depth and intact granite massive. Hence no flow boundary conditions are given on the
sides, on the bottom and on the surface.
For the solution of the flow problem we choose the LU decomposition as the linear
algebra solver:

nonlinear_solver:
linear_solver: !Petsc

options: -ksp_type preonly -pc_type lu

Heat transport model

The heat transport model (Heat AdvectionDiffusion DG) assumes that the fluid and
solid phase are at thermal equilibrium. For the whole model (- region: ALL) we pre-
scribe the parameters for water and granite (density, thermal conductivity and capacity):

heat_equation: !Heat_AdvectionDiffusion_DG
balance:

cumulative: true
input_fields:

- region: ALL
fluid_density: 1000.0
fluid_heat_capacity: 4000
fluid_heat_conductivity: 0.5
solid_density: 2700.0
solid_heat_capacity: 790
solid_heat_conductivity: 2.5

The temperature on the surface is set to 283 K (= 10◦C):

- region: .surface
bc_type: dirichlet
bc_temperature: !FieldFormula

value: 10+273.15

91

The injected water has temperature 15◦C:

- region: .well1_surface
bc_type: dirichlet
bc_temperature: !FieldFormula

value: 15+273.15

The temperature on the bottom and sides as well as the initial temperature in the rock
and the wells is then prescribed in agreement with typical geological gradient, approx.
1◦C / 33 m:

init_temperature: !FieldFormula
value: 10-z/5000*150+273.15

The porosity was set to 1 × 10−5 for rock and 1 × 10−4 for exchanger. The transition
coefficient of wells (“fracture sigma”) was set to 0 in rock surrounding and to 1 in deep
surrounding:

- region: wells
init_temperature: !FieldFormula

value: 15-z/5000*150+273.15
porosity: 1.0e-05
fracture_sigma: 0

- region: wells_deep
fracture_sigma: 1

5.7.3 Results

The evolution of power of the heat exchanger (difference of absolute energy flux on the
surface of the two wells) is depicted in Figure 5.13. The result of water flow is depicted
in Figure 5.14 and the temperature field of the whole massif after 30 years is depicted
in Figure 5.15.

92

 23

 24

 25

 26

 27

 28

 29

 30

 5 10 15 20 25 30

time [years]

power [MW]

Figure 5.13: The power of heat exchanger system in 30 years.

7.46 641 1.27e+03

piezo_head_p0
2.32e-19 5.9e-10 1.5

velocity_p0

Figure 5.14: The flux field with piezometric head.

93

283 358 433

temperature (30/30)

Figure 5.15: The temperature of exchanger after 30 years.

94

Chapter 6

Main Input File Reference

This chapter contains generated reference to the main input file. Described types are
ordered according to the deep first search of the input structure tree which somehow
keep description of related types close to each other. Interactive links allows passing
through the tree structure in top-bottom manner.
Ranges of arrays, integers and doubles use following notation: INT for maximum of
a signed 32-bit integer (≈ 2.147 × 109), UINT for maximum of unsigned 32-bit integer
(≈ 4.295 × 109), and inf for maximum of the double precision floating point number
(≈ 1.798× 10308).

95

record: Root

Root record of JSON input for Flow123d.

flow123d version = 〈String 〉

default: Obligatory

Version of Flow123d for which the input file was created. Flow123d only warn
about version incompatibility. However, external tools may use this information
to provide conversion of the input file to the structure required by another version
of Flow123d.

problem = 〈abstract: Coupling Base 〉

default: Obligatory

Simulation problem to be solved.
pause after run = 〈Bool 〉

default: false

If true, the program will wait for key press before it terminates.

abstract: Coupling Base

The root record of description of particular the problem to solve.
implementations:

Coupling Sequential

record: Coupling Sequential

Record with data for a general sequential coupling.

implements abstracts: Coupling Base

time = 〈record: TimeGovernor 〉

default: {}

Time governor setting.

96

description = 〈String 〉

default: Optional

Short description of the solved problem.
Is displayed in the main log, and possibly in other text output files.

mesh = 〈record: Mesh 〉

default: Obligatory

Computational mesh common to all equations.
flow equation = 〈abstract: DarcyFlow 〉

default: Obligatory

Flow equation, provides the velocity field as a result.
solute equation = 〈abstract: AdvectionProcess 〉

default: Optional

Transport of soluted substances, depends on the velocity field from a Flow equa-
tion.

heat equation = 〈abstract: AdvectionProcess 〉

default: Optional

Heat transfer, depends on the velocity field from a Flow equation.

record: TimeGovernor

Time axis settings of the simulation.
The settings is specific to a particular equation.
TimeGovernor allows to:
- define start time and end time of simulation
- define lower and upper limits of time steps
- direct fixed time marks of whole simulation
- set global time unit of equation (see ’common time unit’ key)
Limits of time steps are defined by keys ’min dt’, ’max dt’, ’init dt’ and ’dt limits’.
Key ’init dt’ has the highest priority and allows set fix size of time steps. Pair of keys
’min dt’ and ’max dt’ define interval of time steps. Both previous cases (’init dt’ or pair
’min dt’ and ’max dt’) set global limits of whole simulation. In contrasts, ’dt limits’
allow set time-dependent function of min dt/max dt. Used time steps of simulation can
be printed to YAML output file (see ’write used timesteps’.
Fixed time marks define exact values of time steps. They are defined in:
- start time and end time of simulation
- output times printed to output mesh file
- times defined in ’dt limits’ table (optional, see ’add dt limits time marks’ key)

conversion from key: max dt

97

start time = 〈tuple: TimeValue 〉

default: 0.0

Start time of the simulation.
end time = 〈tuple: TimeValue 〉

default: 5e+17

End time of the simulation.
The default value is higher than the age of the Universe (given in seconds).

init dt = 〈tuple: TimeValue 〉

default: 0.0

Initial guess for the time step.
It applies to equations that use an adaptive time stepping. If set to 0.0, the time
step is determined in fully autonomous way, assuming the equation supports it.

min dt = 〈tuple: TimeValue 〉

default: implicit value: ”Machine precision.”

Soft lower limit for the time step.
Equation using an adaptive time stepping cannot suggest smaller time step. The
actual time step can only decrease below the limit in order to match the prescribed
input or output times.

max dt = 〈tuple: TimeValue 〉

default: implicit value: ”Whole time of the simulation if specified, infinity else.”

Hard upper limit for the time step.
The actual time step can only increase above the limit in order to match the
prescribed input or output times.

dt limits = 〈array [0, UINT] of tuple: DtLimits 〉

default: Optional

Allow to set a time dependent changes in min dt and max dt limits. This list
is processed at individual times overwriting previous values of min dt/max dt.
Limits equal to 0 are ignored and replaced with min dt/max dt values.

add dt limits time marks = 〈Bool 〉

default: false

Add all times defined in dt limits table to the list of fixed TimeMarks.
write used timesteps = 〈Filename 〉

default: Optional

Write used time steps to the given file in YAML format corresponding with the
format of dt limits.

98

common time unit = 〈String 〉

default: "s"

Common time unit of the equation.
This unit will be used for all time inputs and outputs within the equation. Indi-
vidually, the common time unit can be overwritten for every declared time.
Time units are used in the following cases:
1) Time units of time value keys in: TimeGovernor, FieldDescriptors.
The common time unit can be overwritten for every declared time.
2) Time units in:
a) input fields: FieldFE and FieldTimeFunction
b) time steps definition of OutputTimeSet
Common time unit can be overwritten by one unit value for every whole mesh
data file or time function.
3) Time units in output files: observation times, balance times, frame times of
VTK and GMSH
Common time unit cannot be overwritten in these cases.

tuple: TimeValue

A time with optional unit specification.

conversion from key: time

time = 〈Double (-inf, +inf) 〉

default: Obligatory

The time value.
unit = 〈String 〉

default: implicit value: ”Common time unit of the equation’s Time Governor.”

The time unit. Possible values: ’s’ seconds, ’min’ minutes, ’h’ hours, ’d’ days, ’y’
years.

tuple: TimeValue

A time with optional unit specification.

conversion from key: time

time = 〈Double [0, +inf) 〉

default: Obligatory

The time value.

99

unit = 〈String 〉

default: implicit value: ”Common time unit of the equation’s Time Governor.”

The time unit. Possible values: ’s’ seconds, ’min’ minutes, ’h’ hours, ’d’ days, ’y’
years.

tuple: DtLimits

Time dependent changes in min dt and max dt limits.

conversion from key: time

time = 〈tuple: TimeValue 〉

default: Obligatory

The start time of dt step set.
min dt = 〈tuple: TimeValue 〉

default: implicit value: ”’min dt’ value of TimeGovernor.”

Soft lower limit for the time step.
max dt = 〈tuple: TimeValue 〉

default: implicit value: ”’max dt’ value of TimeGovernor.”

Whole time of the simulation if specified, infinity else.

record: Mesh

Record with mesh related data.

conversion from key: mesh file

mesh file = 〈Filename 〉

default: Obligatory

Input file with mesh description.
regions = 〈array [0, UINT] of abstract: Region 〉

default: Optional

List of additional region and region set definitions not contained in the mesh.
There are three region sets implicitly defined:

100

– ALL (all regions of the mesh)
– .BOUNDARY (all boundary regions)
– BULK (all bulk regions)

partitioning = 〈record: Partition 〉

default: "any neighboring"

Parameters of mesh partitioning algorithms.
print regions = 〈Bool 〉

default: true

If true, print table of all used regions.
intersection search = 〈selection: Types of search algorithm for finding intersection

candidates. 〉

default: "BIHsearch"

Search algorithm for element intersections.
global snap radius = 〈Double [0, +inf) 〉

default: 0.001

Maximal snapping distance from the mesh in various search operations. In par-
ticular, it is used to find the closest mesh element of an observe point; and in
FieldFormula to find closest surface element in plan view (Z projection).

raw ngh output = 〈Filename 〉

default: Optional

Output file with neighboring data from mesh.

abstract: Region

Abstract record for Region.
implementations:

From Id, From Label, From Elements, Union, Difference, Intersection

record: From Id

Elementary region declared by its id.
It allows to create a new region with given id and name, or to rename an existing region
of given id.

implements abstracts: Region

101

name = 〈String 〉

default: Obligatory

Name (label) of the region. It has to be unique per single mesh.
id = 〈Integer [0, INT] 〉

default: Obligatory

Id of the region to which you assign the name.
dim = 〈Integer [0, INT] 〉

default: Optional

Dimension of the region to which you assign the name.
The value is taken into account only if a new region is created.

record: From Label

Elementary region declared by its name (label).
It gives a new name to an elementary region with the original name (in the mesh file)
given by the mesh label.

implements abstracts: Region

name = 〈String 〉

default: Obligatory

New name (label) of the region. It has to be unique per single mesh.
mesh label = 〈String 〉

default: Obligatory

The original region name in the input file, e.g. a physical volume name in the
GMSH format.

allow empty = 〈Bool 〉

default: false

If true it allows to the region set to be empty (no elements).

record: From Elements

Elementary region declared by a list of elements.
The new region is assigned to the list of elements specified by the key element list.

102

implements abstracts: Region

name = 〈String 〉

default: Obligatory

Name (label) of the region. It has to be unique per single mesh.
id = 〈Integer [0, INT] 〉

default: Optional

Id of the region. If unset, a unique id will be generated automatically.
element list = 〈array [1, UINT] of Integer [0, INT] 〉

default: Obligatory

List of ids of elements.

record: Union

Defines a new region (set) as a union of two or more regions. The regions can be given
by their names or ids or both.

implements abstracts: Region

name = 〈String 〉

default: Obligatory

Name (label) of the new region. It has to be unique per single mesh.
region ids = 〈array [0, UINT] of Integer [0, INT] 〉

default: Optional

List of region ids to be added to the new region set.
regions = 〈array [0, UINT] of String 〉

default: Optional

List of region names (labels) to be added to the new region set.

record: Difference

Defines a new region (set) as a difference of two regions (sets), given by their names.

implements abstracts: Region

103

name = 〈String 〉

default: Obligatory

Name (label) of the new region. It has to be unique per single mesh.
regions = 〈array [2, 2] of String 〉

default: Obligatory

List of exactly two region (set) names.
Supposing region sets r1, r2, the result includes all regions of r1 that are not in r2.

record: Intersection

Defines a new region (set) as an intersection of two or more regions (sets), given by their
names.

implements abstracts: Region

name = 〈String 〉

default: Obligatory

Name (label) of the new region. It has to be unique per single mesh.
regions = 〈array [2, UINT] of String 〉

default: Obligatory

List of two or more region (set) names.

record: Partition

Setting for various types of mesh partitioning.

conversion from key: graph type

tool = 〈selection: PartTool 〉

default: "METIS"

Software package used for partitioning. See corresponding selection.
graph type = 〈selection: GraphType 〉

default: "any neighboring"

Algorithm for generating graph and its weights from a multidimensional mesh.

104

selection: PartTool

Select the partitioning tool to use.
values:

PETSc : Use PETSc interface to various partitioning tools.

METIS : Use direct interface to Metis.

selection: GraphType

Different algorithms to make the sparse graph with weighted edges
from the multidimensional mesh. Main difference is dealing with
neighboring of elements of different dimension.
values:

any neighboring : Add an edge for any pair of neighboring elements.

any weight lower dim cuts : Same as before and assign higher weight to cuts of lower
dimension in order to make them stick to one face.

same dimension neighboring : Add an edge for any pair of neighboring elements of
the same dimension (bad for matrix multiply).

selection: Types of search algorithm for finding intersection candidates.

values:

BIHsearch : Use BIH for finding initial candidates, then continue by prolongation.

BIHonly : Use BIH for finding all candidates.

BBsearch : Use bounding boxes for finding initial candidates, then continue by pro-
longation.

abstract: DarcyFlow

Darcy flow model. Abstraction of various porous media flow models.
implementations:

105

Flow Darcy LMH, Flow Richards LMH, Coupling Iterative, Flow Darcy MH

record: Flow Darcy LMH

Lumped Mixed-Hybrid solver for saturated Darcy flow.

implements abstracts: DarcyFlow

time = 〈record: TimeGovernor 〉

default: {}

Time governor setting.
gravity = 〈array [3, 3] of Double (-inf, +inf) 〉

default: [0, 0, -1]

Vector of the gravity force. Dimensionless.
input fields = 〈array [0, UINT] of record: Flow Darcy LMH Data 〉

default: Obligatory

Input data for Darcy flow model.
nonlinear solver = 〈record: NonlinearSolver 〉

default: {}

Non-linear solver for MH problem.
output stream = 〈record: OutputStream 〉

default: {}

Output stream settings.
Specify file format, precision etc.

output = 〈gen. record: EquationOutput 〉

gen. parameters: output field selection = Flow Darcy LMH:OutputFields

default: {"fields": ["pressure p0", "velocity p0"]}

Specification of output fields and output times.
output specific = 〈gen. record: Output DarcyMHSpecific 〉

gen. parameters: output field selection = Flow Darcy MH specific:OutputFields

default: Optional

Output settings specific to Darcy flow model.
Includes raw output and some experimental functionality.

106

balance = 〈record: Balance 〉

default: {}

Settings for computing mass balance.
mortar method = 〈selection: MH MortarMethod 〉

default: "None"

Method for coupling Darcy flow between dimensions on incompatible meshes. [Ex-
perimental]

record: Flow Darcy LMH Data

Record to set fields of the equation.
The fields are set only on the domain specified by one of the keys: ’region’, ’rid’
and after the time given by the key ’time’. The field setting can be overridden by
any Flow Darcy LMH Data record that comes later in the boundary data array.

region = 〈array [1, UINT] of String 〉

default: Optional

Labels of the regions where to set fields.
rid = 〈Integer [0, INT] 〉

default: Optional

ID of the region where to set fields.
time = 〈tuple: TimeValue 〉

default: 0.0

Apply field setting in this record after this time.
These times have to form an increasing sequence.

anisotropy = 〈gen. abstract: Field R3 to R[3,3] 〉

gen. parameters: element input type = Double

default: Optional

Anisotropy of the conductivity tensor. [−]
cross section = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Complement dimension parameter (cross section for 1D, thickness for 2D). [m3−d]

107

conductivity = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Isotropic conductivity scalar. [ms−1]
sigma = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Transition coefficient between dimensions. [−]
water source density = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Water source density. [s−1]
bc type = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Flow Darcy BC Type

default: Optional

Boundary condition type. [−]
bc pressure = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Prescribed pressure value on the boundary. Used for all values of bc type ex-
cept none and seepage. See documentation of bc type for exact meaning of
bc pressure in individual boundary condition types. [m]

bc flux = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Incoming water boundary flux. Used for bc types : total flux, seepage, river.
[ms−1]

bc robin sigma = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Conductivity coefficient in the total flux or the river boundary condition type.
[s−1]

108

bc switch pressure = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Critical switch pressure for seepage and river boundary conditions. [m]
init pressure = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Initial condition for pressure in time dependent problems. [m]
storativity = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Storativity (in time dependent problems). [m−1]
bc piezo head = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Boundary piezometric head for BC types: dirichlet, robin, and river.
bc switch piezo head = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Boundary switch piezometric head for BC types: seepage, river.
init piezo head = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Initial condition for the pressure given as the piezometric head.

abstract: Field R3 to R[3,3]

Abstract for all time-space functions.
default: FieldConstant
implementations:

FieldPython, FieldConstant, FieldFormula, FieldTimeFunction, FieldFE

109

record: FieldPython

R3 to R[3,3] Field given by a Python script.

implements abstracts: Field R3 to R[3,3]

unit = 〈record: Unit 〉

default: Optional

Unit of the field values provided in the main input file, in the external file, or by
a function (FieldPython).

script string = 〈String 〉

default: implicit value: ”Obligatory if ’script file’ is not given. ”

Python script given as in place string
script file = 〈Filename 〉

default: implicit value: ”Obligatory if ’script striong’ is not given. ”

Python script given as external file
function = 〈String 〉

default: Obligatory

Function in the given script that returns tuple containing components of the return
type.
For NxM tensor values: tensor(row,col) = tuple(M*row + col).

record: Unit

Specify unit of an input value. Evaluation of the unit formula results into a coeficient
and a unit in terms of powers of base SI units. The unit must match expected SI unit of
the value, while the value provided on the input is multiplied by the coefficient before
further processing. The unit formula have a form:
<UnitExpr>;<Variable>=<Number>*<UnitExpr>;...,
where <Variable> is a variable name and <UnitExpr> is a units expression which
consists of products and divisions of terms. A term has a form: <Base>ˆ<N>, where
<N> is an integer exponent and <Base> is either a base SI unit, a derived unit, or
a variable defined in the same unit formula. Example, unit for the pressure head:
MPa/rho/g ; rho = 990*kg*mˆ-3; g = 9.8*m*sˆ-2

conversion from key: unit formula

110

unit formula = 〈String 〉

default: Obligatory

Definition of unit.

record: FieldConstant

R3 to R[3,3] Field constant in space.

implements abstracts: Field R3 to R[3,3]

conversion from key: value

unit = 〈record: Unit 〉

default: Optional

Unit of the field values provided in the main input file, in the external file, or by
a function (FieldPython).

value = 〈array [1, UINT] of array [1, UINT] of parameter: element input type 〉

default: Obligatory

Value of the constant field. For vector values, you can use scalar value to enter
constant vector. For square N ×N -matrix values, you can use: - vector of size N
to enter diagonal matrix

– vector of size 1
2N(N + 1) to enter symmetric matrix (upper triangle, row by

row)
– scalar to enter multiple of the unit matrix.

record: FieldFormula

R3 to R[3,3] Field given by runtime interpreted formula.

implements abstracts: Field R3 to R[3,3]

conversion from key: value

unit = 〈record: Unit 〉

default: Optional

Unit of the field values provided in the main input file, in the external file, or by
a function (FieldPython).

111

value = 〈array [1, UINT] of array [1, UINT] of String 〉

default: Obligatory

String, array of strings, or matrix of strings with formulas for individual entries of
scalar, vector, or tensor value respectively.
For vector values, you can use just one string to enter homogeneous vector.
For square N ×N -matrix values, you can use:

– array of strings of size N to enter diagonal matrix
– array of strings of size 1

2N(N + 1) to enter symmetric matrix (upper triangle,
row by row)

– just one string to enter (spatially variable) multiple of the unit matrix.
Formula can contain variables x,y,z,t,d and usual operators and functions.

surface direction = 〈String 〉

default: "0 0 1"

The vector used to project evaluation point onto the surface.
surface region = 〈String 〉

default: Optional

The name of region set considered as the surface. You have to set surface region
if you want to use formula variable d.

record: FieldTimeFunction

R3 to R[3,3] Field time-dependent function in space.

implements abstracts: Field R3 to R[3,3]

conversion from key: time function

unit = 〈record: Unit 〉

default: Optional

Unit of the field values provided in the main input file, in the external file, or by
a function (FieldPython).

time function = 〈record: TableFunction 〉

default: Obligatory

Values of time series initialization of Field.

112

record: TableFunction

Allow set variable series initialization of Fields.

conversion from key: values

values = 〈array [2, UINT] of tuple: IndependentValue 〉

default: Obligatory

Initizaliation values of Field.

tuple: IndependentValue

Value of Field for time variable.

t = 〈tuple: TimeValue 〉

default: Obligatory

Time stamp.
value = 〈array [1, UINT] of array [1, UINT] of parameter: element input type 〉

default: Obligatory

Value of the field in given stamp.

record: FieldFE

R3 to R[3,3] Field given by finite element approximation.

implements abstracts: Field R3 to R[3,3]

unit = 〈record: Unit 〉

default: Optional

Unit of the field values provided in the main input file, in the external file, or by
a function (FieldPython).

mesh data file = 〈Filename 〉

default: Obligatory

GMSH mesh with data. Can be different from actual computational mesh.

113

input discretization = 〈selection: FE discretization 〉

default: Optional

Section where to find the field.
Some sections are specific to file format: point data/node data, cell data/element data,
-/element node data, native/-.
If not given by a user, we try to find the field in all sections, but we report an
error if it is found in more than one section.

field name = 〈String 〉

default: Obligatory

The values of the Field are read from the $ElementData section with field name
given by this key.

default value = 〈Double (-inf, +inf) 〉

default: Optional

Default value is set on elements which values have not been listed in the mesh
data file.

time unit = 〈String 〉

default: implicit value: ”Common unit of TimeGovernor.”

Definition of the unit of all times defined in the mesh data file.
read time shift = 〈tuple: TimeValue 〉

default: 0.0

This key allows reading field data from the mesh data file shifted in time. Con-
sidering the time ’t’, field descriptor with time ’T’, time shift ’S’, then if ’t > T’,
we read the time frame ’t + S’.

interpolation = 〈selection: interpolation 〉

default: "equivalent mesh"

Type of interpolation applied to the input spatial data.
The default value ’equivalent mesh’ assumes the data being constant on elements
living on the same mesh as the computational mesh, but possibly with different
numbering. In the case of the same numbering, the user can set ’identical mesh’
to omit algorithm for guessing node and element renumbering. Alternatively, in
case of different input mesh, several interpolation algorithms are available.

selection: FE discretization

Specify the section in mesh input file where field data is listed.
Some sections are specific to file format.
values:

114

node data : point data (VTK) / node data (GMSH)

element data : cell data (VTK) / element data (GMSH)

element node data : element node data (only for GMSH)

native data : native data (only for VTK)

selection: interpolation

Specify interpolation of the input data from its input mesh to the computational mesh.
values:

identic mesh : Topology and indices of nodes and elements ofthe input mesh and the
computational mesh are identical. This interpolation is typically used for GMSH
input files containing only the field values without explicit mesh specification.

equivalent mesh : Topologies of the input mesh and the computational mesh are the
same, the node and element numbering may differ. This interpolation can be used
also for VTK input data.

P0 gauss : Topologies of the input mesh and the computational mesh may differ.
Constant values on the elements of the computational mesh are evaluated using
the Gaussian quadrature of the fixed order 4, where the quadrature points and
their values are found in the input mesh and input data using the BIH tree search.

P0 intersection : Topologies of the input mesh and the computational mesh may
differ. Can be applied only for boundary fields. For every (boundary) element
of the computational mesh the intersection with the input mesh is computed.
Constant values on the elements of the computational mesh are evaluated as the
weighted average of the (constant) values on the intersecting elements of the input
mesh.

abstract: Field R3 to R

Abstract for all time-space functions.
default: FieldConstant
implementations:

FieldPython, FieldConstant, FieldFormula, FieldTimeFunction, FieldFE

record: FieldPython

115

R3 to R Field given by a Python script.

implements abstracts: Field R3 to R

unit = 〈record: Unit 〉

default: Optional

Unit of the field values provided in the main input file, in the external file, or by
a function (FieldPython).

script string = 〈String 〉

default: implicit value: ”Obligatory if ’script file’ is not given. ”

Python script given as in place string
script file = 〈Filename 〉

default: implicit value: ”Obligatory if ’script striong’ is not given. ”

Python script given as external file
function = 〈String 〉

default: Obligatory

Function in the given script that returns tuple containing components of the return
type.
For NxM tensor values: tensor(row,col) = tuple(M*row + col).

record: FieldConstant

R3 to R Field constant in space.

implements abstracts: Field R3 to R

conversion from key: value

unit = 〈record: Unit 〉

default: Optional

Unit of the field values provided in the main input file, in the external file, or by
a function (FieldPython).

value = 〈parameter: element input type 〉

default: Obligatory

Value of the constant field. For vector values, you can use scalar value to enter
constant vector. For square N ×N -matrix values, you can use: - vector of size N
to enter diagonal matrix

116

– vector of size 1
2N(N + 1) to enter symmetric matrix (upper triangle, row by

row)
– scalar to enter multiple of the unit matrix.

record: FieldFormula

R3 to R Field given by runtime interpreted formula.

implements abstracts: Field R3 to R

conversion from key: value

unit = 〈record: Unit 〉

default: Optional

Unit of the field values provided in the main input file, in the external file, or by
a function (FieldPython).

value = 〈String 〉

default: Obligatory

String, array of strings, or matrix of strings with formulas for individual entries of
scalar, vector, or tensor value respectively.
For vector values, you can use just one string to enter homogeneous vector.
For square N ×N -matrix values, you can use:

– array of strings of size N to enter diagonal matrix
– array of strings of size 1

2N(N + 1) to enter symmetric matrix (upper triangle,
row by row)

– just one string to enter (spatially variable) multiple of the unit matrix.
Formula can contain variables x,y,z,t,d and usual operators and functions.

surface direction = 〈String 〉

default: "0 0 1"

The vector used to project evaluation point onto the surface.
surface region = 〈String 〉

default: Optional

The name of region set considered as the surface. You have to set surface region
if you want to use formula variable d.

record: FieldTimeFunction

117

R3 to R Field time-dependent function in space.

implements abstracts: Field R3 to R

conversion from key: time function

unit = 〈record: Unit 〉

default: Optional

Unit of the field values provided in the main input file, in the external file, or by
a function (FieldPython).

time function = 〈record: TableFunction 〉

default: Obligatory

Values of time series initialization of Field.

record: TableFunction

Allow set variable series initialization of Fields.

conversion from key: values

values = 〈array [2, UINT] of tuple: IndependentValue 〉

default: Obligatory

Initizaliation values of Field.

tuple: IndependentValue

Value of Field for time variable.

t = 〈tuple: TimeValue 〉

default: Obligatory

Time stamp.
value = 〈parameter: element input type 〉

default: Obligatory

Value of the field in given stamp.

118

record: FieldFE

R3 to R Field given by finite element approximation.

implements abstracts: Field R3 to R

unit = 〈record: Unit 〉

default: Optional

Unit of the field values provided in the main input file, in the external file, or by
a function (FieldPython).

mesh data file = 〈Filename 〉

default: Obligatory

GMSH mesh with data. Can be different from actual computational mesh.
input discretization = 〈selection: FE discretization 〉

default: Optional

Section where to find the field.
Some sections are specific to file format: point data/node data, cell data/element data,
-/element node data, native/-.
If not given by a user, we try to find the field in all sections, but we report an
error if it is found in more than one section.

field name = 〈String 〉

default: Obligatory

The values of the Field are read from the $ElementData section with field name
given by this key.

default value = 〈Double (-inf, +inf) 〉

default: Optional

Default value is set on elements which values have not been listed in the mesh
data file.

time unit = 〈String 〉

default: implicit value: ”Common unit of TimeGovernor.”

Definition of the unit of all times defined in the mesh data file.
read time shift = 〈tuple: TimeValue 〉

default: 0.0

This key allows reading field data from the mesh data file shifted in time. Con-
sidering the time ’t’, field descriptor with time ’T’, time shift ’S’, then if ’t > T’,
we read the time frame ’t + S’.

119

interpolation = 〈selection: interpolation 〉

default: "equivalent mesh"

Type of interpolation applied to the input spatial data.
The default value ’equivalent mesh’ assumes the data being constant on elements
living on the same mesh as the computational mesh, but possibly with different
numbering. In the case of the same numbering, the user can set ’identical mesh’
to omit algorithm for guessing node and element renumbering. Alternatively, in
case of different input mesh, several interpolation algorithms are available.

selection: Flow Darcy BC Type

values:

none : Homogeneous Neumann boundary condition
(zero normal flux over the boundary).

dirichlet : Dirichlet boundary condition. Specify the pressure head through the
bc pressure field or the piezometric head through the bc piezo head field.

total flux : Flux boundary condition (combines Neumann and Robin type). Water
inflow equal to δd(qNd + σd(hRd − hd)). Specify the water inflow by the bc flux
field, the transition coefficient by bc robin sigma and the reference pressure head
or piezometric head through bc pressure or bc piezo head respectively.

seepage : Seepage face boundary condition. Pressure and inflow bounded from above.
Boundary with potential seepage flow is described by the pair of inequalities: hd ≤
hDd and −qd ·n ≤ δqNd , where the equality holds in at least one of them. Caution:
setting qNd strictly negative may lead to an ill posed problem since a positive outflow
is enforced. Parameters hDd and qNd are given by the fields bc switch pressure
(or bc switch piezo head) and bc flux respectively.

river : River boundary condition. For the water level above the bedrock, Hd >
HS
d , the Robin boundary condition is used with the inflow given by: δd(qNd +

σd(HD
d − Hd)). For the water level under the bedrock, constant infiltration is

used: δd(qNd + σd(HD
d −HS

d)). Parameters: bc pressure, bc switch pressure,
bc sigma, bc flux.

record: NonlinearSolver

Non-linear solver settings.

120

linear solver = 〈abstract: LinSys 〉

default: {}

Linear solver for MH problem.
tolerance = 〈Double [0, +inf) 〉

default: 1e-06

Residual tolerance.
min it = 〈Integer [0, INT] 〉

default: 1

Minimum number of iterations (linear solutions) to use.
This is usefull if the convergence criteria does not characterize your goal well
enough so it converges prematurely, possibly even without a single linear solution.
If greater then ’max it’ the value is set to ’max it’.

max it = 〈Integer [0, INT] 〉

default: 100

Maximum number of iterations (linear solutions) of the non-linear solver.
converge on stagnation = 〈Bool 〉

default: false

If a stagnation of the nonlinear solver is detected the solver stops. A divergence
is reported by default, forcing the end of the simulation. By setting this flag
to ’true’, the solver ends with convergence success on stagnation, but it reports
warning about it.

abstract: LinSys

Linear solver settings.
default: Petsc
implementations:

Petsc, Bddc

record: Petsc

PETSc solver settings.
It provides interface to various PETSc solvers. The convergence criteria is:
norm(res i) < max(norm(res 0) * r tol, a tol)
where res i is the residuum vector after i-th iteration of the solver and res 0 is the

121

estimate of the norm of the initial residual. If the initial guess of the solution is provided
(usually only for transient equations) the residual of this estimate is used, otherwise the
norm of preconditioned RHS is used. The default norm is L2 norm of preconditioned
residual: P−1(Ax − b), usage of other norm may be prescribed using the ’option’ key.
See also PETSc documentation for KSPSetNormType.

implements abstracts: LinSys

r tol = 〈Double [0, 1] 〉

default: implicit value: ”Default value is set by the nonlinear solver or the equa-
tion. If not, we use the value 1.0e-7.”

Residual tolerance relative to the initial error.
a tol = 〈Double [0, +inf) 〉

default: implicit value: ”Default value is set by the nonlinear solver or the equa-
tion. If not, we use the value 1.0e-11.”

Absolute residual tolerance.
max it = 〈Integer [0, INT] 〉

default: implicit value: ”Default value is set by the nonlinear solver or the equa-
tion. If not, we use the value 1000.”

Maximum number of outer iterations of the linear solver.
options = 〈String 〉

default: ""

This options is passed to PETSC to create a particular KSP (Krylov space method).
If the string is left empty (by default), the internal default options is used.

record: Bddc

BDDCML (Balancing Domain Decomposition by Constraints - Multi-Level) solver set-
tings.

implements abstracts: LinSys

r tol = 〈Double [0, 1] 〉

default: implicit value: ”Default value is set by the nonlinear solver or the equa-
tion. If not, we use the value 1.0e-7.”

Residual tolerance relative to the initial error.

122

max it = 〈Integer [0, INT] 〉

default: implicit value: ”Default value is set by the nonlinear solver or the equa-
tion. If not, we use the value 1000.”

Maximum number of outer iterations of the linear solver.
max nondecr it = 〈Integer [0, INT] 〉

default: 30

Maximum number of iterations of the linear solver with non-decreasing residual.
number of levels = 〈Integer [0, INT] 〉

default: 2

Number of levels in the multilevel method (=2 for the standard BDDC).
use adaptive bddc = 〈Bool 〉

default: false

Use adaptive selection of constraints in BDDCML.
bddcml verbosity level = 〈Integer [0, 2] 〉

default: 0

Level of verbosity of the BDDCML library:

– 0 - no output,
– 1 - mild output,
– 2 - detailed output.

record: OutputStream

Configuration of the spatial output of a single balance equation.

file = 〈Filename 〉

default: implicit value: ”Name of the equation associated with the output stream.”

File path to the connected output file.
format = 〈abstract: OutputTime 〉

default: {}

File format of the output stream and possible parameters.
times = 〈array [0, UINT] of record: TimeGrid 〉

default: Optional

Output times used for fields that do not have their own output times defined.

123

output mesh = 〈record: OutputMesh 〉

default: Optional

Output mesh record enables output on a refined mesh [EXPERIMENTAL, VTK
only].Sofar refinement is performed only in discontinous sense. Therefore only
corner and element data can be written on refined output mesh. Node data are
to be transformed to corner data, native data cannot be written. Do not include
any node or native data in output fields.

precision = 〈Integer [0, INT] 〉

default: 17

The number of decimal digits used in output of floating point values.
Default is 17 decimal digits which are necessary to reproduce double values exactly
after write-read cycle.

observe points = 〈array [0, UINT] of record: ObservePoint 〉

default: []

Array of observe points.

abstract: OutputTime

Format of output stream and possible parameters.
default: vtk
implementations:

vtk, gmsh

record: vtk

Parameters of vtk output format.

implements abstracts: OutputTime

variant = 〈selection: VTK variant (ascii or binary) 〉

default: "ascii"

Variant of output stream file format.
parallel = 〈Bool 〉

default: false

Parallel or serial version of file format.

124

selection: VTK variant (ascii or binary)

values:

ascii : ASCII variant of VTK file format

binary : Uncompressed appended binary XML VTK format without usage of base64
encoding of appended data.

binary zlib : Appended binary XML VTK format without usage of base64 encoding
of appended data. Compressed with ZLib.

record: gmsh

Parameters of gmsh output format.

implements abstracts: OutputTime

record: TimeGrid

Equally spaced grid of time points.

conversion from key: begin

begin = 〈tuple: TimeValue 〉

default: implicit value: ”The initial time of the associated equation.”

The start time of the grid.
step = 〈tuple: TimeValue 〉

default: Optional

The step of the grid. If not specified, the grid consists of the single time given by
the begin key.

end = 〈tuple: TimeValue 〉

default: implicit value: ”The end time of the simulation.”

The time greater or equal to the last time in the grid.

125

record: OutputMesh

Parameters of the refined output mesh. [Not impemented]

max level = 〈Integer [1, 20] 〉

default: 3

Maximal level of refinement of the output mesh.
refine by error = 〈Bool 〉

default: false

Set true for using error control field. Set false for global uniform refinement
to max level.

error control field = 〈String 〉

default: Optional

Name of an output field, according to which the output mesh will be refined. The
field must be a SCALAR one.

refinement error tolerance = 〈Double [0, +inf) 〉

default: 0.01

Tolerance for element refinement by error. If tolerance is reached, refinement is
stopped. Relative difference between error control field and its linear approxima-
tion on element is computedand compared with tolerance.

record: ObservePoint

Specification of the observation point.
The actual observation element and the observation point on it is determined as follows:

1. Find an initial element containing the initial point. If no such element exists, we
report an error.

2. Use BFS (Breadth-first search) starting from the inital element to find the ’observe
element’. The observe element is the closest element.

3. Find the closest projection of the inital point on the observe element and snap this
projection according to the snap dim.

conversion from key: point

126

name = 〈String 〉

default: implicit value: ”Default name have the form ’obs <id>’, where ’id’ is the
rank of the point on the input.”

Optional point name, which has to be unique.
Any string that is a valid YAML key in record without any quoting can be used,
however, using just alpha-numerical characters, and underscore instead of the
space, is recommended.

point = 〈array [3, 3] of Double (-inf, +inf) 〉

default: Obligatory

Initial point for the observe point search.
snap dim = 〈Integer [0, 4] 〉

default: 4

The dimension of the sub-element to which center we snap. For value 4 no snapping
is done. For values 0 up to 3 the element containing the initial point is found and
then the observepoint is snapped to the nearest center of the sub-element of the
given dimension. E.g. for dimension 2 we snap to the nearest center of the face of
the initial element.

snap region = 〈String 〉

default: "ALL"

The region of the initial element for snapping. Without snapping we make a
projection to the initial element.

search radius = 〈Double [0, +inf) 〉

default: implicit value: ”Maximal distance of the observe point from the mesh
relative to the mesh diameter. ”

Global value is defined in mesh record by the key global snap radius.

record: EquationOutput

Output of the equation’s fields. The output is done through the output stream of the
associated balance law equation. The stream defines output format for the full space
information in selected times and observe points for the full time information. The
key ’fields’ select the fields for the full spatial output. The set of output times may
be specified per field otherwise common time set ’times’ is used. If even this is not
providedthe time set of the output stream is used. The initial time of the equation is
automatically added to the time set of every selected field. The end time of the equation
is automatically added to the common output time set.

127

times = 〈array [0, UINT] of record: TimeGrid 〉

default: Optional

Output times used for the output fields without is own time series specification.
add input times = 〈Bool 〉

default: false

Add all input time points of the equation, mentioned in the ’input fields’ list, also
as the output points.

fields = 〈array [0, UINT] of record: FieldOutputSetting 〉

default: []

Array of output fields and their individual output settings.
observe fields = 〈array [0, UINT] of parameter: output field selection 〉

default: []

Array of the fields evaluated in the observe points of the associated output stream.

record: FieldOutputSetting

Setting of the field output. The field name, output times, output interpolation (future).

conversion from key: field

field = 〈parameter: output field selection 〉

default: Obligatory

The field name (from selection).
times = 〈array [0, UINT] of record: TimeGrid 〉

default: Optional

Output times specific to particular field.
interpolation = 〈selection: Discrete output 〉

default: implicit value: ”Interpolation type of output data.”

Optional value. Implicit value is given by field and can be changed.

selection: Discrete output

Discrete type of output. Determines type of output data (element, node, native etc).
values:

128

P1 average : Node data / point data.

D1 value : Corner data.

P0 value : Element data / cell data.

Native : Native data (Flow123D data).

selection: Flow Darcy LMH:OutputFields

Selection of output fields for the Flow Darcy LMH model.
values:

subdomain : [−] Input field: Subdomain ids of the domain decomposition.

region id : [−] Input field: Region ids.

pressure p0 : [m] Pressure solution - P0 interpolation.

piezo head p0 : [m] Piezo head solution - P0 interpolation.

velocity p0 : [ms−1] Velocity solution - P0 interpolation.

flux : [ms−1] Darcy flow flux.

anisotropy : [−] Input field: Anisotropy of the conductivity tensor.

cross section : [m3−d] Input field: Complement dimension parameter (cross section
for 1D, thickness for 2D).

conductivity : [ms−1] Input field: Isotropic conductivity scalar.

sigma : [−] Input field: Transition coefficient between dimensions.

water source density : [s−1] Input field: Water source density.

init pressure : [m] Input field: Initial condition for pressure in time dependent
problems.

storativity : [m−1] Input field: Storativity (in time dependent problems).

record: Output DarcyMHSpecific

Specific Darcy flow MH output.

129

times = 〈array [0, UINT] of record: TimeGrid 〉

default: Optional

Output times used for the output fields without is own time series specification.
add input times = 〈Bool 〉

default: false

Add all input time points of the equation, mentioned in the ’input fields’ list, also
as the output points.

fields = 〈array [0, UINT] of record: FieldOutputSetting 〉

default: []

Array of output fields and their individual output settings.
observe fields = 〈array [0, UINT] of parameter: output field selection 〉

default: []

Array of the fields evaluated in the observe points of the associated output stream.
compute errors = 〈Bool 〉

default: false

SPECIAL PURPOSE. Computes error norms of the solution, particulary suited
for non-compatible coupling models.

raw flow output = 〈Filename 〉

default: Optional

Output file with raw data from MH module.

selection: Flow Darcy MH specific:OutputFields

Selection of output fields for the Flow Darcy MH specific model.
values:

pressure diff : [m] Error norm of the pressure solution. [Experimental]

velocity diff : [ms−1] Error norm of the velocity solution. [Experimental]

div diff : [s−1] Error norm of the divergence of the velocity solution. [Experimental]

record: Balance

Balance of a conservative quantity, boundary fluxes and sources.

130

times = 〈array [0, UINT] of record: TimeGrid 〉

default: []

add output times = 〈Bool 〉

default: true

Add all output times of the balanced equation to the balance output times set.
Note that this is not the time set of the output stream.

format = 〈selection: Balance output format 〉

default: "txt"

Format of output file.
cumulative = 〈Bool 〉

default: false

Compute cumulative balance over time. If true, then balance is calculated at each
computational time step, which can slow down the program.

file = 〈Filename 〉

default: implicit value: ”File name generated from the balanced quantity: <quan-
tity name> balance.*”

File name for output of balance.

selection: Balance output format

Format of output file for balance.
values:

legacy : Legacy format used by previous program versions.

txt : Excel format with tab delimiter.

gnuplot : Format compatible with GnuPlot datafile with fixed column width.

selection: MH MortarMethod

values:

None : No Mortar method is applied.

131

P0 : Mortar space: P0 on elements of lower dimension.

P1 : Mortar space: P1 on intersections, using non-conforming pressures.

record: Flow Richards LMH

Lumped Mixed-Hybrid solver for unsteady unsaturated Darcy flow.

implements abstracts: DarcyFlow

time = 〈record: TimeGovernor 〉

default: {}

Time governor setting.
gravity = 〈array [3, 3] of Double (-inf, +inf) 〉

default: [0, 0, -1]

Vector of the gravity force. Dimensionless.
input fields = 〈array [0, UINT] of record: RichardsLMH Data 〉

default: Obligatory

Input data for Darcy flow model.
nonlinear solver = 〈record: NonlinearSolver 〉

default: {}

Non-linear solver for MH problem.
output stream = 〈record: OutputStream 〉

default: {}

Output stream settings.
Specify file format, precision etc.

output = 〈gen. record: EquationOutput 〉

gen. parameters: output field selection = Flow Richards LMH:OutputFields

default: {"fields": ["pressure p0", "velocity p0"]}

Specification of output fields and output times.
output specific = 〈gen. record: Output DarcyMHSpecific 〉

gen. parameters: output field selection = Flow Darcy MH specific:OutputFields

default: Optional

Output settings specific to Darcy flow model.
Includes raw output and some experimental functionality.

132

balance = 〈record: Balance 〉

default: {}

Settings for computing mass balance.
mortar method = 〈selection: MH MortarMethod 〉

default: "None"

Method for coupling Darcy flow between dimensions on incompatible meshes. [Ex-
perimental]

soil model = 〈record: SoilModel 〉

default: "van genuchten"

Soil model settings.

record: RichardsLMH Data

Record to set fields of the equation.
The fields are set only on the domain specified by one of the keys: ’region’, ’rid’
and after the time given by the key ’time’. The field setting can be overridden by
any RichardsLMH Data record that comes later in the boundary data array.

region = 〈array [1, UINT] of String 〉

default: Optional

Labels of the regions where to set fields.
rid = 〈Integer [0, INT] 〉

default: Optional

ID of the region where to set fields.
time = 〈tuple: TimeValue 〉

default: 0.0

Apply field setting in this record after this time.
These times have to form an increasing sequence.

anisotropy = 〈gen. abstract: Field R3 to R[3,3] 〉

gen. parameters: element input type = Double

default: Optional

Anisotropy of the conductivity tensor. [−]

133

cross section = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Complement dimension parameter (cross section for 1D, thickness for 2D). [m3−d]
conductivity = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Isotropic conductivity scalar. [ms−1]
sigma = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Transition coefficient between dimensions. [−]
water source density = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Water source density. [s−1]
bc type = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Flow Darcy BC Type

default: Optional

Boundary condition type. [−]
bc pressure = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Prescribed pressure value on the boundary. Used for all values of bc type ex-
cept none and seepage. See documentation of bc type for exact meaning of
bc pressure in individual boundary condition types. [m]

bc flux = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Incoming water boundary flux. Used for bc types : total flux, seepage, river.
[ms−1]

134

bc robin sigma = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Conductivity coefficient in the total flux or the river boundary condition type.
[s−1]

bc switch pressure = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Critical switch pressure for seepage and river boundary conditions. [m]
init pressure = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Initial condition for pressure in time dependent problems. [m]
storativity = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Storativity (in time dependent problems). [m−1]
water content saturated = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Saturated water content θs.
Relative volume of water in a reference volume of a saturated porous media. [−]

water content residual = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Residual water content θr.
Relative volume of water in a reference volume of an ideally dry porous media.
[−]

genuchten p head scale = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

135

The van Genuchten pressure head scaling parameter α.
It is related to the inverse of the air entry pressure, i.e. the pressure
where the relative water content starts to decrease below 1. [m−1]

genuchten n exponent = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

The van Genuchten exponent parameter n. [−]
bc piezo head = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Boundary piezometric head for BC types: dirichlet, robin, and river.
bc switch piezo head = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Boundary switch piezometric head for BC types: seepage, river.
init piezo head = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Initial condition for the pressure given as the piezometric head.

selection: Flow Richards LMH:OutputFields

Selection of output fields for the Flow Richards LMH model.
values:

subdomain : [−] Input field: Subdomain ids of the domain decomposition.

region id : [−] Input field: Region ids.

pressure p0 : [m] Pressure solution - P0 interpolation.

piezo head p0 : [m] Piezo head solution - P0 interpolation.

velocity p0 : [ms−1] Velocity solution - P0 interpolation.

flux : [ms−1] Darcy flow flux.

136

anisotropy : [−] Input field: Anisotropy of the conductivity tensor.

cross section : [m3−d] Input field: Complement dimension parameter (cross section
for 1D, thickness for 2D).

conductivity : [ms−1] Input field: Isotropic conductivity scalar.

sigma : [−] Input field: Transition coefficient between dimensions.

water source density : [s−1] Input field: Water source density.

init pressure : [m] Input field: Initial condition for pressure in time dependent
problems.

storativity : [m−1] Input field: Storativity (in time dependent problems).

water content : [−] Water content.
It is a fraction of water volume to the whole volume.

conductivity richards : [ms−1] Computed isotropic scalar conductivity by the soil
model.

water content saturated : [−] Input field: Saturated water content θs.
Relative volume of water in a reference volume of a saturated porous media.

water content residual : [−] Input field: Residual water content θr.
Relative volume of water in a reference volume of an ideally dry porous media.

genuchten p head scale : [m−1] Input field: The van Genuchten pressure head scaling
parameter α.
It is related to the inverse of the air entry pressure, i.e. the pressure
where the relative water content starts to decrease below 1.

genuchten n exponent : [−] Input field: The van Genuchten exponent parameter n.

record: SoilModel

Soil model settings.

conversion from key: model type

model type = 〈selection: Soil Model Type 〉

default: "van genuchten"

Selection of the globally applied soil model. In future we replace this key by a
field for selection of the model. That will allow usage of different soil model in a
single simulation.

137

cut fraction = 〈Double [0, 1] 〉

default: 0.999

Fraction of the water content where we cut and rescale the curve.

selection: Soil Model Type

values:

van genuchten : Van Genuchten soil model with cutting near zero.

irmay : Irmay model for conductivity, Van Genuchten model for the water content.
Suitable for bentonite.

record: Coupling Iterative

Record with data for iterative coupling of flow and mechanics.

implements abstracts: DarcyFlow

max it = 〈Integer [0, INT] 〉

default: 100

Maximal count of HM iterations.
min it = 〈Integer [0, INT] 〉

default: 1

Minimal count of HM iterations.
a tol = 〈Double [0, +inf) 〉

default: 0

Absolute tolerance for difference in HM iteration.
r tol = 〈Double [0, +inf) 〉

default: 1e-07

Relative tolerance for difference in HM iteration.
time = 〈record: TimeGovernor 〉

default: {}

Time governor setting.

138

flow equation = 〈record: Flow Richards LMH 〉

default: Obligatory

Flow equation, provides the velocity field as a result.
mechanics equation = 〈record: Mechanics LinearElasticity FE 〉

default: Optional

Mechanics, provides the displacement field.
input fields = 〈array [0, UINT] of record: Coupling Iterative:Data 〉

default: Obligatory

Input fields of the HM coupling.
iteration parameter = 〈Double (-inf, +inf) 〉

default: 1

Tuning parameter for iterative splitting. Its default valuecorresponds to a theo-
retically optimal value with fastest convergence.

record: Mechanics LinearElasticity FE

FEM for linear elasticity.

time = 〈record: TimeGovernor 〉

default: {}

Time governor setting.
balance = 〈record: Balance 〉

default: {}

Settings for computing balance.
output stream = 〈record: OutputStream 〉

default: Obligatory

Parameters of output stream.
solver = 〈record: Petsc 〉

default: Obligatory

Linear solver for elasticity.

139

input fields = 〈array [0, UINT] of record: Mechanics LinearElasticity FE:Data 〉

default: Obligatory

Input fields of the equation.
output = 〈gen. record: EquationOutput 〉

gen. parameters: output field selection = Mechanics LinearElasticity FE:OutputFields

default: {"fields": ["displacement"]}

Setting of the field output.

record: Mechanics LinearElasticity FE:Data

Record to set fields of the equation.
The fields are set only on the domain specified by one of the keys: ’region’, ’rid’
and after the time given by the key ’time’. The field setting can be overridden by
any Mechanics LinearElasticity FE:Data record that comes later in the boundary data
array.

region = 〈array [1, UINT] of String 〉

default: Optional

Labels of the regions where to set fields.
rid = 〈Integer [0, INT] 〉

default: Optional

ID of the region where to set fields.
time = 〈tuple: TimeValue 〉

default: 0.0

Apply field setting in this record after this time.
These times have to form an increasing sequence.

bc type = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Elasticity BC Type

default: Optional

Type of boundary condition. [−]
bc displacement = 〈gen. abstract: Field R3 to R[3] 〉

gen. parameters: element input type = Double

default: Optional

Prescribed displacement on boundary. [m]

140

bc traction = 〈gen. abstract: Field R3 to R[3] 〉

gen. parameters: element input type = Double

default: Optional

Prescribed traction on boundary. [m−1kgs−2]
load = 〈gen. abstract: Field R3 to R[3] 〉

gen. parameters: element input type = Double

default: Optional

Prescribed bulk load. [m−3kgs−2]
young modulus = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Young’s modulus. [m−1kgs−2]
poisson ratio = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Poisson’s ratio. [−]
fracture sigma = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Coefficient of transfer of forces through fractures. [−]

selection: Elasticity BC Type

Types of boundary conditions for mechanics.
values:

displacement : Prescribed displacement.

displacement n : Prescribed displacement in the normal direction to the boundary.

traction : Prescribed traction.

141

abstract: Field R3 to R[3]

Abstract for all time-space functions.
default: FieldConstant
implementations:

FieldPython, FieldConstant, FieldFormula, FieldTimeFunction, FieldFE

record: FieldPython

R3 to R[3] Field given by a Python script.

implements abstracts: Field R3 to R[3]

unit = 〈record: Unit 〉

default: Optional

Unit of the field values provided in the main input file, in the external file, or by
a function (FieldPython).

script string = 〈String 〉

default: implicit value: ”Obligatory if ’script file’ is not given. ”

Python script given as in place string
script file = 〈Filename 〉

default: implicit value: ”Obligatory if ’script striong’ is not given. ”

Python script given as external file
function = 〈String 〉

default: Obligatory

Function in the given script that returns tuple containing components of the return
type.
For NxM tensor values: tensor(row,col) = tuple(M*row + col).

record: FieldConstant

R3 to R[3] Field constant in space.

implements abstracts: Field R3 to R[3]

conversion from key: value

142

unit = 〈record: Unit 〉

default: Optional

Unit of the field values provided in the main input file, in the external file, or by
a function (FieldPython).

value = 〈array [1, 3] of parameter: element input type 〉

default: Obligatory

Value of the constant field. For vector values, you can use scalar value to enter
constant vector. For square N ×N -matrix values, you can use: - vector of size N
to enter diagonal matrix

– vector of size 1
2N(N + 1) to enter symmetric matrix (upper triangle, row by

row)
– scalar to enter multiple of the unit matrix.

record: FieldFormula

R3 to R[3] Field given by runtime interpreted formula.

implements abstracts: Field R3 to R[3]

conversion from key: value

unit = 〈record: Unit 〉

default: Optional

Unit of the field values provided in the main input file, in the external file, or by
a function (FieldPython).

value = 〈array [1, UINT] of String 〉

default: Obligatory

String, array of strings, or matrix of strings with formulas for individual entries of
scalar, vector, or tensor value respectively.
For vector values, you can use just one string to enter homogeneous vector.
For square N ×N -matrix values, you can use:

– array of strings of size N to enter diagonal matrix
– array of strings of size 1

2N(N + 1) to enter symmetric matrix (upper triangle,
row by row)

– just one string to enter (spatially variable) multiple of the unit matrix.
Formula can contain variables x,y,z,t,d and usual operators and functions.

143

surface direction = 〈String 〉

default: "0 0 1"

The vector used to project evaluation point onto the surface.
surface region = 〈String 〉

default: Optional

The name of region set considered as the surface. You have to set surface region
if you want to use formula variable d.

record: FieldTimeFunction

R3 to R[3] Field time-dependent function in space.

implements abstracts: Field R3 to R[3]

conversion from key: time function

unit = 〈record: Unit 〉

default: Optional

Unit of the field values provided in the main input file, in the external file, or by
a function (FieldPython).

time function = 〈record: TableFunction 〉

default: Obligatory

Values of time series initialization of Field.

record: TableFunction

Allow set variable series initialization of Fields.

conversion from key: values

values = 〈array [2, UINT] of tuple: IndependentValue 〉

default: Obligatory

Initizaliation values of Field.

tuple: IndependentValue

Value of Field for time variable.

144

t = 〈tuple: TimeValue 〉

default: Obligatory

Time stamp.
value = 〈array [1, 3] of parameter: element input type 〉

default: Obligatory

Value of the field in given stamp.

record: FieldFE

R3 to R[3] Field given by finite element approximation.

implements abstracts: Field R3 to R[3]

unit = 〈record: Unit 〉

default: Optional

Unit of the field values provided in the main input file, in the external file, or by
a function (FieldPython).

mesh data file = 〈Filename 〉

default: Obligatory

GMSH mesh with data. Can be different from actual computational mesh.
input discretization = 〈selection: FE discretization 〉

default: Optional

Section where to find the field.
Some sections are specific to file format: point data/node data, cell data/element data,
-/element node data, native/-.
If not given by a user, we try to find the field in all sections, but we report an
error if it is found in more than one section.

field name = 〈String 〉

default: Obligatory

The values of the Field are read from the $ElementData section with field name
given by this key.

default value = 〈Double (-inf, +inf) 〉

default: Optional

Default value is set on elements which values have not been listed in the mesh
data file.

145

time unit = 〈String 〉

default: implicit value: ”Common unit of TimeGovernor.”

Definition of the unit of all times defined in the mesh data file.
read time shift = 〈tuple: TimeValue 〉

default: 0.0

This key allows reading field data from the mesh data file shifted in time. Con-
sidering the time ’t’, field descriptor with time ’T’, time shift ’S’, then if ’t > T’,
we read the time frame ’t + S’.

interpolation = 〈selection: interpolation 〉

default: "equivalent mesh"

Type of interpolation applied to the input spatial data.
The default value ’equivalent mesh’ assumes the data being constant on elements
living on the same mesh as the computational mesh, but possibly with different
numbering. In the case of the same numbering, the user can set ’identical mesh’
to omit algorithm for guessing node and element renumbering. Alternatively, in
case of different input mesh, several interpolation algorithms are available.

selection: Mechanics LinearElasticity FE:OutputFields

Selection of output fields for the Mechanics LinearElasticity FE model.
values:

load : [m−3kgs−2] Input field: Prescribed bulk load.

young modulus : [m−1kgs−2] Input field: Young’s modulus.

poisson ratio : [−] Input field: Poisson’s ratio.

fracture sigma : [−] Input field: Coefficient of transfer of forces through fractures.

region id : [−] Input field:

subdomain : [−] Input field:

displacement : [m] Displacement vector field output.

stress : [m−1kgs−2] Stress tensor output.

von mises stress : [m−1kgs−2] von Mises stress output.

cross section updated : [m] Cross-section after deformation - output.

displacement divergence : [−] Displacement divergence output.

146

record: Coupling Iterative:Data

Record to set fields of the equation.
The fields are set only on the domain specified by one of the keys: ’region’, ’rid’
and after the time given by the key ’time’. The field setting can be overridden by
any Coupling Iterative:Data record that comes later in the boundary data array.

region = 〈array [1, UINT] of String 〉

default: Optional

Labels of the regions where to set fields.
rid = 〈Integer [0, INT] 〉

default: Optional

ID of the region where to set fields.
time = 〈tuple: TimeValue 〉

default: 0.0

Apply field setting in this record after this time.
These times have to form an increasing sequence.

biot alpha = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

[−]
fluid density = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

[m−3kg]
gravity = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

[ms−2]

record: Flow Darcy MH

147

Mixed-Hybrid solver for saturated Darcy flow.

implements abstracts: DarcyFlow

time = 〈record: TimeGovernor 〉

default: {}

Time governor setting.
gravity = 〈array [3, 3] of Double (-inf, +inf) 〉

default: [0, 0, -1]

Vector of the gravity force. Dimensionless.
input fields = 〈array [0, UINT] of record: Flow Darcy MH Data 〉

default: Obligatory

Input data for Darcy flow model.
nonlinear solver = 〈record: NonlinearSolver 〉

default: {}

Non-linear solver for MH problem.
output stream = 〈record: OutputStream 〉

default: {}

Output stream settings.
Specify file format, precision etc.

output = 〈gen. record: EquationOutput 〉

gen. parameters: output field selection = Flow Darcy MH:OutputFields

default: {"fields": ["pressure p0", "velocity p0"]}

Specification of output fields and output times.
output specific = 〈gen. record: Output DarcyMHSpecific 〉

gen. parameters: output field selection = Flow Darcy MH specific:OutputFields

default: Optional

Output settings specific to Darcy flow model.
Includes raw output and some experimental functionality.

balance = 〈record: Balance 〉

default: {}

Settings for computing mass balance.

148

n schurs = 〈Integer [0, 2] 〉

default: 2

Number of Schur complements to perform when solving MH system.
mortar method = 〈selection: MH MortarMethod 〉

default: "None"

Method for coupling Darcy flow between dimensions on incompatible meshes. [Ex-
perimental]

record: Flow Darcy MH Data

Record to set fields of the equation.
The fields are set only on the domain specified by one of the keys: ’region’, ’rid’
and after the time given by the key ’time’. The field setting can be overridden by
any Flow Darcy MH Data record that comes later in the boundary data array.

region = 〈array [1, UINT] of String 〉

default: Optional

Labels of the regions where to set fields.
rid = 〈Integer [0, INT] 〉

default: Optional

ID of the region where to set fields.
time = 〈tuple: TimeValue 〉

default: 0.0

Apply field setting in this record after this time.
These times have to form an increasing sequence.

anisotropy = 〈gen. abstract: Field R3 to R[3,3] 〉

gen. parameters: element input type = Double

default: Optional

Anisotropy of the conductivity tensor. [−]
cross section = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Complement dimension parameter (cross section for 1D, thickness for 2D). [m3−d]

149

conductivity = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Isotropic conductivity scalar. [ms−1]
sigma = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Transition coefficient between dimensions. [−]
water source density = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Water source density. [s−1]
bc type = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Flow Darcy BC Type

default: Optional

Boundary condition type. [−]
bc pressure = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Prescribed pressure value on the boundary. Used for all values of bc type ex-
cept none and seepage. See documentation of bc type for exact meaning of
bc pressure in individual boundary condition types. [m]

bc flux = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Incoming water boundary flux. Used for bc types : total flux, seepage, river.
[ms−1]

bc robin sigma = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Conductivity coefficient in the total flux or the river boundary condition type.
[s−1]

150

bc switch pressure = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Critical switch pressure for seepage and river boundary conditions. [m]
init pressure = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Initial condition for pressure in time dependent problems. [m]
storativity = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Storativity (in time dependent problems). [m−1]
bc piezo head = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Boundary piezometric head for BC types: dirichlet, robin, and river.
bc switch piezo head = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Boundary switch piezometric head for BC types: seepage, river.
init piezo head = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Initial condition for the pressure given as the piezometric head.

selection: Flow Darcy MH:OutputFields

Selection of output fields for the Flow Darcy MH model.
values:

subdomain : [−] Input field: Subdomain ids of the domain decomposition.

151

region id : [−] Input field: Region ids.

pressure p0 : [m] Pressure solution - P0 interpolation.

piezo head p0 : [m] Piezo head solution - P0 interpolation.

velocity p0 : [ms−1] Velocity solution - P0 interpolation.

flux : [ms−1] Darcy flow flux.

anisotropy : [−] Input field: Anisotropy of the conductivity tensor.

cross section : [m3−d] Input field: Complement dimension parameter (cross section
for 1D, thickness for 2D).

conductivity : [ms−1] Input field: Isotropic conductivity scalar.

sigma : [−] Input field: Transition coefficient between dimensions.

water source density : [s−1] Input field: Water source density.

init pressure : [m] Input field: Initial condition for pressure in time dependent
problems.

storativity : [m−1] Input field: Storativity (in time dependent problems).

abstract: AdvectionProcess

Abstract advection process. In particular: transport of substances or heat transfer.
implementations:

Coupling OperatorSplitting, Heat AdvectionDiffusion DG

record: Coupling OperatorSplitting

Transport by convection and/or diffusion
coupled with reaction and adsorption model (ODE per element)
via operator splitting.

implements abstracts: AdvectionProcess

time = 〈record: TimeGovernor 〉

default: {}

Time governor setting.

152

balance = 〈record: Balance 〉

default: {}

Settings for computing mass balance.
output stream = 〈record: OutputStream 〉

default: {}

Output stream settings.
Specify file format, precision etc.

substances = 〈array [1, UINT] of record: Substance 〉

default: Obligatory

Specification of transported substances.
transport = 〈abstract: Solute 〉

default: Obligatory

Type of the numerical method for the transport equation.
reaction term = 〈abstract: ReactionTerm 〉

default: Optional

Reaction model involved in transport.

record: Substance

Chemical substance.

conversion from key: name

name = 〈String 〉

default: Obligatory

Name of the substance.
molar mass = 〈Double [0, +inf) 〉

default: 1

Molar mass of the substance [kg/mol].

abstract: Solute

Transport of soluted substances.
implementations:

153

Solute Advection FV, Solute AdvectionDiffusion DG

record: Solute Advection FV

Finite volume method, explicit in time, for advection only solute transport.

implements abstracts: Solute

input fields = 〈array [0, UINT] of record: Solute Advection FV:Data 〉

default: Obligatory

output = 〈gen. record: EquationOutput 〉

gen. parameters: output field selection = Solute Advection FV:OutputFields

default: {"fields": ["conc"]}

Specification of output fields and output times.

record: Solute Advection FV:Data

Record to set fields of the equation.
The fields are set only on the domain specified by one of the keys: ’region’, ’rid’
and after the time given by the key ’time’. The field setting can be overridden by
any Solute Advection FV:Data record that comes later in the boundary data array.

region = 〈array [1, UINT] of String 〉

default: Optional

Labels of the regions where to set fields.
rid = 〈Integer [0, INT] 〉

default: Optional

ID of the region where to set fields.
time = 〈tuple: TimeValue 〉

default: 0.0

Apply field setting in this record after this time.
These times have to form an increasing sequence.

porosity = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Porosity of the mobile phase. [−]

154

sources density = 〈array [1, UINT] of gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Density of concentration sources. [m−3kgs−1]
sources sigma = 〈array [1, UINT] of gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Concentration flux. [s−1]
sources conc = 〈array [1, UINT] of gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Concentration sources threshold. [m−3kg]
bc conc = 〈array [1, UINT] of gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Boundary condition for concentration of substances. [m−3kg]
init conc = 〈array [1, UINT] of gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Initial values for concentration of substances. [m−3kg]

selection: Solute Advection FV:OutputFields

Selection of output fields for the Solute Advection FV model.
values:

porosity : [−] Input field: Porosity of the mobile phase.

water content : [−] Input field: INTERNAL. Water content passed from unsaturated
Darcy flow model.

sources density : [m−3kgs−1] Input field: Density of concentration sources.

sources sigma : [s−1] Input field: Concentration flux.

155

sources conc : [m−3kg] Input field: Concentration sources threshold.

init conc : [m−3kg] Input field: Initial values for concentration of substances.

conc : [m−3kg] Concentration solution.

region id : [−] Input field: Region ids.

subdomain : [−] Input field: Subdomain ids of the domain decomposition.

record: Solute AdvectionDiffusion DG

Discontinuous Galerkin (DG) solver for solute transport.

implements abstracts: Solute

solvent density = 〈Double [0, +inf) 〉

default: 1.0

Density of the solvent [kg.m−3].
solver = 〈record: Petsc 〉

default: {}

Solver for the linear system.
input fields = 〈array [0, UINT] of record: Solute AdvectionDiffusion DG:Data 〉

default: Obligatory

Input fields of the equation.
dg variant = 〈selection: DG variant 〉

default: "non-symmetric"

Variant of the interior penalty discontinuous Galerkin method.
dg order = 〈Integer [0, 3] 〉

default: 1

Polynomial order for the finite element in DG method (order 0 is suitable if there
is no diffusion/dispersion).

output = 〈gen. record: EquationOutput 〉

gen. parameters: output field selection = Solute AdvectionDiffusion DG:OutputFields

default: {"fields": ["conc"]}

Specification of output fields and output times.

156

record: Solute AdvectionDiffusion DG:Data

Record to set fields of the equation.
The fields are set only on the domain specified by one of the keys: ’region’, ’rid’
and after the time given by the key ’time’. The field setting can be overridden by
any Solute AdvectionDiffusion DG:Data record that comes later in the boundary data
array.

region = 〈array [1, UINT] of String 〉

default: Optional

Labels of the regions where to set fields.
rid = 〈Integer [0, INT] 〉

default: Optional

ID of the region where to set fields.
time = 〈tuple: TimeValue 〉

default: 0.0

Apply field setting in this record after this time.
These times have to form an increasing sequence.

porosity = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Porosity of the mobile phase. [−]
sources density = 〈array [1, UINT] of gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Density of concentration sources. [m−3kgs−1]
sources sigma = 〈array [1, UINT] of gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Concentration flux. [s−1]
sources conc = 〈array [1, UINT] of gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

157

Concentration sources threshold. [m−3kg]
bc type = 〈array [1, UINT] of gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Solute AdvectionDiffusion BC Type

default: Optional

Type of boundary condition. [−]
bc conc = 〈array [1, UINT] of gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Dirichlet boundary condition (for each substance). [m−3kg]
bc flux = 〈array [1, UINT] of gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Flux in Neumann boundary condition. [m1−dkgs−1]
bc robin sigma = 〈array [1, UINT] of gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Conductivity coefficient in Robin boundary condition. [m4−ds−1]
init conc = 〈array [1, UINT] of gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Initial values for concentration of substances. [m−3kg]
disp l = 〈array [1, UINT] of gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Longitudinal dispersivity in the liquid (for each substance). [m]
disp t = 〈array [1, UINT] of gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Transverse dispersivity in the liquid (for each substance). [m]

158

diff m = 〈array [1, UINT] of gen. abstract: Field R3 to R[3,3] 〉

gen. parameters: element input type = Double

default: Optional

Molecular diffusivity in the liquid (for each substance). [m2s−1]
rock density = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Rock matrix density. [m−3kg]
sorption coefficient = 〈array [1, UINT] of gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Coefficient of linear sorption. [m3kg−1]
fracture sigma = 〈array [1, UINT] of gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Coefficient of diffusive transfer through fractures (for each substance). [−]
dg penalty = 〈array [1, UINT] of gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Penalty parameter influencing the discontinuity of the solution (for each sub-
stance). Its default value 1 is sufficient in most cases. Higher value diminishes the
inter-element jumps. [−]

selection: Solute AdvectionDiffusion BC Type

Types of boundary conditions for advection-diffusion solute transport model.
values:

inflow : Default transport boundary condition.
On water inflow (qw ≤ 0), total flux is given by the reference concentration
’bc conc’. On water outflow we prescribe zero diffusive flux, i.e. the mass flows
out only due to advection.

159

dirichlet : Dirichlet boundary condition c = cD.
The prescribed concentration cD is specified by the field ’bc conc’.

total flux : Total mass flux boundary condition.
The prescribed total incoming flux can have the general form δ(fN + σR(cR −
c)), where the absolute flux fN is specified by the field ’bc flux’, the transition
parameter σR by ’bc robin sigma’, and the reference concentration cR by ’bc conc’.

diffusive flux : Diffusive flux boundary condition.
The prescribed incoming mass flux due to diffusion can have the general form
δ(fN + σR(cR − c)), where the absolute flux fN is specified by the field ’bc flux’,
the transition parameter σR by ’bc robin sigma’, and the reference concentration
cR by ’bc conc’.

selection: DG variant

Type of penalty term.
values:

non-symmetric : non-symmetric weighted interior penalty DG method

incomplete : incomplete weighted interior penalty DG method

symmetric : symmetric weighted interior penalty DG method

selection: Solute AdvectionDiffusion DG:OutputFields

Selection of output fields for the Solute AdvectionDiffusion DG model.
values:

porosity : [−] Input field: Porosity of the mobile phase.

water content : [−] Input field: INTERNAL. Water content passed from unsaturated
Darcy flow model.

sources density : [m−3kgs−1] Input field: Density of concentration sources.

sources sigma : [s−1] Input field: Concentration flux.

sources conc : [m−3kg] Input field: Concentration sources threshold.

init conc : [m−3kg] Input field: Initial values for concentration of substances.

disp l : [m] Input field: Longitudinal dispersivity in the liquid (for each substance).

disp t : [m] Input field: Transverse dispersivity in the liquid (for each substance).

160

diff m : [m2s−1] Input field: Molecular diffusivity in the liquid (for each substance).

rock density : [m−3kg] Input field: Rock matrix density.

sorption coefficient : [m3kg−1] Input field: Coefficient of linear sorption.

conc : [m−3kg] Concentration solution.

fracture sigma : [−] Input field: Coefficient of diffusive transfer through fractures
(for each substance).

dg penalty : [−] Input field: Penalty parameter influencing the discontinuity of the
solution (for each substance). Its default value 1 is sufficient in most cases. Higher
value diminishes the inter-element jumps.

region id : [−] Input field: Region ids.

subdomain : [−] Input field: Subdomain ids of the domain decomposition.

abstract: ReactionTerm

Abstract equation for a reaction term (dual porosity, sorption, reactions). Can be part
of coupling with a transport equation via. operator splitting.
implementations:

FirstOrderReaction, RadioactiveDecay, Sorption, DualPorosity

record: FirstOrderReaction

A model of first order chemical reactions (decompositions of a reactant into products).

implements abstracts: ReactionTerm, ReactionTermMobile, ReactionTermImmobile,
GenericReaction

reactions = 〈array [0, UINT] of record: Reaction 〉

default: Obligatory

An array of first order chemical reactions.

record: Reaction

Describes a single first order chemical reaction.

161

reactants = 〈array [1, UINT] of record: FirstOrderReactionReactant 〉

default: Obligatory

An array of reactants. Do not use array, reactions with only one reactant (decays)
are implemented at the moment!

reaction rate = 〈Double [0, +inf) 〉

default: Obligatory

The reaction rate coefficient of the first order reaction.
products = 〈array [1, UINT] of record: FirstOrderReactionProduct 〉

default: Obligatory

An array of products.

record: FirstOrderReactionReactant

A record describing a reactant of a reaction.

conversion from key: name

name = 〈String 〉

default: Obligatory

The name of the reactant.

record: FirstOrderReactionProduct

A record describing a product of a reaction.

conversion from key: name

name = 〈String 〉

default: Obligatory

The name of the product.
branching ratio = 〈Double [0, +inf) 〉

default: 1.0

The branching ratio of the product when there are more products.
The value must be positive. Further, the branching ratios of all products are
normalized in order to sum to one.
The default value 1.0, should only be used in the case of single product.

162

record: RadioactiveDecay

A model of a radioactive decay and possibly of a decay chain.

implements abstracts: ReactionTerm, ReactionTermMobile, ReactionTermImmobile,
GenericReaction

decays = 〈array [1, UINT] of record: Decay 〉

default: Obligatory

An array of radioactive decays.

record: Decay

A model of a radioactive decay.

radionuclide = 〈String 〉

default: Obligatory

The name of the parent radionuclide.
half life = 〈Double [0, +inf) 〉

default: Obligatory

The half life of the parent radionuclide in seconds.
products = 〈array [1, UINT] of record: RadioactiveDecayProduct 〉

default: Obligatory

An array of the decay products (daughters).

record: RadioactiveDecayProduct

A record describing a product of a radioactive decay.

conversion from key: name

name = 〈String 〉

default: Obligatory

The name of the product.

163

energy = 〈Double [0, +inf) 〉

default: 0.0

Not used at the moment! The released energy in MeV from the decay of the
radionuclide into the product.

branching ratio = 〈Double [0, +inf) 〉

default: 1.0

The branching ratio of the product when there is more than one. Considering only
one product, the default ratio 1.0 is used. Its value must be positive. Further,
the branching ratios of all products are normalizedby their sum, so the sum then
gives 1.0 (this also resolves possible rounding errors).

record: Sorption

Sorption model in the reaction term of transport.

implements abstracts: ReactionTerm

substances = 〈array [1, UINT] of String 〉

default: Obligatory

Names of the substances that take part in the sorption model.
solvent density = 〈Double [0, +inf) 〉

default: 1.0

Density of the solvent.
substeps = 〈Integer [1, INT] 〉

default: 1000

Number of equidistant substeps, molar mass and isotherm intersections
solubility = 〈array [0, UINT] of Double [0, +inf) 〉

default: Optional

Specifies solubility limits of all the sorbing species.
table limits = 〈array [0, UINT] of Double [-1, +inf) 〉

default: Optional

Specifies the highest aqueous concentration in the isotherm function interpolation
table. Use any negative value for an automatic choice according to current maximal
concentration (default and recommended). Use ’0’ to always evaluate isotherm
function directly (can be very slow). Use a positive value to set the interpolation

164

table limit manually (if aqueous concentration is higher, then the isotherm function
is evaluated directly).

input fields = 〈array [0, UINT] of record: Sorption:Data 〉

default: Obligatory

Containes region specific data necessary to construct isotherms.
reaction liquid = 〈abstract: GenericReaction 〉

default: Optional

Reaction model following the sorption in the liquid.
reaction solid = 〈abstract: GenericReaction 〉

default: Optional

Reaction model following the sorption in the solid.
output = 〈gen. record: EquationOutput 〉

gen. parameters: output field selection = Sorption:OutputFields

default: {"fields": ["conc solid"]}

Setting of the fields output.

record: Sorption:Data

Record to set fields of the equation.
The fields are set only on the domain specified by one of the keys: ’region’, ’rid’
and after the time given by the key ’time’. The field setting can be overridden by
any Sorption:Data record that comes later in the boundary data array.

region = 〈array [1, UINT] of String 〉

default: Optional

Labels of the regions where to set fields.
rid = 〈Integer [0, INT] 〉

default: Optional

ID of the region where to set fields.
time = 〈tuple: TimeValue 〉

default: 0.0

Apply field setting in this record after this time.
These times have to form an increasing sequence.

165

rock density = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Rock matrix density. [m−3kg]
sorption type = 〈array [1, UINT] of gen. abstract: Field R3 to R 〉

gen. parameters: element input type = SorptionType

default: Optional

Considered sorption is described by selected isotherm.
If porosity on an element is equal to 1.0 (or even higher), meaning no sorbing
surface, then type ’none’ will be selected automatically. [−]

distribution coefficient = 〈array [1, UINT] of gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Distribution coefficient kl, kF , kL of linear, Freundlich or Langmuir isotherm re-
spectively. [m3kg−1]

isotherm other = 〈array [1, UINT] of gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Additional parameter α of nonlinear isotherms. [−]
init conc solid = 〈array [1, UINT] of gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Initial solid concentration of substances. It is a vector: one value for every sub-
stance. [−]

selection: SorptionType

values:

none : No sorption considered.

linear : Linear isotherm runs the concentration exchange between liquid and solid.

166

langmuir : Langmuir isotherm runs the concentration exchange between liquid and
solid.

freundlich : Freundlich isotherm runs the concentration exchange between liquid and
solid.

abstract: GenericReaction

Abstract equation for a reaction of species in single compartment (e.g. mobile solid).It
can be part of: direct operator splitting coupling, dual porosity model, any sorption.
implementations:

FirstOrderReaction, RadioactiveDecay

selection: Sorption:OutputFields

Selection of output fields for the Sorption model.
values:

rock density : [m−3kg] Input field: Rock matrix density.

sorption type : [−] Input field: Considered sorption is described by selected isotherm.
If porosity on an element is equal to 1.0 (or even higher), meaning no sorbing
surface, then type ’none’ will be selected automatically.

distribution coefficient : [m3kg−1] Input field: Distribution coefficient kl, kF , kL
of linear, Freundlich or Langmuir isotherm respectively.

isotherm other : [−] Input field: Additional parameter α of nonlinear isotherms.

init conc solid : [−] Input field: Initial solid concentration of substances. It is a
vector: one value for every substance.

conc solid : [−] Concentration solution in the solid phase.

record: DualPorosity

Dual porosity model in transport problems.
Provides computing the concentration of substances in mobile and immobile zone.

implements abstracts: ReactionTerm

167

input fields = 〈array [0, UINT] of record: DualPorosity:Data 〉

default: Obligatory

Containes region specific data necessary to construct dual porosity model.
scheme tolerance = 〈Double [0, +inf) 〉

default: 0.001

Tolerance according to which the explicit Euler scheme is used or not. Set 0.0 to
use analytic formula only (can be slower).

reaction mobile = 〈abstract: ReactionTermMobile 〉

default: Optional

Reaction model in mobile zone.
reaction immobile = 〈abstract: ReactionTermImmobile 〉

default: Optional

Reaction model in immobile zone.
output = 〈gen. record: EquationOutput 〉

gen. parameters: output field selection = DualPorosity:OutputFields

default: {"fields": ["conc immobile"]}

Setting of the fields output.

record: DualPorosity:Data

Record to set fields of the equation.
The fields are set only on the domain specified by one of the keys: ’region’, ’rid’
and after the time given by the key ’time’. The field setting can be overridden by
any DualPorosity:Data record that comes later in the boundary data array.

region = 〈array [1, UINT] of String 〉

default: Optional

Labels of the regions where to set fields.
rid = 〈Integer [0, INT] 〉

default: Optional

ID of the region where to set fields.

168

time = 〈tuple: TimeValue 〉

default: 0.0

Apply field setting in this record after this time.
These times have to form an increasing sequence.

diffusion rate immobile = 〈array [1, UINT] of gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Diffusion coefficient of non-equilibrium linear exchange between mobile and im-
mobile zone. [s−1]

porosity immobile = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Porosity of the immobile zone. [−]
init conc immobile = 〈array [1, UINT] of gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Initial concentration of substances in the immobile zone. [m−3kg]

abstract: ReactionTermMobile

Abstract equation for a reaction term of the MOBILE pores (sorption, reactions). Is
part of dual porosity model.
implementations:

FirstOrderReaction, RadioactiveDecay, SorptionMobile

record: SorptionMobile

Sorption model in the mobile zone, following the dual porosity model.

implements abstracts: ReactionTermMobile

substances = 〈array [1, UINT] of String 〉

default: Obligatory

Names of the substances that take part in the sorption model.

169

solvent density = 〈Double [0, +inf) 〉

default: 1.0

Density of the solvent.
substeps = 〈Integer [1, INT] 〉

default: 1000

Number of equidistant substeps, molar mass and isotherm intersections
solubility = 〈array [0, UINT] of Double [0, +inf) 〉

default: Optional

Specifies solubility limits of all the sorbing species.
table limits = 〈array [0, UINT] of Double [-1, +inf) 〉

default: Optional

Specifies the highest aqueous concentration in the isotherm function interpolation
table. Use any negative value for an automatic choice according to current maximal
concentration (default and recommended). Use ’0’ to always evaluate isotherm
function directly (can be very slow). Use a positive value to set the interpolation
table limit manually (if aqueous concentration is higher, then the isotherm function
is evaluated directly).

input fields = 〈array [0, UINT] of record: Sorption:Data 〉

default: Obligatory

Containes region specific data necessary to construct isotherms.
reaction liquid = 〈abstract: GenericReaction 〉

default: Optional

Reaction model following the sorption in the liquid.
reaction solid = 〈abstract: GenericReaction 〉

default: Optional

Reaction model following the sorption in the solid.
output = 〈gen. record: EquationOutput 〉

gen. parameters: output field selection = SorptionMobile:OutputFields

default: {"fields": ["conc solid"]}

Setting of the fields output.

selection: SorptionMobile:OutputFields

170

Selection of output fields for the SorptionMobile model.
values:

rock density : [m−3kg] Input field: Rock matrix density.

sorption type : [−] Input field: Considered sorption is described by selected isotherm.
If porosity on an element is equal to 1.0 (or even higher), meaning no sorbing
surface, then type ’none’ will be selected automatically.

distribution coefficient : [m3kg−1] Input field: Distribution coefficient kl, kF , kL
of linear, Freundlich or Langmuir isotherm respectively.

isotherm other : [−] Input field: Additional parameter α of nonlinear isotherms.

init conc solid : [−] Input field: Initial solid concentration of substances. It is a
vector: one value for every substance.

conc solid : [−] Concentration solution in the solid mobile phase.

abstract: ReactionTermImmobile

Abstract equation for a reaction term of the IMMOBILE pores (sorption, reactions). Is
part of dual porosity model.
implementations:

FirstOrderReaction, RadioactiveDecay, SorptionImmobile

record: SorptionImmobile

Sorption model in the immobile zone, following the dual porosity model.

implements abstracts: ReactionTermImmobile

substances = 〈array [1, UINT] of String 〉

default: Obligatory

Names of the substances that take part in the sorption model.
solvent density = 〈Double [0, +inf) 〉

default: 1.0

Density of the solvent.

171

substeps = 〈Integer [1, INT] 〉

default: 1000

Number of equidistant substeps, molar mass and isotherm intersections
solubility = 〈array [0, UINT] of Double [0, +inf) 〉

default: Optional

Specifies solubility limits of all the sorbing species.
table limits = 〈array [0, UINT] of Double [-1, +inf) 〉

default: Optional

Specifies the highest aqueous concentration in the isotherm function interpolation
table. Use any negative value for an automatic choice according to current maximal
concentration (default and recommended). Use ’0’ to always evaluate isotherm
function directly (can be very slow). Use a positive value to set the interpolation
table limit manually (if aqueous concentration is higher, then the isotherm function
is evaluated directly).

input fields = 〈array [0, UINT] of record: Sorption:Data 〉

default: Obligatory

Containes region specific data necessary to construct isotherms.
reaction liquid = 〈abstract: GenericReaction 〉

default: Optional

Reaction model following the sorption in the liquid.
reaction solid = 〈abstract: GenericReaction 〉

default: Optional

Reaction model following the sorption in the solid.
output = 〈gen. record: EquationOutput 〉

gen. parameters: output field selection = SorptionImmobile:OutputFields

default: {"fields": ["conc immobile solid"]}

Setting of the fields output.

selection: SorptionImmobile:OutputFields

Selection of output fields for the SorptionImmobile model.
values:

172

rock density : [m−3kg] Input field: Rock matrix density.

sorption type : [−] Input field: Considered sorption is described by selected isotherm.
If porosity on an element is equal to 1.0 (or even higher), meaning no sorbing
surface, then type ’none’ will be selected automatically.

distribution coefficient : [m3kg−1] Input field: Distribution coefficient kl, kF , kL
of linear, Freundlich or Langmuir isotherm respectively.

isotherm other : [−] Input field: Additional parameter α of nonlinear isotherms.

init conc solid : [−] Input field: Initial solid concentration of substances. It is a
vector: one value for every substance.

conc immobile solid : [−] Concentration solution in the solid immobile phase.

selection: DualPorosity:OutputFields

Selection of output fields for the DualPorosity model.
values:

diffusion rate immobile : [s−1] Input field: Diffusion coefficient of non-equilibrium
linear exchange between mobile and immobile zone.

porosity immobile : [−] Input field: Porosity of the immobile zone.

init conc immobile : [m−3kg] Input field: Initial concentration of substances in the
immobile zone.

conc immobile : [m−3kg]

record: Heat AdvectionDiffusion DG

Discontinuous Galerkin (DG) solver for heat transfer.

implements abstracts: AdvectionProcess

time = 〈record: TimeGovernor 〉

default: {}

Time governor setting.
balance = 〈record: Balance 〉

default: {}

Settings for computing balance.

173

output stream = 〈record: OutputStream 〉

default: {}

Parameters of output stream.
solver = 〈record: Petsc 〉

default: {}

Solver for the linear system.
input fields = 〈array [0, UINT] of record: Heat AdvectionDiffusion DG:Data 〉

default: Obligatory

Input fields of the equation.
dg variant = 〈selection: DG variant 〉

default: "non-symmetric"

Variant of the interior penalty discontinuous Galerkin method.
dg order = 〈Integer [0, 3] 〉

default: 1

Polynomial order for the finite element in DG method (order 0 is suitable if there
is no diffusion/dispersion).

output = 〈gen. record: EquationOutput 〉

gen. parameters: output field selection = Heat AdvectionDiffusion DG:OutputFields

default: {"fields": ["temperature"]}

Specification of output fields and output times.

record: Heat AdvectionDiffusion DG:Data

Record to set fields of the equation.
The fields are set only on the domain specified by one of the keys: ’region’, ’rid’
and after the time given by the key ’time’. The field setting can be overridden by
any Heat AdvectionDiffusion DG:Data record that comes later in the boundary data
array.

region = 〈array [1, UINT] of String 〉

default: Optional

Labels of the regions where to set fields.

174

rid = 〈Integer [0, INT] 〉

default: Optional

ID of the region where to set fields.
time = 〈tuple: TimeValue 〉

default: 0.0

Apply field setting in this record after this time.
These times have to form an increasing sequence.

bc type = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Heat BC Type

default: Optional

Type of boundary condition. [−]
bc temperature = 〈array [1, UINT] of gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Boundary value of temperature. [K]
bc flux = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Flux in Neumann boundary condition. [m1−dkgs−1]
bc robin sigma = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Conductivity coefficient in Robin boundary condition. [m4−ds−1]
init temperature = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Initial temperature. [K]
porosity = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Porosity. [−]

175

fluid density = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Density of fluid. [m−3kg]
fluid heat capacity = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Heat capacity of fluid. [m2s−2K−1]
fluid heat conductivity = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Heat conductivity of fluid. [mkgs−3K−1]
solid density = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Density of solid (rock). [m−3kg]
solid heat capacity = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Heat capacity of solid (rock). [m2s−2K−1]
solid heat conductivity = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Heat conductivity of solid (rock). [mkgs−3K−1]
disp l = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Longitudinal heat dispersivity in fluid. [m]
disp t = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

176

default: Optional

Transverse heat dispersivity in fluid. [m]
fluid thermal source = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Density of thermal source in fluid. [m−1kgs−3]
solid thermal source = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Density of thermal source in solid. [m−1kgs−3]
fluid heat exchange rate = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Heat exchange rate of source in fluid. [s−1]
solid heat exchange rate = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Heat exchange rate of source in solid. [s−1]
fluid ref temperature = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Reference temperature of source in fluid. [K]
solid ref temperature = 〈gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Reference temperature in solid. [K]
fracture sigma = 〈array [1, UINT] of gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Coefficient of diffusive transfer through fractures (for each substance). [−]

177

dg penalty = 〈array [1, UINT] of gen. abstract: Field R3 to R 〉

gen. parameters: element input type = Double

default: Optional

Penalty parameter influencing the discontinuity of the solution (for each sub-
stance). Its default value 1 is sufficient in most cases. Higher value diminishes the
inter-element jumps. [−]

selection: Heat BC Type

Types of boundary conditions for heat transfer model.
values:

inflow : Default heat transfer boundary condition.
On water inflow (qw ≤ 0), total energy flux is given by the reference temperature
’bc temperature’. On water outflow we prescribe zero diffusive flux, i.e. the energy
flows out only due to advection.

dirichlet : Dirichlet boundary condition T = TD.
The prescribed temperature TD is specified by the field ’bc temperature’.

total flux : Total energy flux boundary condition.
The prescribed incoming total flux can have the general form δ(fN +σR(TR−T)),
where the absolute flux fN is specified by the field ’bc flux’, the transition parame-
ter σR by ’bc robin sigma’, and the reference temperature TR by ’bc temperature’.

diffusive flux : Diffusive flux boundary condition.
The prescribed incoming energy flux due to diffusion can have the general form
δ(fN + σR(TR − T)), where the absolute flux fN is specified by the field ’bc flux’,
the transition parameter σR by ’bc robin sigma’, and the reference temperature
TR by ’bc temperature’.

selection: Heat AdvectionDiffusion DG:OutputFields

Selection of output fields for the Heat AdvectionDiffusion DG model.
values:

init temperature : [K] Input field: Initial temperature.

porosity : [−] Input field: Porosity.

water content : [−] Input field:

178

fluid density : [m−3kg] Input field: Density of fluid.

fluid heat capacity : [m2s−2K−1] Input field: Heat capacity of fluid.

fluid heat conductivity : [mkgs−3K−1] Input field: Heat conductivity of fluid.

solid density : [m−3kg] Input field: Density of solid (rock).

solid heat capacity : [m2s−2K−1] Input field: Heat capacity of solid (rock).

solid heat conductivity : [mkgs−3K−1] Input field: Heat conductivity of solid
(rock).

disp l : [m] Input field: Longitudinal heat dispersivity in fluid.

disp t : [m] Input field: Transverse heat dispersivity in fluid.

fluid thermal source : [m−1kgs−3] Input field: Density of thermal source in fluid.

solid thermal source : [m−1kgs−3] Input field: Density of thermal source in solid.

fluid heat exchange rate : [s−1] Input field: Heat exchange rate of source in fluid.

solid heat exchange rate : [s−1] Input field: Heat exchange rate of source in solid.

fluid ref temperature : [K] Input field: Reference temperature of source in fluid.

solid ref temperature : [K] Input field: Reference temperature in solid.

temperature : [K] Temperature solution.

fracture sigma : [−] Input field: Coefficient of diffusive transfer through fractures
(for each substance).

dg penalty : [−] Input field: Penalty parameter influencing the discontinuity of the
solution (for each substance). Its default value 1 is sufficient in most cases. Higher
value diminishes the inter-element jumps.

region id : [−] Input field: Region ids.

subdomain : [−] Input field: Subdomain ids of the domain decomposition.

179

Alphabetical Index of Types

AdvectionProcess [A], 152

Balance output format [S], 131
Balance [R], 130
Bddc [R], 122

Coupling Base [A], 96
Coupling Iterative

Data [R], 147
Coupling Iterative [R], 138
Coupling OperatorSplitting [R],

152
Coupling Sequential [R], 96

DarcyFlow [A], 105
Decay [R], 163
DG variant [S], 160
Difference [R], 103
Discrete output [S], 128
DtLimits [T], 100
DualPorosity

Data [R], 168
OutputFields [S], 173

DualPorosity [R], 167

Elasticity BC Type [S], 141
EquationOutput [R], 127

FE discretization [S], 114
FieldConstant [R], 111, 116, 142
FieldFE [R], 113, 119, 145
FieldFormula [R], 111, 117, 143
FieldOutputSetting [R], 128
FieldPython [R], 110, 115, 142
FieldTimeFunction [R], 112, 117,

144
Field R3 to R[3,3] [A], 109
Field R3 to R[3] [A], 142
Field R3 to R [A], 115
FirstOrderReactionProduct [R],

162

FirstOrderReactionReactant [R],
162

FirstOrderReaction [R], 161
Flow Darcy BC Type [S], 120
Flow Darcy LMH

OutputFields [S], 129
Flow Darcy LMH Data [R], 107
Flow Darcy LMH [R], 106
Flow Darcy MH

OutputFields [S], 151
Flow Darcy MH Data [R], 149
Flow Darcy MH specific

OutputFields [S], 130
Flow Darcy MH [R], 147
Flow Richards LMH

OutputFields [S], 136
Flow Richards LMH [R], 132
From Elements [R], 102
From Id [R], 101
From Label [R], 102

GenericReaction [A], 167
gmsh [R], 125
GraphType [S], 105

Heat AdvectionDiffusion DG
Data [R], 174
OutputFields [S], 178

Heat AdvectionDiffusion DG [R],
173

Heat BC Type [S], 178

IndependentValue [T], 113, 118,
144

interpolation [S], 115
Intersection [R], 104

LinSys [A], 121

Mechanics LinearElasticity FE
Data [R], 140

180

OutputFields [S], 146
Mechanics LinearElasticity FE

[R], 139
Mesh [R], 100
MH MortarMethod [S], 131

NonlinearSolver [R], 120

ObservePoint [R], 126
OutputMesh [R], 126
OutputStream [R], 123
OutputTime [A], 124
Output DarcyMHSpecific [R], 129

Partition [R], 104
PartTool [S], 105
Petsc [R], 121

RadioactiveDecayProduct [R], 163
RadioactiveDecay [R], 163
ReactionTermImmobile [A], 171
ReactionTermMobile [A], 169
ReactionTerm [A], 161
Reaction [R], 161
Region [A], 101
RichardsLMH Data [R], 133
Root [R], 96

SoilModel [R], 137
Soil Model Type [S], 138
Solute AdvectionDiffusion BC Type

[S], 159
Solute AdvectionDiffusion DG

Data [R], 157
OutputFields [S], 160

Solute AdvectionDiffusion DG [R],
156

Solute Advection FV
Data [R], 154
OutputFields [S], 155

Solute Advection FV [R], 154
Solute [A], 153
Sorption

Data [R], 165
OutputFields [S], 167

SorptionImmobile
OutputFields [S], 172

SorptionImmobile [R], 171
SorptionMobile

OutputFields [S], 170
SorptionMobile [R], 169
SorptionType [S], 166
Sorption [R], 164
Substance [R], 153

TableFunction [R], 113, 118, 144
TimeGovernor [R], 97
TimeGrid [R], 125
TimeValue [T], 99
Types of search algorithm for

finding intersection
candidates. [S], 105

Union [R], 103
Unit [R], 110

VTK variant (ascii or binary)
[S], 125

vtk [R], 124

181

Bibliography

[1] B. T. Bowman. Conversion of freundlich adsorption k values to the
mole fraction format and the use of SY values to express relative adsorp-
tion of pesticides1. 46(4):740. ISSN 0361-5995. doi: 10.2136/sssaj1982.
03615995004600040014x. URL https://www.soils.org/publications/sssaj/
abstracts/46/4/SS0460040740?access=0&view=pdf. 2.5.2

[2] M. Ćıslerová and T. Vogel. Transportńı procesy. ČVUT, 1998. 2.4

[3] G. De Marsily. Quantitative hydrogeology: Groundwater hydrology for engineers.
Academic Press, New York, 1986. 2.4

[4] P. A. Domenico and F. W. Schwartz. Physical and chemical hydrogeology, volume
824. Wiley New York, 1990. 2.4

[5] B. L. Ehle. A-stable methods and Padé approximations to the exponential. SIAM
J. Math. Anal., 4(4):671–680. 3.5.3

[6] A. Ern, A. F. Stephansen, and P. Zunino. A discontinuous Galerkin method
with weighted averages for advection–diffusion equations with locally small and
anisotropic diffusivity. IMA Journal of Numerical Analysis, 29(2):235–256, 2009.
3.3

[7] A. Ern, A. F. Stephansen, and M. Vohraĺık. Guaranteed and robust discontinuous
galerkin a posteriori error estimates for convection–diffusion–reaction problems.
Journal of computational and applied mathematics, 234(1):114–130, 2010. 3.3

[8] V. Martin, J. Jaffré, and J. E. Roberts. Modeling fractures and barriers as interfaces
for flow in porous media. SIAM Journal on Scientific Computing, 26(5):1667, 2005.
ISSN 10648275. doi: 10.1137/S1064827503429363. URL http://link.aip.org/
link/SJOCE3/v26/i5/p1667/s1&Agg=doi. 2.2, 2.3.1

[9] R. Millington and J. Quirk. Permeability of porous solids. Transactions of the
Faraday Society, 57:1200–1207, 1961. 2.4

[10] O. of Radiation, I. A. O. of Solid Waste, and D. . Emergency Response U.S. Envi-
ronmental Protection Agency Washington. Understanding Variation in Partition
Coefficient, Kd, Values. 1999. URL https://www.epa.gov/sites/production/
files/2015-05/documents/402-r-99-004a.pdf. 2.5.2

[11] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Nu-
merical Recipes in C: The Art of Scientific Computing, Second Edition. Cam-
bridge University Press, 2 edition edition. ISBN 9780521431088. URL http:
//www.nrbook.com/a/bookcpdf.php. 3.5.3

182

https://www.soils.org/publications/sssaj/abstracts/46/4/SS0460040740?access=0&view=pdf
https://www.soils.org/publications/sssaj/abstracts/46/4/SS0460040740?access=0&view=pdf
http://link.aip.org/link/SJOCE3/v26/i5/p1667/s1&Agg=doi
http://link.aip.org/link/SJOCE3/v26/i5/p1667/s1&Agg=doi
https://www.epa.gov/sites/production/files/2015-05/documents/402-r-99-004a.pdf
https://www.epa.gov/sites/production/files/2015-05/documents/402-r-99-004a.pdf
http://www.nrbook.com/a/bookcpdf.php
http://www.nrbook.com/a/bookcpdf.php

[12] A. Younes, P. Ackerer, and F. Lehmann. A new mass lumping scheme for the mixed
hybrid finite element method. Int. J. Numer. Meth. Engng, 67:89–107, 2006. 3.1

183

	Getting Started
	Introduction
	Reading Documentation
	Installing Flow123d
	Installing Flow123d on Linux
	Alternate way to install

	Installing Flow123d on Windows
	Before you install
	Installation
	Flow123d troubleshooting
	Uninstalling Flow123d
	Reinstalling Flow123d

	Running Flow123d
	Running Flow123d on Linux
	Running Flow123d on Windows
	Running from other batch file
	Adjusting memory of virtual machine

	Flow123d arguments
	Tutorial Problem
	Geometry
	YAML File Format
	Flow Setting
	Transport Setting
	Reaction Term
	Results

	Mathematical Models of Physical Reality
	Meshes of Mixed Dimension
	Advection-Diffusion Processes on Fractures
	Darcy Flow Model
	Coupling on mixed meshes
	Boundary conditions
	Steady and unsteady Darcian flow
	Initial condition
	Water balance
	Richards Equation
	van Genuchten
	Irmay

	Coupling of dimensions for non-conforming meshes

	Transport of Substances
	Reaction Term in Transport
	Dual Porosity
	Equilibrial Sorption
	Sorption in Dual Porosity Model
	Radioactive Decay
	First Order Reaction

	Heat Transfer
	Mechanics

	Numerical Methods
	Diagonalized Mixed-Hybrid Method
	Mixed-Hybrid Method on Non-conforming Mixed Meshes
	P0 method
	P1 method

	Discontinuous Galerkin Method
	Finite Volume Method for Convective Transport
	Solution Issues for Reaction Term
	Dual Porosity
	Equilibrial Sorption
	System of Linear Ordinary Differential Equations

	File Formats
	Main Input File
	YAML basics
	Hierarchy of Mappings and Lists
	Tags
	References
	Gotchas

	Flow123d input types
	Record (YAML Mapping, JSON object)
	Array (YAML List, JSON array)
	Abstract
	Flow123d specific tags

	Input subsystem

	Important Record Types of Flow123d Input
	Mesh Record
	Input Fields
	Field Algorithms
	Field Units

	Output Records
	Balance
	OutputStream
	EquationOuput
	TimeGrid Array

	Mesh and Data File Format MSH ASCII
	Output Files
	Auxiliary Output Files
	Profiling Information
	Balance of Conservative Quantities
	Raw Water Flow Data File

	Tutorials
	1D column
	Description
	Input
	Setting the computational mesh
	Setting the model and physical parameters
	Setting solver parameters
	Setting output

	Results
	Variant

	1D column transport
	Description and input
	Results

	2D tunnel
	Description
	Hydraulic model
	Transport of real isotopes
	Input
	Results

	Fractures and diffusion
	Description
	Input
	Geometry and mesh generation
	Hydraulic model
	Transport model

	Results

	Fractures and sorption
	Description
	Input
	Results

	Fractures and dual porosity
	Description
	Input
	Results and comparison

	Heat transport
	Description
	Input
	Geometry
	Hydraulic model
	Heat transport model

	Results

	Main Input File Reference

